1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
|
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include <linux/module.h>
#include <linux/netdevice.h>
#include "efx_common.h"
#include "efx_channels.h"
#include "efx.h"
#include "mcdi.h"
#include "selftest.h"
#include "rx_common.h"
#include "tx_common.h"
#include "nic.h"
#include "io.h"
#include "mcdi_pcol.h"
static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
NETIF_MSG_TX_ERR | NETIF_MSG_HW);
module_param(debug, uint, 0);
MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
/* This is the time (in jiffies) between invocations of the hardware
* monitor.
* On Falcon-based NICs, this will:
* - Check the on-board hardware monitor;
* - Poll the link state and reconfigure the hardware as necessary.
* On Siena-based NICs for power systems with EEH support, this will give EEH a
* chance to start.
*/
static unsigned int efx_monitor_interval = 1 * HZ;
/* How often and how many times to poll for a reset while waiting for a
* BIST that another function started to complete.
*/
#define BIST_WAIT_DELAY_MS 100
#define BIST_WAIT_DELAY_COUNT 100
/* Default stats update time */
#define STATS_PERIOD_MS_DEFAULT 1000
const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *const efx_reset_type_names[] = {
[RESET_TYPE_INVISIBLE] = "INVISIBLE",
[RESET_TYPE_ALL] = "ALL",
[RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
[RESET_TYPE_WORLD] = "WORLD",
[RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
[RESET_TYPE_DATAPATH] = "DATAPATH",
[RESET_TYPE_MC_BIST] = "MC_BIST",
[RESET_TYPE_DISABLE] = "DISABLE",
[RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
[RESET_TYPE_INT_ERROR] = "INT_ERROR",
[RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
[RESET_TYPE_TX_SKIP] = "TX_SKIP",
[RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
[RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
};
#define RESET_TYPE(type) \
STRING_TABLE_LOOKUP(type, efx_reset_type)
/* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *const efx_loopback_mode_names[] = {
[LOOPBACK_NONE] = "NONE",
[LOOPBACK_DATA] = "DATAPATH",
[LOOPBACK_GMAC] = "GMAC",
[LOOPBACK_XGMII] = "XGMII",
[LOOPBACK_XGXS] = "XGXS",
[LOOPBACK_XAUI] = "XAUI",
[LOOPBACK_GMII] = "GMII",
[LOOPBACK_SGMII] = "SGMII",
[LOOPBACK_XGBR] = "XGBR",
[LOOPBACK_XFI] = "XFI",
[LOOPBACK_XAUI_FAR] = "XAUI_FAR",
[LOOPBACK_GMII_FAR] = "GMII_FAR",
[LOOPBACK_SGMII_FAR] = "SGMII_FAR",
[LOOPBACK_XFI_FAR] = "XFI_FAR",
[LOOPBACK_GPHY] = "GPHY",
[LOOPBACK_PHYXS] = "PHYXS",
[LOOPBACK_PCS] = "PCS",
[LOOPBACK_PMAPMD] = "PMA/PMD",
[LOOPBACK_XPORT] = "XPORT",
[LOOPBACK_XGMII_WS] = "XGMII_WS",
[LOOPBACK_XAUI_WS] = "XAUI_WS",
[LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
[LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
[LOOPBACK_GMII_WS] = "GMII_WS",
[LOOPBACK_XFI_WS] = "XFI_WS",
[LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
[LOOPBACK_PHYXS_WS] = "PHYXS_WS",
};
/* Reset workqueue. If any NIC has a hardware failure then a reset will be
* queued onto this work queue. This is not a per-nic work queue, because
* efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
*/
static struct workqueue_struct *reset_workqueue;
int efx_create_reset_workqueue(void)
{
reset_workqueue = create_singlethread_workqueue("sfc_reset");
if (!reset_workqueue) {
printk(KERN_ERR "Failed to create reset workqueue\n");
return -ENOMEM;
}
return 0;
}
void efx_queue_reset_work(struct efx_nic *efx)
{
queue_work(reset_workqueue, &efx->reset_work);
}
void efx_flush_reset_workqueue(struct efx_nic *efx)
{
cancel_work_sync(&efx->reset_work);
}
void efx_destroy_reset_workqueue(void)
{
if (reset_workqueue) {
destroy_workqueue(reset_workqueue);
reset_workqueue = NULL;
}
}
/* We assume that efx->type->reconfigure_mac will always try to sync RX
* filters and therefore needs to read-lock the filter table against freeing
*/
void efx_mac_reconfigure(struct efx_nic *efx)
{
if (efx->type->reconfigure_mac) {
down_read(&efx->filter_sem);
efx->type->reconfigure_mac(efx);
up_read(&efx->filter_sem);
}
}
/* Asynchronous work item for changing MAC promiscuity and multicast
* hash. Avoid a drain/rx_ingress enable by reconfiguring the current
* MAC directly.
