summaryrefslogtreecommitdiffstats
path: root/drivers/thermal/mediatek/lvts_thermal.c
blob: 84ba65a27acf7db452af75e2ee824c638045203e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2023 MediaTek Inc.
 * Author: Balsam CHIHI <bchihi@baylibre.com>
 */

#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/nvmem-consumer.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <dt-bindings/thermal/mediatek,lvts-thermal.h>

#define LVTS_MONCTL0(__base)	(__base + 0x0000)
#define LVTS_MONCTL1(__base)	(__base + 0x0004)
#define LVTS_MONCTL2(__base)	(__base + 0x0008)
#define LVTS_MONINT(__base)		(__base + 0x000C)
#define LVTS_MONINTSTS(__base)	(__base + 0x0010)
#define LVTS_MONIDET0(__base)	(__base + 0x0014)
#define LVTS_MONIDET1(__base)	(__base + 0x0018)
#define LVTS_MONIDET2(__base)	(__base + 0x001C)
#define LVTS_MONIDET3(__base)	(__base + 0x0020)
#define LVTS_H2NTHRE(__base)	(__base + 0x0024)
#define LVTS_HTHRE(__base)		(__base + 0x0028)
#define LVTS_OFFSETH(__base)	(__base + 0x0030)
#define LVTS_OFFSETL(__base)	(__base + 0x0034)
#define LVTS_MSRCTL0(__base)	(__base + 0x0038)
#define LVTS_MSRCTL1(__base)	(__base + 0x003C)
#define LVTS_TSSEL(__base)		(__base + 0x0040)
#define LVTS_CALSCALE(__base)	(__base + 0x0048)
#define LVTS_ID(__base)			(__base + 0x004C)
#define LVTS_CONFIG(__base)		(__base + 0x0050)
#define LVTS_EDATA00(__base)	(__base + 0x0054)
#define LVTS_EDATA01(__base)	(__base + 0x0058)
#define LVTS_EDATA02(__base)	(__base + 0x005C)
#define LVTS_EDATA03(__base)	(__base + 0x0060)
#define LVTS_MSR0(__base)		(__base + 0x0090)
#define LVTS_MSR1(__base)		(__base + 0x0094)
#define LVTS_MSR2(__base)		(__base + 0x0098)
#define LVTS_MSR3(__base)		(__base + 0x009C)
#define LVTS_IMMD0(__base)		(__base + 0x00A0)
#define LVTS_IMMD1(__base)		(__base + 0x00A4)
#define LVTS_IMMD2(__base)		(__base + 0x00A8)
#define LVTS_IMMD3(__base)		(__base + 0x00AC)
#define LVTS_PROTCTL(__base)	(__base + 0x00C0)
#define LVTS_PROTTA(__base)		(__base + 0x00C4)
#define LVTS_PROTTB(__base)		(__base + 0x00C8)
#define LVTS_PROTTC(__base)		(__base + 0x00CC)
#define LVTS_CLKEN(__base)		(__base + 0x00E4)

#define LVTS_PERIOD_UNIT			((118 * 1000) / (256 * 38))
#define LVTS_GROUP_INTERVAL			1
#define LVTS_FILTER_INTERVAL		1
#define LVTS_SENSOR_INTERVAL		1
#define LVTS_HW_FILTER				0x2
#define LVTS_TSSEL_CONF				0x13121110
#define LVTS_CALSCALE_CONF			0x300
#define LVTS_MONINT_CONF			0x9FBF7BDE

#define LVTS_INT_SENSOR0			0x0009001F
#define LVTS_INT_SENSOR1			0X000881F0
#define LVTS_INT_SENSOR2			0x00247C00
#define LVTS_INT_SENSOR3			0x1FC00000

#define LVTS_SENSOR_MAX				4
#define LVTS_GOLDEN_TEMP_MAX		62
#define LVTS_GOLDEN_TEMP_DEFAULT	50
#define LVTS_COEFF_A				-250460
#define LVTS_COEFF_B				250460

#define LVTS_MSR_IMMEDIATE_MODE		0
#define LVTS_MSR_FILTERED_MODE		1

#define LVTS_HW_SHUTDOWN_MT8195		105000

static int golden_temp = LVTS_GOLDEN_TEMP_DEFAULT;
static int coeff_b = LVTS_COEFF_B;

struct lvts_sensor_data {
	int dt_id;
};

struct lvts_ctrl_data {
	struct lvts_sensor_data lvts_sensor[LVTS_SENSOR_MAX];
	int cal_offset[LVTS_SENSOR_MAX];
	int hw_tshut_temp;
	int num_lvts_sensor;
	int offset;
	int mode;
};

struct lvts_data {
	const struct lvts_ctrl_data *lvts_ctrl;
	int num_lvts_ctrl;
};

