1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
|
/*
* PXA2xx SPI private DMA support.
*
* Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/pxa2xx_ssp.h>
#include <linux/spi/spi.h>
#include <linux/spi/pxa2xx_spi.h>
#include "spi-pxa2xx.h"
#define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
#define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
bool pxa2xx_spi_dma_is_possible(size_t len)
{
/* Try to map dma buffer and do a dma transfer if successful, but
* only if the length is non-zero and less than MAX_DMA_LEN.
*
* Zero-length non-descriptor DMA is illegal on PXA2xx; force use
* of PIO instead. Care is needed above because the transfer may
* have have been passed with buffers that are already dma mapped.
* A zero-length transfer in PIO mode will not try to write/read
* to/from the buffers
*
* REVISIT large transfers are exactly where we most want to be
* using DMA. If this happens much, split those transfers into
* multiple DMA segments rather than forcing PIO.
*/
return len > 0 && len <= MAX_DMA_LEN;
}
int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
struct device *dev = &msg->spi->dev;
if (!drv_data->cur_chip->enable_dma)
return 0;
if (msg->is_dma_mapped)
return drv_data->rx_dma && drv_data->tx_dma;
if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
return 0;
/* Modify setup if rx buffer is null */
if (drv_data->rx == NULL) {
*drv_data->null_dma_buf = 0;
drv_data->rx = drv_data->null_dma_buf;
drv_data->rx_map_len = 4;
} else
drv_data->rx_map_len = drv_data->len;
/* Modify setup if tx buffer is null */
if (drv_data->tx == NULL) {
*drv_data->null_dma_buf = 0;
drv_data->tx = drv_data->null_dma_buf;
drv_data->tx_map_len = 4;
} else
drv_data->tx_map_len = drv_data->len;
/* Stream map the tx buffer. Always do DMA_TO_DEVICE first
* so we flush the cache *before* invalidating it, in case
* the tx and rx buffers overlap.
*/
drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
drv_data->tx_map_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, drv_data->tx_dma))
return 0;
/* Stream map the rx buffer */
drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
drv_data->rx_map_len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, drv_data->rx_dma)) {
dma_unmap_single(dev, drv_data->tx_dma,
drv_data->tx_map_len, DMA_TO_DEVICE);
return 0;
}
return 1;
}
static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
{
struct device *dev;
if (!drv_data->dma_mapped)
return;
if (!drv_data->cur_msg->is_dma_mapped) {
dev = &drv_data->cur_msg->spi->dev;
dma_unmap_single(dev, drv_data->rx_dma,
drv_data->rx_map_len, DMA_FROM_DEVICE);
dma_unmap_single(dev, drv_data->tx_dma,
drv_data->tx_map_len, DMA_TO_DEVICE);
}
drv_data->dma_mapped = 0;
}
static int wait_ssp_rx_stall(struct driver_data *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit)
cpu_relax();
return limit;
}
static int wait_dma_channel_stop(int channel)
{
unsigned long limit = loops_per_jiffy << 1;
while (!(DCSR(channel) & DCSR_STOPSTATE) && --limit)
cpu_relax();
return limit;
}
static void pxa2xx_spi_dma_error_stop(struct driver_data *drv_data,
const char *msg)
{
/* Stop and reset */
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
write_SSSR_CS(drv_data, drv_data->clear_sr);
pxa2xx_spi_write(drv_data, SSCR1,
pxa2xx_spi_read(drv_data, SSCR1)
& ~drv_data->dma_cr1);
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
pxa2xx_spi_flush(drv_data);
pxa2xx_spi_write(drv_data, SSCR0,
pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
pxa2xx_spi_unmap_dma_buffers(drv_data);
dev_err(&drv_data->pdev->dev, "%s\n", msg);
drv_data->cur_msg->state = ERROR_STATE;
tasklet_schedule(&drv_data->pump_transfers);
}
static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
/* Clear and disable interrupts on SSP and DMA channels*/
pxa2xx_spi_write(drv_data, SSCR1,
pxa2xx_spi_read(drv_data, SSCR1)
& ~drv_data->dma_cr1);
write_SSSR_CS(drv_data, drv_data->clear_sr);
