1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 MaxLinear, Inc.
*
* This driver is a hardware monitoring driver for PVT controller
* (MR75203) which is used to configure & control Moortec embedded
* analog IP to enable multiple embedded temperature sensor(TS),
* voltage monitor(VM) & process detector(PD) modules.
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/units.h>
/* PVT Common register */
#define PVT_IP_CONFIG 0x04
#define TS_NUM_MSK GENMASK(4, 0)
#define TS_NUM_SFT 0
#define PD_NUM_MSK GENMASK(12, 8)
#define PD_NUM_SFT 8
#define VM_NUM_MSK GENMASK(20, 16)
#define VM_NUM_SFT 16
#define CH_NUM_MSK GENMASK(31, 24)
#define CH_NUM_SFT 24
#define VM_NUM_MAX (VM_NUM_MSK >> VM_NUM_SFT)
/* Macro Common Register */
#define CLK_SYNTH 0x00
#define CLK_SYNTH_LO_SFT 0
#define CLK_SYNTH_HI_SFT 8
#define CLK_SYNTH_HOLD_SFT 16
#define CLK_SYNTH_EN BIT(24)
#define CLK_SYS_CYCLES_MAX 514
#define CLK_SYS_CYCLES_MIN 2
#define SDIF_DISABLE 0x04
#define SDIF_STAT 0x08
#define SDIF_BUSY BIT(0)
#define SDIF_LOCK BIT(1)
#define SDIF_W 0x0c
#define SDIF_PROG BIT(31)
#define SDIF_WRN_W BIT(27)
#define SDIF_WRN_R 0x00
#define SDIF_ADDR_SFT 24
#define SDIF_HALT 0x10
#define SDIF_CTRL 0x14
#define SDIF_SMPL_CTRL 0x20
/* TS & PD Individual Macro Register */
#define COM_REG_SIZE 0x40
#define SDIF_DONE(n) (COM_REG_SIZE + 0x14 + 0x40 * (n))
#define SDIF_SMPL_DONE BIT(0)
#define SDIF_DATA(n) (COM_REG_SIZE + 0x18 + 0x40 * (n))
#define SAMPLE_DATA_MSK GENMASK(15, 0)
#define HILO_RESET(n) (COM_REG_SIZE + 0x2c + 0x40 * (n))
/* VM Individual Macro Register */
#define VM_COM_REG_SIZE 0x200
#define VM_SDIF_DONE(vm) (VM_COM_REG_SIZE + 0x34 + 0x200 * (vm))
#define VM_SDIF_DATA(vm, ch) \
(VM_COM_REG_SIZE + 0x40 + 0x200 * (vm) + 0x4 * (ch))
/* SDA Slave Register */
#define IP_CTRL 0x00
#define IP_RST_REL BIT(1)
#define IP_RUN_CONT BIT(3)
#define IP_AUTO BIT(8)
#define IP_VM_MODE BIT(10)
#define IP_CFG 0x01
#define CFG0_MODE_2 BIT(0)
#define CFG0_PARALLEL_OUT 0
#define CFG0_12_BIT 0
#define CFG1_VOL_MEAS_MODE 0
#define CFG1_PARALLEL_OUT 0
#define CFG1_14_BIT 0
#define IP_DATA 0x03
#define IP_POLL 0x04
#define VM_CH_INIT BIT(20)
#define VM_CH_REQ BIT(21)
#define IP_TMR 0x05
#define POWER_DELAY_CYCLE_256 0x100
#define POWER_DELAY_CYCLE_64 0x40
#define PVT_POLL_DELAY_US 20
#define PVT_POLL_TIMEOUT_US 20000
#define PVT_CONV_BITS 10
#define PVT_N_CONST 90
#define PVT_R_CONST 245805
#define PVT_TEMP_MIN_mC -40000
#define PVT_TEMP_MAX_mC 125000
/* Temperature coefficients for series 5 */
#define PVT_SERIES5_H_CONST 200000
#define PVT_SERIES5_G_CONST 60000
#define PVT_SERIES5_J_CONST -100
#define PVT_SERIES5_CAL5_CONST 4094
/* Temperature coefficients for series 6 */
#define PVT_SERIES6_H_CONST 249400
#define PVT_SERIES6_G_CONST 57400
#define PVT_SERIES6_J_CONST 0
#define PVT_SERIES6_CAL5_CONST 4096
#define TEMPERATURE_SENSOR_SERIES_5 5
#define TEMPERATURE_SENSOR_SERIES_6 6
#define PRE_SCALER_X1 1
#define PRE_SCALER_X2 2
/**
* struct voltage_device - VM single input parameters.
