1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_exec.h"
#include <drm/drm_device.h>
#include <drm/drm_exec.h>
#include <drm/drm_file.h>
#include <drm/xe_drm.h>
#include <linux/delay.h>
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_exec_queue.h"
#include "xe_macros.h"
#include "xe_ring_ops_types.h"
#include "xe_sched_job.h"
#include "xe_sync.h"
#include "xe_vm.h"
/**
* DOC: Execbuf (User GPU command submission)
*
* Execs have historically been rather complicated in DRM drivers (at least in
* the i915) because a few things:
*
* - Passing in a list BO which are read / written to creating implicit syncs
* - Binding at exec time
* - Flow controlling the ring at exec time
*
* In XE we avoid all of this complication by not allowing a BO list to be
* passed into an exec, using the dma-buf implicit sync uAPI, have binds as
* seperate operations, and using the DRM scheduler to flow control the ring.
* Let's deep dive on each of these.
*
* We can get away from a BO list by forcing the user to use in / out fences on
* every exec rather than the kernel tracking dependencies of BO (e.g. if the
* user knows an exec writes to a BO and reads from the BO in the next exec, it
* is the user's responsibility to pass in / out fence between the two execs).
*
* Implicit dependencies for external BOs are handled by using the dma-buf
* implicit dependency uAPI (TODO: add link). To make this works each exec must
* install the job's fence into the DMA_RESV_USAGE_WRITE slot of every external
* BO mapped in the VM.
*
* We do not allow a user to trigger a bind at exec time rather we have a VM
* bind IOCTL which uses the same in / out fence interface as exec. In that
* sense, a VM bind is basically the same operation as an exec from the user
* perspective. e.g. If an exec depends on a VM bind use the in / out fence
* interface (struct drm_xe_sync) to synchronize like syncing between two
* dependent execs.
*
* Although a user cannot trigger a bind, we still have to rebind userptrs in
* the VM that have been invalidated since the last exec, likewise we also have
* to rebind BOs that have been evicted by the kernel. We schedule these rebinds
* behind any pending kernel operations on any external BOs in VM or any BOs
* private to the VM. This is accomplished by the rebinds waiting on BOs
* DMA_RESV_USAGE_KERNEL slot (kernel ops) and kernel ops waiting on all BOs
* slots (inflight execs are in the DMA_RESV_USAGE_BOOKING for private BOs and
* in DMA_RESV_USAGE_WRITE for external BOs).
*
* Rebinds / dma-resv usage applies to non-compute mode VMs only as for compute
* mode VMs we use preempt fences and a rebind worker (TODO: add link).
*
* There is no need to flow control the ring in the exec as we write the ring at
* submission time and set the DRM scheduler max job limit SIZE_OF_RING /
* MAX_JOB_SIZE. The DRM scheduler will then hold all jobs until space in the
* ring is available.
*
* All of this results in a rather simple exec implementation.
*
* Flow
* ~~~~
*
* .. code-block::
*
* Parse input arguments
* Wait for any async VM bind passed as in-fences to start
* <----------------------------------------------------------------------|
* Lock global VM lock in read mode |
* Pin userptrs (also finds userptr invalidated since last exec) |
* Lock exec (VM dma-resv lock, external BOs dma-resv locks) |
* Validate BOs that have been evicted |
* Create job |
* Rebind invalidated userptrs + evicted BOs (non-compute-mode) |
* Add rebind fence dependency to job |
* Add job VM dma-resv bookkeeping slot (non-compute mode) |
* Add job to external BOs dma-resv write slots (non-compute mode) |
* Check if any userptrs invalidated since pin ------ Drop locks ---------|
* Install in / out fences for job
* Submit job
* Unlock all
*/
static int xe_exec_fn(struct drm_gpuvm_exec *vm_exec)
{
struct xe_vm *vm = container_of(vm_exec->vm, struct xe_vm, gpuvm);
struct drm_gem_object *obj;
unsigned long index;
int num_fences;
int ret;
ret = drm_gpuvm_validate(vm_exec->vm, &vm_exec->exec);
if (ret)
return ret;
/*
* 1 fence slot for the final submit, and 1 more for every per-tile for
* GPU bind and 1 extra for CPU bind. Note that there are potentially
* many vma per object/dma-resv, however the fence slot will just be
* re-used, since they are largely the same timeline and the seqno
* should be in order. In the case of CPU bind there is dummy fence used
* for all CPU binds, so no need to have a per-tile slot for that.