*/
static void efx_mac_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled)
efx_mac_reconfigure(efx);
mutex_unlock(&efx->mac_lock);
}
int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct sockaddr *addr = data;
u8 *new_addr = addr->sa_data;
u8 old_addr[6];
int rc;
if (!is_valid_ether_addr(new_addr)) {
netif_err(efx, drv, efx->net_dev,
"invalid ethernet MAC address requested: %pM\n",
new_addr);
return -EADDRNOTAVAIL;
}
/* save old address */
ether_addr_copy(old_addr, net_dev->dev_addr);
ether_addr_copy(net_dev->dev_addr, new_addr);
if (efx->type->set_mac_address) {
rc = efx->type->set_mac_address(efx);
if (rc) {
ether_addr_copy(net_dev->dev_addr, old_addr);
return rc;
}
}
/* Reconfigure the MAC */
mutex_lock(&efx->mac_lock);
efx_mac_reconfigure(efx);
mutex_unlock(&efx->mac_lock);
return 0;
}
/* Context: netif_addr_lock held, BHs disabled. */
void efx_set_rx_mode(struct net_device *net_dev)
{
struct efx_nic *efx = netdev_priv(net_dev);
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->mac_work);
/* Otherwise efx_start_port() will do this */
}
int efx_set_features(struct net_device *net_dev, netdev_features_t data)
{
struct efx_nic *efx = netdev_priv(net_dev);
int rc;
/* If disabling RX n-tuple filtering, clear existing filters */
if (net_dev->features & ~data & NETIF_F_NTUPLE) {
rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
if (rc)
return rc;
}
/* If Rx VLAN filter is changed, update filters via mac_reconfigure.
* If rx-fcs is changed, mac_reconfigure updates that too.
*/
if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_RXFCS)) {
/* efx_set_rx_mode() will schedule MAC work to update filters
* when a new features are finally set in net_dev.
*/
efx_set_rx_mode(net_dev);
}
return 0;
}
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
void efx_link_status_changed(struct efx_nic *efx)
{
struct efx_link_state *link_state = &efx->link_state;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN
*/
if (!netif_running(efx->net_dev))
return;
if (link_state->up != netif_carrier_ok(efx->net_dev)) {
efx->n_link_state_changes++;
if (link_state->up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (link_state->up)
netif_info(efx, link, efx->net_dev,
"link up at %uMbps %s-duplex (MTU %d)\n",
link_state->speed, link_state->fd ? "full" : "half",
efx->net_dev->mtu);
else
netif_info(efx, link, efx->net_dev, "link down\n");
}
unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
{
/* The maximum MTU that we can fit in a single page, allowing for
* framing, overhead and XDP headroom + tailroom.