struct lvts_sensor {
	struct thermal_zone_device *tz;
	void __iomem *msr;
	void __iomem *base;
	int id;
	int dt_id;
};

struct lvts_ctrl {
	struct lvts_sensor sensors[LVTS_SENSOR_MAX];
	u32 calibration[LVTS_SENSOR_MAX];
	u32 hw_tshut_raw_temp;
	int num_lvts_sensor;
	int mode;
	void __iomem *base;
};

struct lvts_domain {
	struct lvts_ctrl *lvts_ctrl;
	struct reset_control *reset;
	struct clk *clk;
	int num_lvts_ctrl;
	void __iomem *base;
	size_t calib_len;
	u8 *calib;
#ifdef CONFIG_DEBUG_FS
	struct dentry *dom_dentry;
#endif
};

#ifdef CONFIG_MTK_LVTS_THERMAL_DEBUGFS

#define LVTS_DEBUG_FS_REGS(__reg)		\
{						\
	.name = __stringify(__reg),		\
	.offset = __reg(0),			\
}

static const struct debugfs_reg32 lvts_regs[] = {
	LVTS_DEBUG_FS_REGS(LVTS_MONCTL0),
	LVTS_DEBUG_FS_REGS(LVTS_MONCTL1),
	LVTS_DEBUG_FS_REGS(LVTS_MONCTL2),
	LVTS_DEBUG_FS_REGS(LVTS_MONINT),
	LVTS_DEBUG_FS_REGS(LVTS_MONINTSTS),
	LVTS_DEBUG_FS_REGS(LVTS_MONIDET0),
	LVTS_DEBUG_FS_REGS(LVTS_MONIDET1),
	LVTS_DEBUG_FS_REGS(LVTS_MONIDET2),
	LVTS_DEBUG_FS_REGS(LVTS_MONIDET3),
	LVTS_DEBUG_FS_REGS(LVTS_H2NTHRE),
	LVTS_DEBUG_FS_REGS(LVTS_HTHRE),
	LVTS_DEBUG_FS_REGS(LVTS_OFFSETH),
	LVTS_DEBUG_FS_REGS(LVTS_OFFSETL),
	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL0),
	LVTS_DEBUG_FS_REGS(LVTS_MSRCTL1),
	LVTS_DEBUG_FS_REGS(LVTS_TSSEL),
	LVTS_DEBUG_FS_REGS(LVTS_CALSCALE),
	LVTS_DEBUG_FS_REGS(LVTS_ID),
	LVTS_DEBUG_FS_REGS(LVTS_CONFIG),
	LVTS_DEBUG_FS_REGS(LVTS_EDATA00),
	LVTS_DEBUG_FS_REGS(LVTS_EDATA01),
	LVTS_DEBUG_FS_REGS(LVTS_EDATA02),
	LVTS_DEBUG_FS_REGS(LVTS_EDATA03),
	LVTS_DEBUG_FS_REGS(LVTS_MSR0),
	LVTS_DEBUG_FS_REGS(LVTS_MSR1),
	LVTS_DEBUG_FS_REGS(LVTS_MSR2),
	LVTS_DEBUG_FS_REGS(LVTS_MSR3),
	LVTS_DEBUG_FS_REGS(LVTS_IMMD0),
	LVTS_DEBUG_FS_REGS(LVTS_IMMD1),
	LVTS_DEBUG_FS_REGS(LVTS_IMMD2),
	LVTS_DEBUG_FS_REGS(LVTS_IMMD3),
	LVTS_DEBUG_FS_REGS(LVTS_PROTCTL),
	LVTS_DEBUG_FS_REGS(LVTS_PROTTA),
	LVTS_DEBUG_FS_REGS(LVTS_PROTTB),
	LVTS_DEBUG_FS_REGS(LVTS_PROTTC),
	LVTS_DEBUG_FS_REGS(LVTS_CLKEN),
};

static int lvts_debugfs_init(struct device *dev, struct lvts_domain *lvts_td)
{
	struct debugfs_regset32 *regset;
	struct lvts_ctrl *lvts_ctrl;
	struct dentry *dentry;
	char name[64];
	int i;

	lvts_td->dom_dentry = debugfs_create_dir(dev_name(dev), NULL);
	if (!lvts_td->dom_dentry)
		return 0;

	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {

		lvts_ctrl = &lvts_td->lvts_ctrl[i];

		sprintf(name, "controller%d", i);
		dentry = debugfs_create_dir(name, lvts_td->dom_dentry);
		if (!dentry)
			continue;

		regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
		if (!regset)
			continue;

		regset->base = lvts_ctrl->base;
		regset->regs = lvts_regs;
		regset->nregs = ARRAY_SIZE(lvts_regs);

		debugfs_create_regset32("registers", 0400, dentry, regset);
	}

	return 0;
}

static void lvts_debugfs_exit(struct lvts_domain *lvts_td)
{
	debugfs_remove_recursive(lvts_td->dom_dentry);
}