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
dev_err(&drv_data->pdev->dev,
"dma_handler: dma rx channel stop failed\n");
if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
dev_err(&drv_data->pdev->dev,
"dma_transfer: ssp rx stall failed\n");
pxa2xx_spi_unmap_dma_buffers(drv_data);
/* update the buffer pointer for the amount completed in dma */
drv_data->rx += drv_data->len -
(DCMD(drv_data->rx_channel) & DCMD_LENGTH);
/* read trailing data from fifo, it does not matter how many
* bytes are in the fifo just read until buffer is full
* or fifo is empty, which ever occurs first */
drv_data->read(drv_data);
/* return count of what was actually read */
msg->actual_length += drv_data->len -
(drv_data->rx_end - drv_data->rx);
/* Transfer delays and chip select release are
* handled in pump_transfers or giveback
*/
/* Move to next transfer */
msg->state = pxa2xx_spi_next_transfer(drv_data);
/* Schedule transfer tasklet */
tasklet_schedule(&drv_data->pump_transfers);
}
void pxa2xx_spi_dma_handler(int channel, void *data)
{
struct driver_data *drv_data = data;
u32 irq_status = DCSR(channel) & DMA_INT_MASK;
if (irq_status & DCSR_BUSERR) {
if (channel == drv_data->tx_channel)
pxa2xx_spi_dma_error_stop(drv_data,
"dma_handler: bad bus address on tx channel");
else
pxa2xx_spi_dma_error_stop(drv_data,
"dma_handler: bad bus address on rx channel");
return;
}
/* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
if ((channel == drv_data->tx_channel)
&& (irq_status & DCSR_ENDINTR)
&& (drv_data->ssp_type == PXA25x_SSP)) {
/* Wait for rx to stall */
if (wait_ssp_rx_stall(drv_data) == 0)
dev_err(&drv_data->pdev->dev,
"dma_handler: ssp rx stall failed\n");
/* finish this transfer, start the next */
pxa2xx_spi_dma_transfer_complete(drv_data);
}
}
irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
{
u32 irq_status;
irq_status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
if (irq_status & SSSR_ROR) {
pxa2xx_spi_dma_error_stop(drv_data,
"dma_transfer: fifo overrun");
return IRQ_HANDLED;
}
/* Check for false positive timeout */
if ((irq_status & SSSR_TINT)
&& (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
return IRQ_HANDLED;
}
if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
/* Clear and disable timeout interrupt, do the rest in
* dma_transfer_complete */
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
/* finish this transfer, start the next */
pxa2xx_spi_dma_transfer_complete(drv_data);
return IRQ_HANDLED;
}
/* Opps problem detected */
return IRQ_NONE;
}
int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
{
u32 dma_width;
switch (drv_data->n_bytes) {
case 1:
dma_width = DCMD_WIDTH1;
break;
case 2:
dma_width = DCMD_WIDTH2;
break;
default:
dma_width = DCMD_WIDTH4;
break;
}
/* Setup rx DMA Channel */
DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
DTADR(drv_data->rx_channel) = drv_data->rx_dma;
if (drv_data->rx == drv_data->null_dma_buf)
/* No target address increment */
DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
| dma_width
| dma_burst
| drv_data->len;
else
DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
| DCMD_FLOWSRC
| dma_width
| dma_burst
| drv_data->len;
/* Setup tx DMA Channel */
DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
DSADR(drv_data->tx_channel) = drv_data->tx_dma;
DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
if (drv_data->tx == drv_data->null_dma_buf)
/* No source address increment */
DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
| dma_width
| dma_burst
| drv_data->len;
else
DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
| DCMD_FLOWTRG
| dma_width
| dma_burst
| drv_data->len;
/* Enable dma end irqs on SSP to detect end of transfer */
if (drv_data->ssp_type == PXA25x_SSP)
DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
return 0;
}
void pxa2xx_spi_dma_start(struct driver_data *drv_data)
{
DCSR(drv_data->rx_channel) |= DCSR_RUN;
DCSR(drv_data->tx_channel) |= DCSR_RUN;
}