*/
num_fences = 1 + 1 + vm->xe->info.tile_count;
/*
* We don't know upfront exactly how many fence slots we will need at
* the start of the exec, since the TTM bo_validate above can consume
* numerous fence slots. Also due to how the dma_resv_reserve_fences()
* works it only ensures that at least that many fence slots are
* available i.e if there are already 10 slots available and we reserve
* two more, it can just noop without reserving anything. With this it
* is quite possible that TTM steals some of the fence slots and then
* when it comes time to do the vma binding and final exec stage we are
* lacking enough fence slots, leading to some nasty BUG_ON() when
* adding the fences. Hence just add our own fences here, after the
* validate stage.
*/
drm_exec_for_each_locked_object(&vm_exec->exec, index, obj) {
ret = dma_resv_reserve_fences(obj->resv, num_fences);
if (ret)
return ret;
}
return 0;
}
int xe_exec_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec *args = data;
struct drm_xe_sync __user *syncs_user = u64_to_user_ptr(args->syncs);
u64 __user *addresses_user = u64_to_user_ptr(args->address);
struct xe_exec_queue *q;
struct xe_sync_entry *syncs = NULL;
u64 addresses[XE_HW_ENGINE_MAX_INSTANCE];
struct drm_gpuvm_exec vm_exec = {.extra.fn = xe_exec_fn};
struct drm_exec *exec = &vm_exec.exec;
u32 i, num_syncs = 0, num_ufence = 0;
struct xe_sched_job *job;
struct xe_vm *vm;
bool write_locked, skip_retry = false;
ktime_t end = 0;
int err = 0;
if (XE_IOCTL_DBG(xe, args->extensions) ||
XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
q = xe_exec_queue_lookup(xef, args->exec_queue_id);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_VM))
return -EINVAL;
if (XE_IOCTL_DBG(xe, args->num_batch_buffer &&
q->width != args->num_batch_buffer))
return -EINVAL;
if (XE_IOCTL_DBG(xe, q->flags & EXEC_QUEUE_FLAG_BANNED)) {
err = -ECANCELED;
goto err_exec_queue;
}
if (args->num_syncs) {
syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
if (!syncs) {
err = -ENOMEM;
goto err_exec_queue;
}
}
vm = q->vm;
for (i = 0; i < args->num_syncs; i++) {
err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs++],
&syncs_user[i], SYNC_PARSE_FLAG_EXEC |
(xe_vm_in_lr_mode(vm) ?