#else

static inline int lvts_debugfs_init(struct device *dev,
				    struct lvts_domain *lvts_td)
{
	return 0;
}

static void lvts_debugfs_exit(struct lvts_domain *lvts_td) { }

#endif

static int lvts_raw_to_temp(u32 raw_temp)
{
	int temperature;

	temperature = ((s64)(raw_temp & 0xFFFF) * LVTS_COEFF_A) >> 14;
	temperature += coeff_b;

	return temperature;
}

static u32 lvts_temp_to_raw(int temperature)
{
	u32 raw_temp = ((s64)(coeff_b - temperature)) << 14;

	raw_temp = div_s64(raw_temp, -LVTS_COEFF_A);

	return raw_temp;
}

static int lvts_get_temp(struct thermal_zone_device *tz, int *temp)
{
	struct lvts_sensor *lvts_sensor = tz->devdata;
	void __iomem *msr = lvts_sensor->msr;
	u32 value;

	/*
	 * Measurement registers:
	 *
	 * LVTS_MSR[0-3] / LVTS_IMMD[0-3]
	 *
	 * Bits:
	 *
	 * 32-17: Unused
	 * 16	: Valid temperature
	 * 15-0	: Raw temperature
	 */
	value = readl(msr);

	/*
	 * As the thermal zone temperature will read before the
	 * hardware sensor is fully initialized, we have to check the
	 * validity of the temperature returned when reading the
	 * measurement register. The thermal controller will set the
	 * valid bit temperature only when it is totally initialized.
	 *
	 * Otherwise, we may end up with garbage values out of the
	 * functionning temperature and directly jump to a system
	 * shutdown.
	 */
	if (!(value & BIT(16)))
		return -EAGAIN;

	*temp = lvts_raw_to_temp(value & 0xFFFF);

	return 0;
}

static int lvts_set_trips(struct thermal_zone_device *tz, int low, int high)
{
	struct lvts_sensor *lvts_sensor = tz->devdata;
	void __iomem *base = lvts_sensor->base;
	u32 raw_low = lvts_temp_to_raw(low);
	u32 raw_high = lvts_temp_to_raw(high);

	/*
	 * Hot to normal temperature threshold
	 *
	 * LVTS_H2NTHRE
	 *
	 * Bits:
	 *
	 * 14-0 : Raw temperature for threshold
	 */
	if (low != -INT_MAX) {
		dev_dbg(&tz->device, "Setting low limit temperature interrupt: %d\n", low);
		writel(raw_low, LVTS_H2NTHRE(base));
	}

	/*
	 * Hot temperature threshold
	 *
	 * LVTS_HTHRE
	 *
	 * Bits:
	 *
	 * 14-0 : Raw temperature for threshold
	 */
	dev_dbg(&tz->device, "Setting high limit temperature interrupt: %d\n", high);
	writel(raw_high, LVTS_HTHRE(base));

	return 0;
}

static irqreturn_t lvts_ctrl_irq_handler(struct lvts_ctrl *lvts_ctrl)
{
	irqreturn_t iret = IRQ_NONE;
	u32 value;
	u32 masks[] = {
		LVTS_INT_SENSOR0,
		LVTS_INT_SENSOR1,
		LVTS_INT_SENSOR2,
		LVTS_INT_SENSOR3
	};
	int i;