*/
int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
efx->rx_prefix_size + efx->type->rx_buffer_padding +
efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
return PAGE_SIZE - overhead;
}
/* Context: process, rtnl_lock() held. */
int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = netdev_priv(net_dev);
int rc;
rc = efx_check_disabled(efx);
if (rc)
return rc;
if (rtnl_dereference(efx->xdp_prog) &&
new_mtu > efx_xdp_max_mtu(efx)) {
netif_err(efx, drv, efx->net_dev,
"Requested MTU of %d too big for XDP (max: %d)\n",
new_mtu, efx_xdp_max_mtu(efx));
return -EINVAL;
}
netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
efx_device_detach_sync(efx);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
net_dev->mtu = new_mtu;
efx_mac_reconfigure(efx);
mutex_unlock(&efx->mac_lock);
efx_start_all(efx);
efx_device_attach_if_not_resetting(efx);
return 0;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
netif_vdbg(efx, timer, efx->net_dev,
"hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
BUG_ON(efx->type->monitor == NULL);
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of monitor() anyway.
*/
if (mutex_trylock(&efx->mac_lock)) {
if (efx->port_enabled && efx->type->monitor)
efx->type->monitor(efx);
mutex_unlock(&efx->mac_lock);
}
efx_start_monitor(efx);
}
void efx_start_monitor(struct efx_nic *efx)
{
if (efx->type->monitor)
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static void efx_start_datapath(struct efx_nic *efx)
{
netdev_features_t old_features = efx->net_dev->features;
bool old_rx_scatter = efx->rx_scatter;
size_t rx_buf_len;
/* Calculate the rx buffer allocation parameters required to
* support the current MTU, including padding for header
* alignment and overruns.
*/
efx->rx_dma_len = (efx->rx_prefix_size +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM +
efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
if (rx_buf_len <= PAGE_SIZE) {
efx->rx_scatter = efx->type->always_rx_scatter;
efx->rx_buffer_order = 0;
} else if (efx->type->can_rx_scatter) {
BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
EFX_RX_BUF_ALIGNMENT) >
PAGE_SIZE);
efx->rx_scatter = true;
efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
efx->rx_buffer_order = 0;
} else {
efx->rx_scatter = false;
efx->rx_buffer_order = get_order(rx_buf_len);
}
efx_rx_config_page_split(efx);
if (efx->rx_buffer_order)
netif_dbg(efx, drv, efx->net_dev,
"RX buf len=%u; page order=%u batch=%u\n",
efx->rx_dma_len, efx->rx_buffer_order,
efx->rx_pages_per_batch);
else
netif_dbg(efx, drv, efx->net_dev,
"RX buf len=%u step=%u bpp=%u; page batch=%u\n",
efx->rx_dma_len, efx->rx_page_buf_step,
efx->rx_bufs_per_page, efx->rx_pages_per_batch);
/* Restore previously fixed features in hw_features and remove
* features which are fixed now
*/
efx->net_dev->hw_features |= efx->net_dev->features;
efx->net_dev->hw_features &= ~efx->fixed_features;
efx->net_dev->features |= efx->fixed_features;
if (efx->net_dev->features != old_features)
netdev_features_change(efx->net_dev);
/* RX filters may also have scatter-enabled flags */
if ((efx->rx_scatter != old_rx_scatter) &&
efx->type->filter_update_rx_scatter)
efx->type->filter_update_rx_scatter(efx);
/* We must keep at least one descriptor in a TX ring empty.
* We could avoid this when the queue size does not exactly
* match the hardware ring size, but it's not that important.
* Therefore we stop the queue when one more skb might fill
* the ring completely. We wake it when half way back to
* empty.
*/
efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
/* Initialise the channels */
efx_start_channels(efx);
efx_ptp_start_datapath(efx);
if (netif_device_present(efx->net_dev))
netif_tx_wake_all_queues(efx->net_dev);
}
static void efx_stop_datapath(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
efx_ptp_stop_datapath(efx);
efx_stop_channels(efx);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* Equivalent to efx_link_set_advertising with all-zeroes, except does not
* force the Autoneg bit on.