* @vm_map: Map channel number to VM index.
* @ch_map: Map channel number to channel index.
* @pre_scaler: Pre scaler value (1 or 2) used to normalize the voltage output
* result.
*
* The structure provides mapping between channel-number (0..N-1) to VM-index
* (0..num_vm-1) and channel-index (0..ch_num-1) where N = num_vm * ch_num.
* It also provides normalization factor for the VM equation.
*/
struct voltage_device {
u32 vm_map;
u32 ch_map;
u32 pre_scaler;
};
/**
* struct voltage_channels - VM channel count.
* @total: Total number of channels in all VMs.
* @max: Maximum number of channels among all VMs.
*
* The structure provides channel count information across all VMs.
*/
struct voltage_channels {
u32 total;
u8 max;
};
struct temp_coeff {
u32 h;
u32 g;
u32 cal5;
s32 j;
};
struct pvt_device {
struct regmap *c_map;
struct regmap *t_map;
struct regmap *p_map;
struct regmap *v_map;
struct clk *clk;
struct reset_control *rst;
struct dentry *dbgfs_dir;
struct voltage_device *vd;
struct voltage_channels vm_channels;
struct temp_coeff ts_coeff;
u32 t_num;
u32 p_num;
u32 v_num;
u32 ip_freq;
};
static ssize_t pvt_ts_coeff_j_read(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct pvt_device *pvt = file->private_data;
unsigned int len;
char buf[13];
len = scnprintf(buf, sizeof(buf), "%d\n", pvt->ts_coeff.j);
return simple_read_from_buffer(user_buf, count, ppos, buf, len);
}
static ssize_t pvt_ts_coeff_j_write(struct file *file,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct pvt_device *pvt = file->private_data;
int ret;
ret = kstrtos32_from_user(user_buf, count, 0, &pvt->ts_coeff.j);
if (ret)
return ret;
return count;
}
static const struct file_operations pvt_ts_coeff_j_fops = {
.read = pvt_ts_coeff_j_read,
.write = pvt_ts_coeff_j_write,
.open = simple_open,
.owner = THIS_MODULE,
.llseek = default_llseek,
};
static void devm_pvt_ts_dbgfs_remove(void *data)
{
struct pvt_device *pvt = (struct pvt_device *)data;
debugfs_remove_recursive(pvt->dbgfs_dir);
pvt->dbgfs_dir = NULL;
}
static int pvt_ts_dbgfs_create(struct pvt_device *pvt, struct device *dev)
{
pvt->dbgfs_dir = debugfs_create_dir(dev_name(dev), NULL);
debugfs_create_u32("ts_coeff_h", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.h);
debugfs_create_u32("ts_coeff_g", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.g);
debugfs_create_u32("ts_coeff_cal5", 0644, pvt->dbgfs_dir,
&pvt->ts_coeff.cal5);
debugfs_create_file("ts_coeff_j", 0644, pvt->dbgfs_dir, pvt,
&pvt_ts_coeff_j_fops);
return devm_add_action_or_reset(dev, devm_pvt_ts_dbgfs_remove, pvt);
}
static umode_t pvt_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_temp:
if (attr == hwmon_temp_input)
return 0444;
break;
case hwmon_in:
if (attr == hwmon_in_input)
return 0444;
break;
default:
break;
}
return 0;
}
static long pvt_calc_temp(struct pvt_device *pvt, u32 nbs)
{
/*
* Convert the register value to degrees centigrade temperature:
* T = G + H * (n / cal5 - 0.5) + J * F
*/
struct temp_coeff *ts_coeff = &pvt->ts_coeff;
s64 tmp = ts_coeff->g +
div_s64(ts_coeff->h * (s64)nbs, ts_coeff->cal5) -
ts_coeff->h / 2 +
div_s64(ts_coeff->j * (s64)pvt->ip_freq, HZ_PER_MHZ);
return clamp_val(tmp, PVT_TEMP_MIN_mC, PVT_TEMP_MAX_mC);
}
static int pvt_read_temp(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *t_map = pvt->t_map;
u32 stat, nbs;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = regmap_read_poll_timeout(t_map, SDIF_DONE(channel),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(t_map, SDIF_DATA(channel), &nbs);
if (ret < 0)
return ret;
nbs &= SAMPLE_DATA_MSK;
/*
* Convert the register value to
* degrees centigrade temperature
*/
*val = pvt_calc_temp(pvt, nbs);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct pvt_device *pvt = dev_get_drvdata(dev);
struct regmap *v_map = pvt->v_map;
u32 n, stat, pre_scaler;
u8 vm_idx, ch_idx;
int ret;
if (channel >= pvt->vm_channels.total)
return -EINVAL;
vm_idx = pvt->vd[channel].vm_map;
ch_idx = pvt->vd[channel].ch_map;
switch (attr) {
case hwmon_in_input:
ret = regmap_read_poll_timeout(v_map, VM_SDIF_DONE(vm_idx),
stat, stat & SDIF_SMPL_DONE,
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
ret = regmap_read(v_map, VM_SDIF_DATA(vm_idx, ch_idx), &n);
if (ret < 0)
return ret;
n &= SAMPLE_DATA_MSK;
pre_scaler = pvt->vd[channel].pre_scaler;
/*
* Convert the N bitstream count into voltage.