	/*
	 * Interrupt monitoring status
	 *
	 * LVTS_MONINTST
	 *
	 * Bits:
	 *
	 * 31 : Interrupt for stage 3
	 * 30 : Interrupt for stage 2
	 * 29 : Interrupt for state 1
	 * 28 : Interrupt using filter on sensor 3
	 *
	 * 27 : Interrupt using immediate on sensor 3
	 * 26 : Interrupt normal to hot on sensor 3
	 * 25 : Interrupt high offset on sensor 3
	 * 24 : Interrupt low offset on sensor 3
	 *
	 * 23 : Interrupt hot threshold on sensor 3
	 * 22 : Interrupt cold threshold on sensor 3
	 * 21 : Interrupt using filter on sensor 2
	 * 20 : Interrupt using filter on sensor 1
	 *
	 * 19 : Interrupt using filter on sensor 0
	 * 18 : Interrupt using immediate on sensor 2
	 * 17 : Interrupt using immediate on sensor 1
	 * 16 : Interrupt using immediate on sensor 0
	 *
	 * 15 : Interrupt device access timeout interrupt
	 * 14 : Interrupt normal to hot on sensor 2
	 * 13 : Interrupt high offset interrupt on sensor 2
	 * 12 : Interrupt low offset interrupt on sensor 2
	 *
	 * 11 : Interrupt hot threshold on sensor 2
	 * 10 : Interrupt cold threshold on sensor 2
	 *  9 : Interrupt normal to hot on sensor 1
	 *  8 : Interrupt high offset interrupt on sensor 1
	 *
	 *  7 : Interrupt low offset interrupt on sensor 1
	 *  6 : Interrupt hot threshold on sensor 1
	 *  5 : Interrupt cold threshold on sensor 1
	 *  4 : Interrupt normal to hot on sensor 0
	 *
	 *  3 : Interrupt high offset interrupt on sensor 0
	 *  2 : Interrupt low offset interrupt on sensor 0
	 *  1 : Interrupt hot threshold on sensor 0
	 *  0 : Interrupt cold threshold on sensor 0
	 *
	 * We are interested in the sensor(s) responsible of the
	 * interrupt event. We update the thermal framework with the
	 * thermal zone associated with the sensor. The framework will
	 * take care of the rest whatever the kind of interrupt, we
	 * are only interested in which sensor raised the interrupt.
	 *
	 * sensor 3 interrupt: 0001 1111 1100 0000 0000 0000 0000 0000
	 *                  => 0x1FC00000
	 * sensor 2 interrupt: 0000 0000 0010 0100 0111 1100 0000 0000
	 *                  => 0x00247C00
	 * sensor 1 interrupt: 0000 0000 0001 0001 0000 0011 1110 0000
	 *                  => 0X000881F0
	 * sensor 0 interrupt: 0000 0000 0000 1001 0000 0000 0001 1111
	 *                  => 0x0009001F
	 */
	value = readl(LVTS_MONINTSTS(lvts_ctrl->base));

	/*
	 * Let's figure out which sensors raised the interrupt
	 *
	 * NOTE: the masks array must be ordered with the index
	 * corresponding to the sensor id eg. index=0, mask for
	 * sensor0.
	 */
	for (i = 0; i < ARRAY_SIZE(masks); i++) {

		if (!(value & masks[i]))
			continue;

		thermal_zone_device_update(lvts_ctrl->sensors[i].tz,
					   THERMAL_TRIP_VIOLATED);
		iret = IRQ_HANDLED;
	}

	/*
	 * Write back to clear the interrupt status (W1C)
	 */
	writel(value, LVTS_MONINTSTS(lvts_ctrl->base));

	return iret;
}

/*
 * Temperature interrupt handler. Even if the driver supports more
 * interrupt modes, we use the interrupt when the temperature crosses
 * the hot threshold the way up and the way down (modulo the
 * hysteresis).
 *
 * Each thermal domain has a couple of interrupts, one for hardware
 * reset and another one for all the thermal events happening on the
 * different sensors.
 *
 * The interrupt is configured for thermal events when crossing the
 * hot temperature limit. At each interrupt, we check in every
 * controller if there is an interrupt pending.
 */
static irqreturn_t lvts_irq_handler(int irq, void *data)
{
	struct lvts_domain *lvts_td = data;
	irqreturn_t aux, iret = IRQ_NONE;
	int i;

	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {

		aux = lvts_ctrl_irq_handler(lvts_td->lvts_ctrl);
		if (aux != IRQ_HANDLED)
			continue;

		iret = IRQ_HANDLED;
	}

	return iret;
}

static struct thermal_zone_device_ops lvts_ops = {
	.get_temp = lvts_get_temp,
	.set_trips = lvts_set_trips,
};

static int lvts_sensor_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
					const struct lvts_ctrl_data *lvts_ctrl_data)
{
	struct lvts_sensor *lvts_sensor = lvts_ctrl->sensors;
	void __iomem *msr_regs[] = {
		LVTS_MSR0(lvts_ctrl->base),
		LVTS_MSR1(lvts_ctrl->base),
		LVTS_MSR2(lvts_ctrl->base),
		LVTS_MSR3(lvts_ctrl->base)
	};

	void __iomem *imm_regs[] = {
		LVTS_IMMD0(lvts_ctrl->base),
		LVTS_IMMD1(lvts_ctrl->base),
		LVTS_IMMD2(lvts_ctrl->base),
		LVTS_IMMD3(lvts_ctrl->base)
	};

	int i;

	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++) {

		int dt_id = lvts_ctrl_data->lvts_sensor[i].dt_id;

		/*
		 * At this point, we don't know which id matches which
		 * sensor. Let's set arbitrally the id from the index.
		 */
		lvts_sensor[i].id = i;

		/*
		 * The thermal zone registration will set the trip
		 * point interrupt in the thermal controller
		 * register. But this one will be reset in the
		 * initialization after. So we need to post pone the
		 * thermal zone creation after the controller is
		 * setup. For this reason, we store the device tree
		 * node id from the data in the sensor structure
		 */
		lvts_sensor[i].dt_id = dt_id;

		/*
		 * We assign the base address of the thermal
		 * controller as a back pointer. So it will be
		 * accessible from the different thermal framework ops
		 * as we pass the lvts_sensor pointer as thermal zone
		 * private data.
		 */
		lvts_sensor[i].base = lvts_ctrl->base;