*/
void efx_link_clear_advertising(struct efx_nic *efx)
{
bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
}
void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
{
efx->wanted_fc = wanted_fc;
if (efx->link_advertising[0]) {
if (wanted_fc & EFX_FC_RX)
efx->link_advertising[0] |= (ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
else
efx->link_advertising[0] &= ~(ADVERTISED_Pause |
ADVERTISED_Asym_Pause);
if (wanted_fc & EFX_FC_TX)
efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
}
}
static void efx_start_port(struct efx_nic *efx)
{
netif_dbg(efx, ifup, efx->net_dev, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = true;
/* Ensure MAC ingress/egress is enabled */
efx_mac_reconfigure(efx);
mutex_unlock(&efx->mac_lock);
}
/* Cancel work for MAC reconfiguration, periodic hardware monitoring
* and the async self-test, wait for them to finish and prevent them
* being scheduled again. This doesn't cover online resets, which
* should only be cancelled when removing the device.
*/
static void efx_stop_port(struct efx_nic *efx)
{
netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
efx->port_enabled = false;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev);
cancel_delayed_work_sync(&efx->monitor_work);
efx_selftest_async_cancel(efx);
cancel_work_sync(&efx->mac_work);
}
/* If the interface is supposed to be running but is not, start
* the hardware and software data path, regular activity for the port
* (MAC statistics, link polling, etc.) and schedule the port to be
* reconfigured. Interrupts must already be enabled. This function
* is safe to call multiple times, so long as the NIC is not disabled.
* Requires the RTNL lock.
*/
void efx_start_all(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->state == STATE_DISABLED);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock
*/
if (efx->port_enabled || !netif_running(efx->net_dev) ||
efx->reset_pending)
return;
efx_start_port(efx);
efx_start_datapath(efx);
/* Start the hardware monitor if there is one */
efx_start_monitor(efx);
/* Link state detection is normally event-driven; we have
* to poll now because we could have missed a change
*/
mutex_lock(&efx->mac_lock);
if (efx->phy_op->poll(efx))
efx_link_status_changed(efx);
mutex_unlock(&efx->mac_lock);
if (efx->type->start_stats) {
efx->type->start_stats(efx);
efx->type->pull_stats(efx);
spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx, NULL, NULL);
spin_unlock_bh(&efx->stats_lock);
}
}
/* Quiesce the hardware and software data path, and regular activity
* for the port without bringing the link down. Safe to call multiple
* times with the NIC in almost any state, but interrupts should be
* enabled. Requires the RTNL lock.
*/
void efx_stop_all(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
if (efx->type->update_stats) {
/* update stats before we go down so we can accurately count
* rx_nodesc_drops
*/
efx->type->pull_stats(efx);
spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx, NULL, NULL);
spin_unlock_bh(&efx->stats_lock);
efx->type->stop_stats(efx);
}
efx_stop_port(efx);
/* Stop the kernel transmit interface. This is only valid if
* the device is stopped or detached; otherwise the watchdog
* may fire immediately.
*/
WARN_ON(netif_running(efx->net_dev) &&
netif_device_present(efx->net_dev));
netif_tx_disable(efx->net_dev);
efx_stop_datapath(efx);
}
/* Context: process, dev_base_lock or RTNL held, non-blocking. */
void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
{
struct efx_nic *efx = netdev_priv(net_dev);
spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx, NULL, stats);
spin_unlock_bh(&efx->stats_lock);
}
/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
* the MAC appropriately. All other PHY configuration changes are pushed
* through phy_op->set_settings(), and pushed asynchronously to the MAC
* through efx_monitor().
*
* Callers must hold the mac_lock
*/
int __efx_reconfigure_port(struct efx_nic *efx)
{
enum efx_phy_mode phy_mode;
int rc = 0;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
/* Disable PHY transmit in mac level loopbacks */
phy_mode = efx->phy_mode;
if (LOOPBACK_INTERNAL(efx))
efx->phy_mode |= PHY_MODE_TX_DISABLED;
else
efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
if (efx->type->reconfigure_port)
rc = efx->type->reconfigure_port(efx);
if (rc)
efx->phy_mode = phy_mode;
return rc;
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled.