* To support negative voltage calculation for 64bit machines
* n must be cast to long, since n and *val differ both in
* signedness and in size.
* Division is used instead of right shift, because for signed
* numbers, the sign bit is used to fill the vacated bit
* positions, and if the number is negative, 1 is used.
* BIT(x) may not be used instead of (1 << x) because it's
* unsigned.
*/
*val = pre_scaler * (PVT_N_CONST * (long)n - PVT_R_CONST) /
(1 << PVT_CONV_BITS);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int pvt_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return pvt_read_temp(dev, attr, channel, val);
case hwmon_in:
return pvt_read_in(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static struct hwmon_channel_info pvt_temp = {
.type = hwmon_temp,
};
static struct hwmon_channel_info pvt_in = {
.type = hwmon_in,
};
static const struct hwmon_ops pvt_hwmon_ops = {
.is_visible = pvt_is_visible,
.read = pvt_read,
};
static struct hwmon_chip_info pvt_chip_info = {
.ops = &pvt_hwmon_ops,
};
static int pvt_init(struct pvt_device *pvt)
{
u16 sys_freq, key, middle, low = 4, high = 8;
struct regmap *t_map = pvt->t_map;
struct regmap *p_map = pvt->p_map;
struct regmap *v_map = pvt->v_map;
u32 t_num = pvt->t_num;
u32 p_num = pvt->p_num;
u32 v_num = pvt->v_num;
u32 clk_synth, val;
int ret;
sys_freq = clk_get_rate(pvt->clk) / HZ_PER_MHZ;
while (high >= low) {
middle = (low + high + 1) / 2;
key = DIV_ROUND_CLOSEST(sys_freq, middle);
if (key > CLK_SYS_CYCLES_MAX) {
low = middle + 1;
continue;
} else if (key < CLK_SYS_CYCLES_MIN) {
high = middle - 1;
continue;
} else {
break;
}
}
/*
* The system supports 'clk_sys' to 'clk_ip' frequency ratios
* from 2:1 to 512:1
*/
key = clamp_val(key, CLK_SYS_CYCLES_MIN, CLK_SYS_CYCLES_MAX) - 2;
clk_synth = ((key + 1) >> 1) << CLK_SYNTH_LO_SFT |
(key >> 1) << CLK_SYNTH_HI_SFT |
(key >> 1) << CLK_SYNTH_HOLD_SFT | CLK_SYNTH_EN;
pvt->ip_freq = clk_get_rate(pvt->clk) / (key + 2);
if (t_num) {
ret = regmap_write(t_map, SDIF_SMPL_CTRL, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(t_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
ret = regmap_write(t_map, SDIF_DISABLE, 0x0);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG0_MODE_2 | CFG0_PARALLEL_OUT | CFG0_12_BIT |
IP_CFG << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_256 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(t_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(t_map, SDIF_W, val);
if (ret < 0)
return ret;
}
if (p_num) {
ret = regmap_write(p_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(p_map, SDIF_DISABLE, BIT(p_num) - 1);
if (ret < 0)
return ret;
ret = regmap_write(p_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
}
if (v_num) {
ret = regmap_write(v_map, SDIF_SMPL_CTRL, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_HALT, 0x0);
if (ret < 0)
return ret;
ret = regmap_write(v_map, CLK_SYNTH, clk_synth);
if (ret < 0)
return ret;