		/*
		 * Each sensor has its own register address to read from.
		 */
		lvts_sensor[i].msr = lvts_ctrl_data->mode == LVTS_MSR_IMMEDIATE_MODE ?
			imm_regs[i] : msr_regs[i];
	};

	lvts_ctrl->num_lvts_sensor = lvts_ctrl_data->num_lvts_sensor;

	return 0;
}

/*
 * The efuse blob values follows the sensor enumeration per thermal
 * controller. The decoding of the stream is as follow:
 *
 *                        <--?-> <----big0 ???---> <-sensor0-> <-0->
 *                        ------------------------------------------
 * index in the stream: : | 0x0 | 0x1 | 0x2 | 0x3 | 0x4 | 0x5 | 0x6 |
 *                        ------------------------------------------
 *
 *                        <--sensor1--><-0-> <----big1 ???---> <-sen
 *                        ------------------------------------------
 *                        | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
 *                        ------------------------------------------
 *
 *                        sor0-> <-0-> <-sensor1-> <-0-> ..........
 *                        ------------------------------------------
 *                        | 0x7 | 0x8 | 0x9 | 0xA | 0xB | OxC | OxD |
 *                        ------------------------------------------
 *
 * And so on ...
 *
 * The data description gives the offset of the calibration data in
 * this bytes stream for each sensor.
 *
 * Each thermal controller can handle up to 4 sensors max, we don't
 * care if there are less as the array of calibration is sized to 4
 * anyway. The unused sensor slot will be zeroed.
 */
static int lvts_calibration_init(struct device *dev, struct lvts_ctrl *lvts_ctrl,
					const struct lvts_ctrl_data *lvts_ctrl_data,
					u8 *efuse_calibration)
{
	int i;

	for (i = 0; i < lvts_ctrl_data->num_lvts_sensor; i++)
		memcpy(&lvts_ctrl->calibration[i],
		       efuse_calibration + lvts_ctrl_data->cal_offset[i], 2);

	return 0;
}

/*
 * The efuse bytes stream can be split into different chunk of
 * nvmems. This function reads and concatenate those into a single
 * buffer so it can be read sequentially when initializing the
 * calibration data.
 */
static int lvts_calibration_read(struct device *dev, struct lvts_domain *lvts_td,
					const struct lvts_data *lvts_data)
{
	struct device_node *np = dev_of_node(dev);
	struct nvmem_cell *cell;
	struct property *prop;
	const char *cell_name;

	of_property_for_each_string(np, "nvmem-cell-names", prop, cell_name) {
		size_t len;
		u8 *efuse;

		cell = of_nvmem_cell_get(np, cell_name);
		if (IS_ERR(cell)) {
			dev_err(dev, "Failed to get cell '%s'\n", cell_name);
			return PTR_ERR(cell);
		}

		efuse = nvmem_cell_read(cell, &len);

		nvmem_cell_put(cell);

		if (IS_ERR(efuse)) {
			dev_err(dev, "Failed to read cell '%s'\n", cell_name);
			return PTR_ERR(efuse);
		}

		lvts_td->calib = devm_krealloc(dev, lvts_td->calib,
					       lvts_td->calib_len + len, GFP_KERNEL);
		if (!lvts_td->calib)
			return -ENOMEM;

		memcpy(lvts_td->calib + lvts_td->calib_len, efuse, len);

		lvts_td->calib_len += len;

		kfree(efuse);
	}

	return 0;
}

static int lvts_golden_temp_init(struct device *dev, u32 *value)
{
	u32 gt;

	gt = (*value) >> 24;

	if (gt && gt < LVTS_GOLDEN_TEMP_MAX)
		golden_temp = gt;

	coeff_b = golden_temp * 500 + LVTS_COEFF_B;

	return 0;
}

static int lvts_ctrl_init(struct device *dev, struct lvts_domain *lvts_td,
					const struct lvts_data *lvts_data)
{
	size_t size = sizeof(*lvts_td->lvts_ctrl) * lvts_data->num_lvts_ctrl;
	struct lvts_ctrl *lvts_ctrl;
	int i, ret;

	/*
	 * Create the calibration bytes stream from efuse data
	 */
	ret = lvts_calibration_read(dev, lvts_td, lvts_data);
	if (ret)
		return ret;