*/
int efx_reconfigure_port(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
rc = __efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
return rc;
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
static void efx_wait_for_bist_end(struct efx_nic *efx)
{
int i;
for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
if (efx_mcdi_poll_reboot(efx))
goto out;
msleep(BIST_WAIT_DELAY_MS);
}
netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
out:
/* Either way unset the BIST flag. If we found no reboot we probably
* won't recover, but we should try.
*/
efx->mc_bist_for_other_fn = false;
}
/* Try recovery mechanisms.
* For now only EEH is supported.
* Returns 0 if the recovery mechanisms are unsuccessful.
* Returns a non-zero value otherwise.
*/
int efx_try_recovery(struct efx_nic *efx)
{
#ifdef CONFIG_EEH
/* A PCI error can occur and not be seen by EEH because nothing
* happens on the PCI bus. In this case the driver may fail and
* schedule a 'recover or reset', leading to this recovery handler.
* Manually call the eeh failure check function.
*/
struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
if (eeh_dev_check_failure(eehdev)) {
/* The EEH mechanisms will handle the error and reset the
* device if necessary.
*/
return 1;
}
#endif
return 0;
}
/* Tears down the entire software state and most of the hardware state
* before reset.
*/
void efx_reset_down(struct efx_nic *efx, enum reset_type method)
{
EFX_ASSERT_RESET_SERIALISED(efx);
if (method == RESET_TYPE_MCDI_TIMEOUT)
efx->type->prepare_flr(efx);
efx_stop_all(efx);
efx_disable_interrupts(efx);
mutex_lock(&efx->mac_lock);
down_write(&efx->filter_sem);
mutex_lock(&efx->rss_lock);
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
method != RESET_TYPE_DATAPATH)
efx->phy_op->fini(efx);
efx->type->fini(efx);
}
/* Context: netif_tx_lock held, BHs disabled. */
void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
{
struct efx_nic *efx = netdev_priv(net_dev);
netif_err(efx, tx_err, efx->net_dev,
"TX stuck with port_enabled=%d: resetting channels\n",
efx->port_enabled);
efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
}
/* This function will always ensure that the locks acquired in
* efx_reset_down() are released. A failure return code indicates
* that we were unable to reinitialise the hardware, and the
* driver should be disabled. If ok is false, then the rx and tx
* engines are not restarted, pending a RESET_DISABLE.
*/
int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
if (method == RESET_TYPE_MCDI_TIMEOUT)
efx->type->finish_flr(efx);
/* Ensure that SRAM is initialised even if we're disabling the device */
rc = efx->type->init(efx);
if (rc) {
netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
goto fail;
}
if (!ok)
goto fail;
if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
method != RESET_TYPE_DATAPATH) {
rc = efx->phy_op->init(efx);
if (rc)
goto fail;
rc = efx->phy_op->reconfigure(efx);
if (rc && rc != -EPERM)
netif_err(efx, drv, efx->net_dev,
"could not restore PHY settings\n");
}
rc = efx_enable_interrupts(efx);
if (rc)
goto fail;
#ifdef CONFIG_SFC_SRIOV
rc = efx->type->vswitching_restore(efx);
if (rc) /* not fatal; the PF will still work fine */
netif_warn(efx, probe, efx->net_dev,
"failed to restore vswitching rc=%d;"
" VFs may not function\n", rc);
#endif
if (efx->type->rx_restore_rss_contexts)
efx->type->rx_restore_rss_contexts(efx);
mutex_unlock(&efx->rss_lock);
efx->type->filter_table_restore(efx);
up_write(&efx->filter_sem);
if (efx->type->sriov_reset)
efx->type->sriov_reset(efx);
mutex_unlock(&efx->mac_lock);
efx_start_all(efx);
if (efx->type->udp_tnl_push_ports)
efx->type->udp_tnl_push_ports(efx);
return 0;
fail:
efx->port_initialized = false;
mutex_unlock(&efx->rss_lock);
up_write(&efx->filter_sem);
mutex_unlock(&efx->mac_lock);
return rc;
}
/* Reset the NIC using the specified method. Note that the reset may
* fail, in which case the card will be left in an unusable state.