ret = regmap_write(v_map, SDIF_DISABLE, 0x0);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = (BIT(pvt->vm_channels.max) - 1) | VM_CH_INIT |
IP_POLL << SDIF_ADDR_SFT | SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = CFG1_VOL_MEAS_MODE | CFG1_PARALLEL_OUT |
CFG1_14_BIT | IP_CFG << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = POWER_DELAY_CYCLE_64 | IP_TMR << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(v_map, SDIF_STAT,
val, !(val & SDIF_BUSY),
PVT_POLL_DELAY_US,
PVT_POLL_TIMEOUT_US);
if (ret)
return ret;
val = IP_RST_REL | IP_RUN_CONT | IP_AUTO | IP_VM_MODE |
IP_CTRL << SDIF_ADDR_SFT |
SDIF_WRN_W | SDIF_PROG;
ret = regmap_write(v_map, SDIF_W, val);
if (ret < 0)
return ret;
}
return 0;
}
static struct regmap_config pvt_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
};
static int pvt_get_regmap(struct platform_device *pdev, char *reg_name,
struct pvt_device *pvt)
{
struct device *dev = &pdev->dev;
struct regmap **reg_map;
void __iomem *io_base;
if (!strcmp(reg_name, "common"))
reg_map = &pvt->c_map;
else if (!strcmp(reg_name, "ts"))
reg_map = &pvt->t_map;
else if (!strcmp(reg_name, "pd"))
reg_map = &pvt->p_map;
else if (!strcmp(reg_name, "vm"))
reg_map = &pvt->v_map;
else
return -EINVAL;
io_base = devm_platform_ioremap_resource_byname(pdev, reg_name);
if (IS_ERR(io_base))
return PTR_ERR(io_base);
pvt_regmap_config.name = reg_name;
*reg_map = devm_regmap_init_mmio(dev, io_base, &pvt_regmap_config);
if (IS_ERR(*reg_map)) {
dev_err(dev, "failed to init register map\n");
return PTR_ERR(*reg_map);
}
return 0;
}
static void pvt_clk_disable(void *data)
{
struct pvt_device *pvt = data;
clk_disable_unprepare(pvt->clk);
}
static int pvt_clk_enable(struct device *dev, struct pvt_device *pvt)
{
int ret;
ret = clk_prepare_enable(pvt->clk);
if (ret)
return ret;
return devm_add_action_or_reset(dev, pvt_clk_disable, pvt);
}
static void pvt_reset_control_assert(void *data)
{
struct pvt_device *pvt = data;
reset_control_assert(pvt->rst);
}
static int pvt_reset_control_deassert(struct device *dev, struct pvt_device *pvt)
{
int ret;
ret = reset_control_deassert(pvt->rst);
if (ret)
return ret;
return devm_add_action_or_reset(dev, pvt_reset_control_assert, pvt);
}
static int pvt_get_active_channel(struct device *dev, struct pvt_device *pvt,
u32 vm_num, u32 ch_num, u8 *vm_idx)
{
u8 vm_active_ch[VM_NUM_MAX];
int ret, i, j, k;
ret = device_property_read_u8_array(dev, "moortec,vm-active-channels",
vm_active_ch, vm_num);
if (ret) {
/*
* Incase "moortec,vm-active-channels" property is not defined,
* we assume each VM sensor has all of its channels active.
*/
memset(vm_active_ch, ch_num, vm_num);
pvt->vm_channels.max = ch_num;
pvt->vm_channels.total = ch_num * vm_num;
} else {
for (i = 0; i < vm_num; i++) {
if (vm_active_ch[i] > ch_num) {
dev_err(dev, "invalid active channels: %u\n",
vm_active_ch[i]);
return -EINVAL;
}
pvt->vm_channels.total += vm_active_ch[i];
if (vm_active_ch[i] > pvt->vm_channels.max)
pvt->vm_channels.max = vm_active_ch[i];
}
}
/*
* Map between the channel-number to VM-index and channel-index.