int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
{
struct device *dev = &drv_data->pdev->dev;
struct ssp_device *ssp = drv_data->ssp;
/* Get two DMA channels (rx and tx) */
drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
DMA_PRIO_HIGH,
pxa2xx_spi_dma_handler,
drv_data);
if (drv_data->rx_channel < 0) {
dev_err(dev, "problem (%d) requesting rx channel\n",
drv_data->rx_channel);
return -ENODEV;
}
drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
DMA_PRIO_MEDIUM,
pxa2xx_spi_dma_handler,
drv_data);
if (drv_data->tx_channel < 0) {
dev_err(dev, "problem (%d) requesting tx channel\n",
drv_data->tx_channel);
pxa_free_dma(drv_data->rx_channel);
return -ENODEV;
}
DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
return 0;
}
void pxa2xx_spi_dma_release(struct driver_data *drv_data)
{
struct ssp_device *ssp = drv_data->ssp;
DRCMR(ssp->drcmr_rx) = 0;
DRCMR(ssp->drcmr_tx) = 0;
if (drv_data->tx_channel != 0)
pxa_free_dma(drv_data->tx_channel);
if (drv_data->rx_channel != 0)
pxa_free_dma(drv_data->rx_channel);
}
void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
{
if (drv_data->rx_channel != -1)
DRCMR(drv_data->ssp->drcmr_rx) =
DRCMR_MAPVLD | drv_data->rx_channel;
if (drv_data->tx_channel != -1)
DRCMR(drv_data->ssp->drcmr_tx) =
DRCMR_MAPVLD | drv_data->tx_channel;
}
int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
struct spi_device *spi,
u8 bits_per_word, u32 *burst_code,
u32 *threshold)
{
struct pxa2xx_spi_chip *chip_info =
(struct pxa2xx_spi_chip *)spi->controller_data;
int bytes_per_word;
int burst_bytes;
int thresh_words;
int req_burst_size;
int retval = 0;
/* Set the threshold (in registers) to equal the same amount of data
* as represented by burst size (in bytes). The computation below
* is (burst_size rounded up to nearest 8 byte, word or long word)
* divided by (bytes/register); the tx threshold is the inverse of
* the rx, so that there will always be enough data in the rx fifo
* to satisfy a burst, and there will always be enough space in the
* tx fifo to accept a burst (a tx burst will overwrite the fifo if
* there is not enough space), there must always remain enough empty
* space in the rx fifo for any data loaded to the tx fifo.
* Whenever burst_size (in bytes) equals bits/word, the fifo threshold
* will be 8, or half the fifo;
* The threshold can only be set to 2, 4 or 8, but not 16, because
* to burst 16 to the tx fifo, the fifo would have to be empty;
* however, the minimum fifo trigger level is 1, and the tx will
* request service when the fifo is at this level, with only 15 spaces.
*/
/* find bytes/word */
if (bits_per_word <= 8)
bytes_per_word = 1;
else if (bits_per_word <= 16)
bytes_per_word = 2;
else
bytes_per_word = 4;
/* use struct pxa2xx_spi_chip->dma_burst_size if available */
if (chip_info)
req_burst_size = chip_info->dma_burst_size;
else {
switch (chip->dma_burst_size) {
default:
/* if the default burst size is not set,
* do it now */
chip->dma_burst_size = DCMD_BURST8;
case DCMD_BURST8:
req_burst_size = 8;
break;
case DCMD_BURST16:
req_burst_size = 16;
break;
case DCMD_BURST32:
req_burst_size = 32;
break;
}
}
if (req_burst_size <= 8) {
*burst_code = DCMD_BURST8;
burst_bytes = 8;
} else if (req_burst_size <= 16) {
if (bytes_per_word == 1) {
/* don't burst more than 1/2 the fifo */
*burst_code = DCMD_BURST8;
burst_bytes = 8;
retval = 1;
} else {
*burst_code = DCMD_BURST16;
burst_bytes = 16;
}
} else {
if (bytes_per_word == 1) {
/* don't burst more than 1/2 the fifo */
*burst_code = DCMD_BURST8;
burst_bytes = 8;
retval = 1;
} else if (bytes_per_word == 2) {
/* don't burst more than 1/2 the fifo */
*burst_code = DCMD_BURST16;
burst_bytes = 16;
retval = 1;
} else {
*burst_code = DCMD_BURST32;
burst_bytes = 32;
}
}
thresh_words = burst_bytes / bytes_per_word;
/* thresh_words will be between 2 and 8 */
*threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
| (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
return retval;
}
|