1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Qualcomm SMEM NAND flash partition parser
*
* Copyright (C) 2020, Linaro Ltd.
*/
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
#include <linux/soc/qcom/smem.h>
#define SMEM_AARM_PARTITION_TABLE 9
#define SMEM_APPS 0
#define SMEM_FLASH_PART_MAGIC1 0x55ee73aa
#define SMEM_FLASH_PART_MAGIC2 0xe35ebddb
#define SMEM_FLASH_PTABLE_V3 3
#define SMEM_FLASH_PTABLE_V4 4
#define SMEM_FLASH_PTABLE_MAX_PARTS_V3 16
#define SMEM_FLASH_PTABLE_MAX_PARTS_V4 48
#define SMEM_FLASH_PTABLE_HDR_LEN (4 * sizeof(u32))
#define SMEM_FLASH_PTABLE_NAME_SIZE 16
/**
* struct smem_flash_pentry - SMEM Flash partition entry
* @name: Name of the partition
* @offset: Offset in blocks
* @length: Length of the partition in blocks
* @attr: Flags for this partition
*/
struct smem_flash_pentry {
char name[SMEM_FLASH_PTABLE_NAME_SIZE];
__le32 offset;
__le32 length;
u8 attr;
} __packed __aligned(4);
/**
* struct smem_flash_ptable - SMEM Flash partition table
* @magic1: Partition table Magic 1
* @magic2: Partition table Magic 2
* @version: Partition table version
* @numparts: Number of partitions in this ptable
* @pentry: Flash partition entries belonging to this ptable
*/
struct smem_flash_ptable {
__le32 magic1;
__le32 magic2;
__le32 version;
__le32 numparts;
struct smem_flash_pentry pentry[SMEM_FLASH_PTABLE_MAX_PARTS_V4];
} __packed __aligned(4);
static int parse_qcomsmem_part(struct mtd_info *mtd,
const struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
size_t len = SMEM_FLASH_PTABLE_HDR_LEN;
int ret, i, j, tmpparts, numparts = 0;
struct smem_flash_pentry *pentry;
struct smem_flash_ptable *ptable;
struct mtd_partition *parts;
char *name, *c;
if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS)
&& mtd->type == MTD_NORFLASH) {
pr_err("%s: SMEM partition parser is incompatible with 4K sectors\n",
mtd->name);
return -EINVAL;
}
pr_debug("Parsing partition table info from SMEM\n");
ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len);
if (IS_ERR(ptable)) {
pr_err("Error reading partition table header\n");
return PTR_ERR(ptable);
}
/* Verify ptable magic */
if (le32_to_cpu(ptable->magic1) != SMEM_FLASH_PART_MAGIC1 ||
le32_to_cpu(ptable->magic2) != SMEM_FLASH_PART_MAGIC2) {
pr_err("Partition table magic verification failed\n");
return -EINVAL;
}
/* Ensure that # of partitions is less than the max we have allocated */
tmpparts = le32_to_cpu(ptable->numparts);
if (tmpparts > SMEM_FLASH_PTABLE_MAX_PARTS_V4) {
pr_err("Partition numbers exceed the max limit\n");
return -EINVAL;
}
/* Find out length of partition data based on table version */
if (le32_to_cpu(ptable->version) <= SMEM_FLASH_PTABLE_V3) {
len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V3 *
sizeof(struct smem_flash_pentry);
} else if (le32_to_cpu(ptable->version) == SMEM_FLASH_PTABLE_V4) {
len = SMEM_FLASH_PTABLE_HDR_LEN + SMEM_FLASH_PTABLE_MAX_PARTS_V4 *
sizeof(struct smem_flash_pentry);
} else {
pr_err("Unknown ptable version (%d)", le32_to_cpu(ptable->version));
return -EINVAL;
}
/*
* Now that the partition table header has been parsed, verified
* and the length of the partition table calculated, read the
* complete partition table
*/
ptable = qcom_smem_get(SMEM_APPS, SMEM_AARM_PARTITION_TABLE, &len);
if (IS_ERR(ptable)) {
pr_err("Error reading partition table\n");
return PTR_ERR(ptable);
}
for (i = 0; i < tmpparts; i++) {
pentry = &ptable->pentry[i];
if (pentry->name[0] != '\0')
numparts++;
}
parts = kcalloc(numparts, sizeof(*parts), GFP_KERNEL);
if (!parts)
return -ENOMEM;
for (i = 0, j = 0; i < tmpparts; i++) {
pentry = &ptable->pentry[i];
if (pentry->name[0] == '\0')
continue;
name = kstrdup(pentry->name, GFP_KERNEL);
if (!name) {
ret = -ENOMEM;
goto out_free_parts;
}
/* Convert name to lower case */
for (c = name; *c != '\0'; c++)
*c = tolower(*c);
parts[j].name = name;
parts[j].offset = le32_to_cpu(pentry->offset) * mtd->erasesize;
parts[j].mask_flags = pentry->attr;
parts[j].size = le32_to_cpu(pentry->length) * mtd->erasesize;
pr_debug("%d: %s offs=0x%08x size=0x%08x attr:0x%08x\n",
i, pentry->name, le32_to_cpu(pentry->offset),
le32_to_cpu(pentry->length), pentry->attr);
j++;
}
pr_debug("SMEM partition table found: ver: %d len: %d\n",
le32_to_cpu(ptable->version), tmpparts);
*pparts = parts;
return numparts;
out_free_parts:
while (--j >= 0)
kfree(parts[j].name);
kfree(parts);
*pparts = NULL;
return ret;
}
static void parse_qcomsmem_cleanup(const struct mtd_partition *pparts,
int nr_parts)
{
int i;
for (i = 0; i < nr_parts; i++)
kfree(pparts[i].name);
kfree(pparts);
}
static const struct of_device_id qcomsmem_of_match_table[] = {
{ .compatible = "qcom,smem-part" },
{},
};
MODULE_DEVICE_TABLE(of, qcomsmem_of_match_table);
static struct mtd_part_parser mtd_parser_qcomsmem = {
.parse_fn = parse_qcomsmem_part,
.cleanup = parse_qcomsmem_cleanup,
.name = "qcomsmem",
.of_match_table = qcomsmem_of_match_table,
};
module_mtd_part_parser(mtd_parser_qcomsmem);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
MODULE_DESCRIPTION("Qualcomm SMEM NAND flash partition parser");
|