*
* Caller must hold the rtnl_lock.
*/
int efx_reset(struct efx_nic *efx, enum reset_type method)
{
bool disabled;
int rc, rc2;
netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
RESET_TYPE(method));
efx_device_detach_sync(efx);
efx_reset_down(efx, method);
rc = efx->type->reset(efx, method);
if (rc) {
netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
goto out;
}
/* Clear flags for the scopes we covered. We assume the NIC and
* driver are now quiescent so that there is no race here.
*/
if (method < RESET_TYPE_MAX_METHOD)
efx->reset_pending &= -(1 << (method + 1));
else /* it doesn't fit into the well-ordered scope hierarchy */
__clear_bit(method, &efx->reset_pending);
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests.
*/
pci_set_master(efx->pci_dev);
out:
/* Leave device stopped if necessary */
disabled = rc ||
method == RESET_TYPE_DISABLE ||
method == RESET_TYPE_RECOVER_OR_DISABLE;
rc2 = efx_reset_up(efx, method, !disabled);
if (rc2) {
disabled = true;
if (!rc)
rc = rc2;
}
if (disabled) {
dev_close(efx->net_dev);
netif_err(efx, drv, efx->net_dev, "has been disabled\n");
efx->state = STATE_DISABLED;
} else {
netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
efx_device_attach_if_not_resetting(efx);
}
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
unsigned long pending;
enum reset_type method;
pending = READ_ONCE(efx->reset_pending);
method = fls(pending) - 1;
if (method == RESET_TYPE_MC_BIST)
efx_wait_for_bist_end(efx);
if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
method == RESET_TYPE_RECOVER_OR_ALL) &&
efx_try_recovery(efx))
return;
if (!pending)
return;
rtnl_lock();
/* We checked the state in efx_schedule_reset() but it may
* have changed by now. Now that we have the RTNL lock,
* it cannot change again.
*/
if (efx->state == STATE_READY)
(void)efx_reset(efx, method);
rtnl_unlock();
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->state == STATE_RECOVERY) {
netif_dbg(efx, drv, efx->net_dev,
"recovering: skip scheduling %s reset\n",
RESET_TYPE(type));
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_RECOVER_OR_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
case RESET_TYPE_RECOVER_OR_DISABLE:
case RESET_TYPE_DATAPATH:
case RESET_TYPE_MC_BIST:
case RESET_TYPE_MCDI_TIMEOUT:
method = type;
netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
RESET_TYPE(method));
break;
default:
method = efx->type->map_reset_reason(type);
netif_dbg(efx, drv, efx->net_dev,
"scheduling %s reset for %s\n",
RESET_TYPE(method), RESET_TYPE(type));
break;
}
set_bit(method, &efx->reset_pending);
smp_mb(); /* ensure we change reset_pending before checking state */
/* If we're not READY then just leave the flags set as the cue
* to abort probing or reschedule the reset later.
*/
if (READ_ONCE(efx->state) != STATE_READY)
return;
/* efx_process_channel() will no longer read events once a
* reset is scheduled. So switch back to poll'd MCDI completions.