SYNC_PARSE_FLAG_LR_MODE : 0));
if (err)
goto err_syncs;
if (xe_sync_is_ufence(&syncs[i]))
num_ufence++;
}
if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
err = -EINVAL;
goto err_syncs;
}
if (xe_exec_queue_is_parallel(q)) {
err = __copy_from_user(addresses, addresses_user, sizeof(u64) *
q->width);
if (err) {
err = -EFAULT;
goto err_syncs;
}
}
retry:
if (!xe_vm_in_lr_mode(vm) && xe_vm_userptr_check_repin(vm)) {
err = down_write_killable(&vm->lock);
write_locked = true;
} else {
/* We don't allow execs while the VM is in error state */
err = down_read_interruptible(&vm->lock);
write_locked = false;
}
if (err)
goto err_syncs;
if (write_locked) {
err = xe_vm_userptr_pin(vm);
downgrade_write(&vm->lock);
write_locked = false;
if (err)
goto err_unlock_list;
}
if (!args->num_batch_buffer) {
err = xe_vm_lock(vm, true);
if (err)
goto err_unlock_list;
if (!xe_vm_in_lr_mode(vm)) {
struct dma_fence *fence;
fence = xe_sync_in_fence_get(syncs, num_syncs, q, vm);
if (IS_ERR(fence)) {
err = PTR_ERR(fence);
goto err_unlock_list;
}
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], NULL, fence);
xe_exec_queue_last_fence_set(q, vm, fence);
dma_fence_put(fence);
}
xe_vm_unlock(vm);
goto err_unlock_list;
}
vm_exec.vm = &vm->gpuvm;
vm_exec.flags = DRM_EXEC_INTERRUPTIBLE_WAIT;
if (xe_vm_in_lr_mode(vm)) {
drm_exec_init(exec, vm_exec.flags, 0);
} else {
err = drm_gpuvm_exec_lock(&vm_exec);
if (err) {
if (xe_vm_validate_should_retry(exec, err, &end))
err = -EAGAIN;
goto err_unlock_list;
}
}
if (xe_vm_is_closed_or_banned(q->vm)) {
drm_warn(&xe->drm, "Trying to schedule after vm is closed or banned\n");
err = -ECANCELED;
goto err_exec;
}
if (xe_exec_queue_is_lr(q) && xe_exec_queue_ring_full(q)) {
err = -EWOULDBLOCK; /* Aliased to -EAGAIN */
skip_retry = true;
goto err_exec;
}
job = xe_sched_job_create(q, xe_exec_queue_is_parallel(q) ?
addresses : &args->address);
if (IS_ERR(job)) {
err = PTR_ERR(job);
goto err_exec;
}
/*
* Rebind any invalidated userptr or evicted BOs in the VM, non-compute
* VM mode only.
*/
err = xe_vm_rebind(vm, false);
if (err)
goto err_put_job;
/* Wait behind rebinds */
if (!xe_vm_in_lr_mode(vm)) {
err = drm_sched_job_add_resv_dependencies(&job->drm,
xe_vm_resv(vm),
DMA_RESV_USAGE_KERNEL);
if (err)
goto err_put_job;
}
for (i = 0; i < num_syncs && !err; i++)
err = xe_sync_entry_add_deps(&syncs[i], job);
if (err)
goto err_put_job;
if (!xe_vm_in_lr_mode(vm)) {
err = xe_sched_job_last_fence_add_dep(job, vm);
if (err)
goto err_put_job;
err = down_read_interruptible(&vm->userptr.notifier_lock);
if (err)
goto err_put_job;
err = __xe_vm_userptr_needs_repin(vm);
if (err)
goto err_repin;
}
/*
* Point of no return, if we error after this point just set an error on
* the job and let the DRM scheduler / backend clean up the job.
*/
xe_sched_job_arm(job);
if (!xe_vm_in_lr_mode(vm))
drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, &job->drm.s_fence->finished,
DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_WRITE);
for (i = 0; i < num_syncs; i++)
xe_sync_entry_signal(&syncs[i], job,
&job->drm.s_fence->finished);
if (xe_exec_queue_is_lr(q))
q->ring_ops->emit_job(job);
if (!xe_vm_in_lr_mode(vm))
xe_exec_queue_last_fence_set(q, vm, &job->drm.s_fence->finished);
xe_sched_job_push(job);
xe_vm_reactivate_rebind(vm);
if (!err && !xe_vm_in_lr_mode(vm)) {
spin_lock(&xe->ttm.lru_lock);
ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
spin_unlock(&xe->ttm.lru_lock);
}
err_repin:
if (!xe_vm_in_lr_mode(vm))
up_read(&vm->userptr.notifier_lock);
err_put_job:
if (err)
xe_sched_job_put(job);
err_exec:
drm_exec_fini(exec);
err_unlock_list:
if (write_locked)
up_write(&vm->lock);
else
up_read(&vm->lock);
if (err == -EAGAIN && !skip_retry)
goto retry;
err_syncs:
for (i = 0; i < num_syncs; i++)
xe_sync_entry_cleanup(&syncs[i]);
kfree(syncs);
err_exec_queue:
xe_exec_queue_put(q);
return err;
}
|