	/*
	 * The golden temp information is contained in the first chunk
	 * of efuse data.
	 */
	ret = lvts_golden_temp_init(dev, (u32 *)lvts_td->calib);
	if (ret)
		return ret;

	lvts_ctrl = devm_kzalloc(dev, size, GFP_KERNEL);
	if (!lvts_ctrl)
		return -ENOMEM;

	for (i = 0; i < lvts_data->num_lvts_ctrl; i++) {

		lvts_ctrl[i].base = lvts_td->base + lvts_data->lvts_ctrl[i].offset;

		ret = lvts_sensor_init(dev, &lvts_ctrl[i],
				       &lvts_data->lvts_ctrl[i]);
		if (ret)
			return ret;

		ret = lvts_calibration_init(dev, &lvts_ctrl[i],
					    &lvts_data->lvts_ctrl[i],
					    lvts_td->calib);
		if (ret)
			return ret;

		/*
		 * The mode the ctrl will use to read the temperature
		 * (filtered or immediate)
		 */
		lvts_ctrl[i].mode = lvts_data->lvts_ctrl[i].mode;

		/*
		 * The temperature to raw temperature must be done
		 * after initializing the calibration.
		 */
		lvts_ctrl[i].hw_tshut_raw_temp =
			lvts_temp_to_raw(lvts_data->lvts_ctrl[i].hw_tshut_temp);
	}

	/*
	 * We no longer need the efuse bytes stream, let's free it
	 */
	devm_kfree(dev, lvts_td->calib);

	lvts_td->lvts_ctrl = lvts_ctrl;
	lvts_td->num_lvts_ctrl = lvts_data->num_lvts_ctrl;

	return 0;
}

/*
 * At this point the configuration register is the only place in the
 * driver where we write multiple values. Per hardware constraint,
 * each write in the configuration register must be separated by a
 * delay of 2 us.
 */
static void lvts_write_config(struct lvts_ctrl *lvts_ctrl, u32 *cmds, int nr_cmds)
{
	int i;

	/*
	 * Configuration register
	 */
	for (i = 0; i < nr_cmds; i++) {
		writel(cmds[i], LVTS_CONFIG(lvts_ctrl->base));
		usleep_range(2, 4);
	}
}

static int lvts_irq_init(struct lvts_ctrl *lvts_ctrl)
{
	/*
	 * LVTS_PROTCTL : Thermal Protection Sensor Selection
	 *
	 * Bits:
	 *
	 * 19-18 : Sensor to base the protection on
	 * 17-16 : Strategy:
	 *         00 : Average of 4 sensors
	 *         01 : Max of 4 sensors
	 *         10 : Selected sensor with bits 19-18
	 *         11 : Reserved
	 */
	writel(BIT(16), LVTS_PROTCTL(lvts_ctrl->base));

	/*
	 * LVTS_PROTTA : Stage 1 temperature threshold
	 * LVTS_PROTTB : Stage 2 temperature threshold
	 * LVTS_PROTTC : Stage 3 temperature threshold
	 *
	 * Bits:
	 *
	 * 14-0: Raw temperature threshold
	 *
	 * writel(0x0, LVTS_PROTTA(lvts_ctrl->base));
	 * writel(0x0, LVTS_PROTTB(lvts_ctrl->base));
	 */
	writel(lvts_ctrl->hw_tshut_raw_temp, LVTS_PROTTC(lvts_ctrl->base));

	/*
	 * LVTS_MONINT : Interrupt configuration register
	 *
	 * The LVTS_MONINT register layout is the same as the LVTS_MONINTSTS
	 * register, except we set the bits to enable the interrupt.
	 */
	writel(LVTS_MONINT_CONF, LVTS_MONINT(lvts_ctrl->base));

	return 0;
}

static int lvts_domain_reset(struct device *dev, struct reset_control *reset)
{
	int ret;

	ret = reset_control_assert(reset);
	if (ret)
		return ret;

	return reset_control_deassert(reset);
}

/*
 * Enable or disable the clocks of a specified thermal controller
 */
static int lvts_ctrl_set_enable(struct lvts_ctrl *lvts_ctrl, int enable)
{
	/*
	 * LVTS_CLKEN : Internal LVTS clock
	 *
	 * Bits:
	 *
	 * 0 : enable / disable clock
	 */
	writel(enable, LVTS_CLKEN(lvts_ctrl->base));

	return 0;
}

static int lvts_ctrl_connect(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
	u32 id, cmds[] = { 0xC103FFFF, 0xC502FF55 };

	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));

	/*
	 * LVTS_ID : Get ID and status of the thermal controller
	 *
	 * Bits:
	 *
	 * 0-5	: thermal controller id
	 *   7	: thermal controller connection is valid
	 */
	id = readl(LVTS_ID(lvts_ctrl->base));
	if (!(id & BIT(7)))
		return -EIO;

	return 0;
}

static int lvts_ctrl_initialize(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
	/*
	 * Write device mask: 0xC1030000
	 */
	u32 cmds[] = {
		0xC1030E01, 0xC1030CFC, 0xC1030A8C, 0xC103098D, 0xC10308F1,
		0xC10307A6, 0xC10306B8, 0xC1030500, 0xC1030420, 0xC1030300,
		0xC1030030, 0xC10300F6, 0xC1030050, 0xC1030060, 0xC10300AC,
		0xC10300FC, 0xC103009D, 0xC10300F1, 0xC10300E1
	};

	lvts_write_config(lvts_ctrl, cmds, ARRAY_SIZE(cmds));

	return 0;
}

static int lvts_ctrl_calibrate(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
	int i;
	void __iomem *lvts_edata[] = {
		LVTS_EDATA00(lvts_ctrl->base),
		LVTS_EDATA01(lvts_ctrl->base),
		LVTS_EDATA02(lvts_ctrl->base),
		LVTS_EDATA03(lvts_ctrl->base)
	};