*/
efx_mcdi_mode_poll(efx);
efx_queue_reset_work(efx);
}
/**************************************************************************
*
* Dummy PHY/MAC operations
*
* Can be used for some unimplemented operations
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
static bool efx_port_dummy_op_poll(struct efx_nic *efx)
{
return false;
}
static const struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_int,
.poll = efx_port_dummy_op_poll,
.fini = efx_port_dummy_op_void,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
int efx_init_struct(struct efx_nic *efx,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
int rc = -ENOMEM;
/* Initialise common structures */
INIT_LIST_HEAD(&efx->node);
INIT_LIST_HEAD(&efx->secondary_list);
spin_lock_init(&efx->biu_lock);
#ifdef CONFIG_SFC_MTD
INIT_LIST_HEAD(&efx->mtd_list);
#endif
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx_selftest_async_init(efx);
efx->pci_dev = pci_dev;
efx->msg_enable = debug;
efx->state = STATE_UNINIT;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->net_dev = net_dev;
efx->rx_prefix_size = efx->type->rx_prefix_size;
efx->rx_ip_align =
NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
efx->rx_packet_hash_offset =
efx->type->rx_hash_offset - efx->type->rx_prefix_size;
efx->rx_packet_ts_offset =
efx->type->rx_ts_offset - efx->type->rx_prefix_size;
INIT_LIST_HEAD(&efx->rss_context.list);
mutex_init(&efx->rss_lock);
spin_lock_init(&efx->stats_lock);
efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
efx->num_mac_stats = MC_CMD_MAC_NSTATS;
BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
mutex_init(&efx->mac_lock);
#ifdef CONFIG_RFS_ACCEL
mutex_init(&efx->rps_mutex);
spin_lock_init(&efx->rps_hash_lock);
/* Failure to allocate is not fatal, but may degrade ARFS performance */
efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
sizeof(*efx->rps_hash_table), GFP_KERNEL);
#endif
efx->phy_op = &efx_dummy_phy_operations;
efx->mdio.dev = net_dev;
INIT_WORK(&efx->mac_work, efx_mac_work);
init_waitqueue_head(&efx->flush_wq);
efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
efx->mem_bar = UINT_MAX;
rc = efx_init_channels(efx);
if (rc)
goto fail;
/* Would be good to use the net_dev name, but we're too early */
snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
pci_name(pci_dev));
efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
if (!efx->workqueue) {
rc = -ENOMEM;
goto fail;
}
return 0;
fail:
efx_fini_struct(efx);
return rc;
}
void efx_fini_struct(struct efx_nic *efx)
{
#ifdef CONFIG_RFS_ACCEL
kfree(efx->rps_hash_table);
#endif
efx_fini_channels(efx);
kfree(efx->vpd_sn);
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/* This configures the PCI device to enable I/O and DMA. */
int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
unsigned int mem_map_size)
{
struct pci_dev *pci_dev = efx->pci_dev;
int rc;
efx->mem_bar = UINT_MAX;
netif_dbg(efx, probe, efx->net_dev, "initialising I/O bar=%d\n", bar);
rc = pci_enable_device(pci_dev);
if (rc) {
netif_err(efx, probe, efx->net_dev,
"failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
if (rc == 0)
break;
dma_mask >>= 1;
}
if (rc) {
netif_err(efx, probe, efx->net_dev,
"could not find a suitable DMA mask\n");
goto fail2;
}
netif_dbg(efx, probe, efx->net_dev,
"using DMA mask %llx\n", (unsigned long long)dma_mask);
efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
if (!efx->membase_phys) {
netif_err(efx, probe, efx->net_dev,
"ERROR: No BAR%d mapping from the BIOS. "
"Try pci=realloc on the kernel command line\n", bar);
rc = -ENODEV;
goto fail3;
}
rc = pci_request_region(pci_dev, bar, "sfc");
if (rc) {
netif_err(efx, probe, efx->net_dev,
"request for memory BAR[%d] failed\n", bar);
rc = -EIO;
goto fail3;
}
efx->mem_bar = bar;
efx->membase = ioremap(efx->membase_phys, mem_map_size);
if (!efx->membase) {
netif_err(efx, probe, efx->net_dev,
"could not map memory BAR[%d] at %llx+%x\n", bar,
(unsigned long long)efx->membase_phys, mem_map_size);
rc = -ENOMEM;
goto fail4;
}
netif_dbg(efx, probe, efx->net_dev,
"memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
(unsigned long long)efx->membase_phys, mem_map_size,
efx->membase);
return 0;
fail4:
pci_release_region(efx->pci_dev, bar);
fail3:
efx->membase_phys = 0;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
void efx_fini_io(struct efx_nic *efx)
{
netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, efx->mem_bar);
efx->membase_phys = 0;
efx->mem_bar = UINT_MAX;
}
/* Don't disable bus-mastering if VFs are assigned */
if (!pci_vfs_assigned(efx->pci_dev))
pci_disable_device(efx->pci_dev);
}
#ifdef CONFIG_SFC_MCDI_LOGGING
static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct efx_nic *efx = dev_get_drvdata(dev);
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
}
static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct efx_nic *efx = dev_get_drvdata(dev);
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
bool enable = count > 0 && *buf != '0';
mcdi->logging_enabled = enable;
return count;
}
static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
void efx_init_mcdi_logging(struct efx_nic *efx)
{
int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
if (rc) {
netif_warn(efx, drv, efx->net_dev,
"failed to init net dev attributes\n");
}
}
void efx_fini_mcdi_logging(struct efx_nic *efx)
{
device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
}
#endif
/* A PCI error affecting this device was detected.