* Example - 3 VMs, "moortec,vm_active_ch" = <5 2 4>:
* vm_map = [0 0 0 0 0 1 1 2 2 2 2]
* ch_map = [0 1 2 3 4 0 1 0 1 2 3]
*/
pvt->vd = devm_kcalloc(dev, pvt->vm_channels.total, sizeof(*pvt->vd),
GFP_KERNEL);
if (!pvt->vd)
return -ENOMEM;
k = 0;
for (i = 0; i < vm_num; i++) {
for (j = 0; j < vm_active_ch[i]; j++) {
pvt->vd[k].vm_map = vm_idx[i];
pvt->vd[k].ch_map = j;
k++;
}
}
return 0;
}
static int pvt_get_pre_scaler(struct device *dev, struct pvt_device *pvt)
{
u8 *pre_scaler_ch_list;
int i, ret, num_ch;
u32 channel;
/* Set default pre-scaler value to be 1. */
for (i = 0; i < pvt->vm_channels.total; i++)
pvt->vd[i].pre_scaler = PRE_SCALER_X1;
/* Get number of channels configured in "moortec,vm-pre-scaler-x2". */
num_ch = device_property_count_u8(dev, "moortec,vm-pre-scaler-x2");
if (num_ch <= 0)
return 0;
pre_scaler_ch_list = kcalloc(num_ch, sizeof(*pre_scaler_ch_list),
GFP_KERNEL);
if (!pre_scaler_ch_list)
return -ENOMEM;
/* Get list of all channels that have pre-scaler of 2. */
ret = device_property_read_u8_array(dev, "moortec,vm-pre-scaler-x2",
pre_scaler_ch_list, num_ch);
if (ret)
goto out;
for (i = 0; i < num_ch; i++) {
channel = pre_scaler_ch_list[i];
pvt->vd[channel].pre_scaler = PRE_SCALER_X2;
}
out:
kfree(pre_scaler_ch_list);
return ret;
}
static int pvt_set_temp_coeff(struct device *dev, struct pvt_device *pvt)
{
struct temp_coeff *ts_coeff = &pvt->ts_coeff;
u32 series;
int ret;
/* Incase ts-series property is not defined, use default 5. */
ret = device_property_read_u32(dev, "moortec,ts-series", &series);
if (ret)
series = TEMPERATURE_SENSOR_SERIES_5;
switch (series) {
case TEMPERATURE_SENSOR_SERIES_5:
ts_coeff->h = PVT_SERIES5_H_CONST;
ts_coeff->g = PVT_SERIES5_G_CONST;
ts_coeff->j = PVT_SERIES5_J_CONST;
ts_coeff->cal5 = PVT_SERIES5_CAL5_CONST;
break;
case TEMPERATURE_SENSOR_SERIES_6:
ts_coeff->h = PVT_SERIES6_H_CONST;
ts_coeff->g = PVT_SERIES6_G_CONST;
ts_coeff->j = PVT_SERIES6_J_CONST;
ts_coeff->cal5 = PVT_SERIES6_CAL5_CONST;
break;
default:
dev_err(dev, "invalid temperature sensor series (%u)\n",
series);
return -EINVAL;
}
dev_dbg(dev, "temperature sensor series = %u\n", series);
/* Override ts-coeff-h/g/j/cal5 if they are defined. */
device_property_read_u32(dev, "moortec,ts-coeff-h", &ts_coeff->h);
device_property_read_u32(dev, "moortec,ts-coeff-g", &ts_coeff->g);
device_property_read_u32(dev, "moortec,ts-coeff-j", &ts_coeff->j);
device_property_read_u32(dev, "moortec,ts-coeff-cal5", &ts_coeff->cal5);
dev_dbg(dev, "ts-coeff: h = %u, g = %u, j = %d, cal5 = %u\n",
ts_coeff->h, ts_coeff->g, ts_coeff->j, ts_coeff->cal5);
return 0;
}
static int mr75203_probe(struct platform_device *pdev)
{
u32 ts_num, vm_num, pd_num, ch_num, val, index, i;
const struct hwmon_channel_info **pvt_info;
struct device *dev = &pdev->dev;
u32 *temp_config, *in_config;
struct device *hwmon_dev;
struct pvt_device *pvt;
int ret;
pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
if (!pvt)
return -ENOMEM;
ret = pvt_get_regmap(pdev, "common", pvt);
if (ret)
return ret;
pvt->clk = devm_clk_get(dev, NULL);