	/*
	 * LVTS_EDATA0X : Efuse calibration reference value for sensor X
	 *
	 * Bits:
	 *
	 * 20-0 : Efuse value for normalization data
	 */
	for (i = 0; i < LVTS_SENSOR_MAX; i++)
		writel(lvts_ctrl->calibration[i], lvts_edata[i]);

	return 0;
}

static int lvts_ctrl_configure(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
	u32 value;

	/*
	 * LVTS_TSSEL : Sensing point index numbering
	 *
	 * Bits:
	 *
	 * 31-24: ADC Sense 3
	 * 23-16: ADC Sense 2
	 * 15-8	: ADC Sense 1
	 * 7-0	: ADC Sense 0
	 */
	value = LVTS_TSSEL_CONF;
	writel(value, LVTS_TSSEL(lvts_ctrl->base));

	/*
	 * LVTS_CALSCALE : ADC voltage round
	 */
	value = 0x300;
	value = LVTS_CALSCALE_CONF;

	/*
	 * LVTS_MSRCTL0 : Sensor filtering strategy
	 *
	 * Filters:
	 *
	 * 000 : One sample
	 * 001 : Avg 2 samples
	 * 010 : 4 samples, drop min and max, avg 2 samples
	 * 011 : 6 samples, drop min and max, avg 4 samples
	 * 100 : 10 samples, drop min and max, avg 8 samples
	 * 101 : 18 samples, drop min and max, avg 16 samples
	 *
	 * Bits:
	 *
	 * 0-2  : Sensor0 filter
	 * 3-5  : Sensor1 filter
	 * 6-8  : Sensor2 filter
	 * 9-11 : Sensor3 filter
	 */
	value = LVTS_HW_FILTER << 9 |  LVTS_HW_FILTER << 6 |
			LVTS_HW_FILTER << 3 | LVTS_HW_FILTER;
	writel(value, LVTS_MSRCTL0(lvts_ctrl->base));

	/*
	 * LVTS_MSRCTL1 : Measurement control
	 *
	 * Bits:
	 *
	 * 9: Ignore MSRCTL0 config and do immediate measurement on sensor3
	 * 6: Ignore MSRCTL0 config and do immediate measurement on sensor2
	 * 5: Ignore MSRCTL0 config and do immediate measurement on sensor1
	 * 4: Ignore MSRCTL0 config and do immediate measurement on sensor0
	 *
	 * That configuration will ignore the filtering and the delays
	 * introduced below in MONCTL1 and MONCTL2
	 */
	if (lvts_ctrl->mode == LVTS_MSR_IMMEDIATE_MODE) {
		value = BIT(9) | BIT(6) | BIT(5) | BIT(4);
		writel(value, LVTS_MSRCTL1(lvts_ctrl->base));
	}

	/*
	 * LVTS_MONCTL1 : Period unit and group interval configuration
	 *
	 * The clock source of LVTS thermal controller is 26MHz.
	 *
	 * The period unit is a time base for all the interval delays
	 * specified in the registers. By default we use 12. The time
	 * conversion is done by multiplying by 256 and 1/26.10^6
	 *
	 * An interval delay multiplied by the period unit gives the
	 * duration in seconds.
	 *
	 * - Filter interval delay is a delay between two samples of
	 * the same sensor.
	 *
	 * - Sensor interval delay is a delay between two samples of
	 * different sensors.
	 *
	 * - Group interval delay is a delay between different rounds.
	 *
	 * For example:
	 *     If Period unit = C, filter delay = 1, sensor delay = 2, group delay = 1,
	 *     and two sensors, TS1 and TS2, are in a LVTS thermal controller
	 *     and then
	 *     Period unit time = C * 1/26M * 256 = 12 * 38.46ns * 256 = 118.149us
	 *     Filter interval delay = 1 * Period unit = 118.149us
	 *     Sensor interval delay = 2 * Period unit = 236.298us
	 *     Group interval delay = 1 * Period unit = 118.149us
	 *
	 *     TS1    TS1 ... TS1    TS2    TS2 ... TS2    TS1...
	 *        <--> Filter interval delay
	 *                       <--> Sensor interval delay
	 *                                             <--> Group interval delay
	 * Bits:
	 *      29 - 20 : Group interval
	 *      16 - 13 : Send a single interrupt when crossing the hot threshold (1)
	 *                or an interrupt everytime the hot threshold is crossed (0)
	 *       9 - 0  : Period unit
	 *
	 */
	value = LVTS_GROUP_INTERVAL << 20 | LVTS_PERIOD_UNIT;
	writel(value, LVTS_MONCTL1(lvts_ctrl->base));