* At this point MMIO and DMA may be disabled.
* Stop the software path and request a slot reset.
*/
static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
enum pci_channel_state state)
{
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
struct efx_nic *efx = pci_get_drvdata(pdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
rtnl_lock();
if (efx->state != STATE_DISABLED) {
efx->state = STATE_RECOVERY;
efx->reset_pending = 0;
efx_device_detach_sync(efx);
efx_stop_all(efx);
efx_disable_interrupts(efx);
status = PCI_ERS_RESULT_NEED_RESET;
} else {
/* If the interface is disabled we don't want to do anything
* with it.
*/
status = PCI_ERS_RESULT_RECOVERED;
}
rtnl_unlock();
pci_disable_device(pdev);
return status;
}
/* Fake a successful reset, which will be performed later in efx_io_resume. */
static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
{
struct efx_nic *efx = pci_get_drvdata(pdev);
pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
if (pci_enable_device(pdev)) {
netif_err(efx, hw, efx->net_dev,
"Cannot re-enable PCI device after reset.\n");
status = PCI_ERS_RESULT_DISCONNECT;
}
return status;
}
/* Perform the actual reset and resume I/O operations. */
static void efx_io_resume(struct pci_dev *pdev)
{
struct efx_nic *efx = pci_get_drvdata(pdev);
int rc;
rtnl_lock();
if (efx->state == STATE_DISABLED)
goto out;
rc = efx_reset(efx, RESET_TYPE_ALL);
if (rc) {
netif_err(efx, hw, efx->net_dev,
"efx_reset failed after PCI error (%d)\n", rc);
} else {
efx->state = STATE_READY;
netif_dbg(efx, hw, efx->net_dev,
"Done resetting and resuming IO after PCI error.\n");
}
out:
rtnl_unlock();
}
/* For simplicity and reliability, we always require a slot reset and try to
* reset the hardware when a pci error affecting the device is detected.
* We leave both the link_reset and mmio_enabled callback unimplemented:
* with our request for slot reset the mmio_enabled callback will never be
* called, and the link_reset callback is not used by AER or EEH mechanisms.
*/
const struct pci_error_handlers efx_err_handlers = {
.error_detected = efx_io_error_detected,
.slot_reset = efx_io_slot_reset,
.resume = efx_io_resume,
};
int efx_get_phys_port_id(struct net_device *net_dev,
struct netdev_phys_item_id *ppid)
{
struct efx_nic *efx = netdev_priv(net_dev);
if (efx->type->get_phys_port_id)
return efx->type->get_phys_port_id(efx, ppid);
else
return -EOPNOTSUPP;
}
int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
{
struct efx_nic *efx = netdev_priv(net_dev);
if (snprintf(name, len, "p%u", efx->port_num) >= len)
return -EINVAL;
return 0;
}
|