if (IS_ERR(pvt->clk))
return dev_err_probe(dev, PTR_ERR(pvt->clk), "failed to get clock\n");
ret = pvt_clk_enable(dev, pvt);
if (ret) {
dev_err(dev, "failed to enable clock\n");
return ret;
}
pvt->rst = devm_reset_control_get_optional_exclusive(dev, NULL);
if (IS_ERR(pvt->rst))
return dev_err_probe(dev, PTR_ERR(pvt->rst),
"failed to get reset control\n");
if (pvt->rst) {
ret = pvt_reset_control_deassert(dev, pvt);
if (ret)
return dev_err_probe(dev, ret,
"cannot deassert reset control\n");
}
ret = regmap_read(pvt->c_map, PVT_IP_CONFIG, &val);
if (ret < 0)
return ret;
ts_num = (val & TS_NUM_MSK) >> TS_NUM_SFT;
pd_num = (val & PD_NUM_MSK) >> PD_NUM_SFT;
vm_num = (val & VM_NUM_MSK) >> VM_NUM_SFT;
ch_num = (val & CH_NUM_MSK) >> CH_NUM_SFT;
pvt->t_num = ts_num;
pvt->p_num = pd_num;
pvt->v_num = vm_num;
val = 0;
if (ts_num)
val++;
if (vm_num)
val++;
if (!val)
return -ENODEV;
pvt_info = devm_kcalloc(dev, val + 2, sizeof(*pvt_info), GFP_KERNEL);
if (!pvt_info)
return -ENOMEM;
pvt_info[0] = HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ);
index = 1;
if (ts_num) {
ret = pvt_get_regmap(pdev, "ts", pvt);
if (ret)
return ret;
ret = pvt_set_temp_coeff(dev, pvt);
if (ret)
return ret;
temp_config = devm_kcalloc(dev, ts_num + 1,
sizeof(*temp_config), GFP_KERNEL);
if (!temp_config)
return -ENOMEM;
memset32(temp_config, HWMON_T_INPUT, ts_num);
pvt_temp.config = temp_config;
pvt_info[index++] = &pvt_temp;
pvt_ts_dbgfs_create(pvt, dev);
}
if (pd_num) {
ret = pvt_get_regmap(pdev, "pd", pvt);
if (ret)
return ret;
}
if (vm_num) {
u8 vm_idx[VM_NUM_MAX];
ret = pvt_get_regmap(pdev, "vm", pvt);
if (ret)
return ret;
ret = device_property_read_u8_array(dev, "intel,vm-map", vm_idx,
vm_num);
if (ret) {
/*
* Incase intel,vm-map property is not defined, we
* assume incremental channel numbers.
*/
for (i = 0; i < vm_num; i++)
vm_idx[i] = i;
} else {
for (i = 0; i < vm_num; i++)
if (vm_idx[i] >= vm_num || vm_idx[i] == 0xff) {
pvt->v_num = i;
vm_num = i;
break;
}
}
ret = pvt_get_active_channel(dev, pvt, vm_num, ch_num, vm_idx);
if (ret)
return ret;
ret = pvt_get_pre_scaler(dev, pvt);
if (ret)
return ret;
in_config = devm_kcalloc(dev, pvt->vm_channels.total + 1,
sizeof(*in_config), GFP_KERNEL);
if (!in_config)
return -ENOMEM;
memset32(in_config, HWMON_I_INPUT, pvt->vm_channels.total);
in_config[pvt->vm_channels.total] = 0;
pvt_in.config = in_config;
pvt_info[index++] = &pvt_in;
}
ret = pvt_init(pvt);
if (ret) {
dev_err(dev, "failed to init pvt: %d\n", ret);
return ret;
}
pvt_chip_info.info = pvt_info;
hwmon_dev = devm_hwmon_device_register_with_info(dev, "pvt",
pvt,
&pvt_chip_info,
NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static const struct of_device_id moortec_pvt_of_match[] = {
{ .compatible = "moortec,mr75203" },
{ }
};
MODULE_DEVICE_TABLE(of, moortec_pvt_of_match);
static struct platform_driver moortec_pvt_driver = {
.driver = {
.name = "moortec-pvt",
.of_match_table = moortec_pvt_of_match,
},
.probe = mr75203_probe,
};
module_platform_driver(moortec_pvt_driver);
MODULE_LICENSE("GPL v2");
|