	/*
	 * LVTS_MONCTL2 : Filtering and sensor interval
	 *
	 * Bits:
	 *
	 *      25-16 : Interval unit in PERIOD_UNIT between sample on
	 *              the same sensor, filter interval
	 *       9-0  : Interval unit in PERIOD_UNIT between each sensor
	 *
	 */
	value = LVTS_FILTER_INTERVAL << 16 | LVTS_SENSOR_INTERVAL;
	writel(value, LVTS_MONCTL2(lvts_ctrl->base));

	return lvts_irq_init(lvts_ctrl);
}

static int lvts_ctrl_start(struct device *dev, struct lvts_ctrl *lvts_ctrl)
{
	struct lvts_sensor *lvts_sensors = lvts_ctrl->sensors;
	struct thermal_zone_device *tz;
	u32 sensor_map = 0;
	int i;

	for (i = 0; i < lvts_ctrl->num_lvts_sensor; i++) {

		int dt_id = lvts_sensors[i].dt_id;

		tz = devm_thermal_of_zone_register(dev, dt_id, &lvts_sensors[i],
						   &lvts_ops);
		if (IS_ERR(tz)) {
			/*
			 * This thermal zone is not described in the
			 * device tree. It is not an error from the
			 * thermal OF code POV, we just continue.
			 */
			if (PTR_ERR(tz) == -ENODEV)
				continue;

			return PTR_ERR(tz);
		}

		/*
		 * The thermal zone pointer will be needed in the
		 * interrupt handler, we store it in the sensor
		 * structure. The thermal domain structure will be
		 * passed to the interrupt handler private data as the
		 * interrupt is shared for all the controller
		 * belonging to the thermal domain.
		 */
		lvts_sensors[i].tz = tz;

		/*
		 * This sensor was correctly associated with a thermal
		 * zone, let's set the corresponding bit in the sensor
		 * map, so we can enable the temperature monitoring in
		 * the hardware thermal controller.
		 */
		sensor_map |= BIT(i);
	}

	/*
	 * Bits:
	 *      9: Single point access flow
	 *    0-3: Enable sensing point 0-3
	 *
	 * The initialization of the thermal zones give us
	 * which sensor point to enable. If any thermal zone
	 * was not described in the device tree, it won't be
	 * enabled here in the sensor map.
	 */
	writel(sensor_map | BIT(9), LVTS_MONCTL0(lvts_ctrl->base));

	return 0;
}

static int lvts_domain_init(struct device *dev, struct lvts_domain *lvts_td,
					const struct lvts_data *lvts_data)
{
	struct lvts_ctrl *lvts_ctrl;
	int i, ret;

	ret = lvts_ctrl_init(dev, lvts_td, lvts_data);
	if (ret)
		return ret;

	ret = lvts_domain_reset(dev, lvts_td->reset);
	if (ret) {
		dev_dbg(dev, "Failed to reset domain");
		return ret;
	}

	for (i = 0; i < lvts_td->num_lvts_ctrl; i++) {

		lvts_ctrl = &lvts_td->lvts_ctrl[i];

		/*
		 * Initialization steps:
		 *
		 * - Enable the clock
		 * - Connect to the LVTS
		 * - Initialize the LVTS
		 * - Prepare the calibration data
		 * - Select monitored sensors
		 * [ Configure sampling ]
		 * [ Configure the interrupt ]
		 * - Start measurement
		 */
		ret = lvts_ctrl_set_enable(lvts_ctrl, true);
		if (ret) {
			dev_dbg(dev, "Failed to enable LVTS clock");
			return ret;
		}

		ret = lvts_ctrl_connect(dev, lvts_ctrl);
		if (ret) {
			dev_dbg(dev, "Failed to connect to LVTS controller");
			return ret;
		}

		ret = lvts_ctrl_initialize(dev, lvts_ctrl);
		if (ret) {
			dev_dbg(dev, "Failed to initialize controller");
			return ret;
		}

		ret = lvts_ctrl_calibrate(dev, lvts_ctrl);
		if (ret) {
			dev_dbg(dev, "Failed to calibrate controller");
			return ret;
		}

		ret = lvts_ctrl_configure(dev, lvts_ctrl);
		if (ret) {
			dev_dbg(dev, "Failed to configure controller");
			return ret;
		}

		ret = lvts_ctrl_start(dev, lvts_ctrl);
		if (ret) {
			dev_dbg(dev, "Failed to start controller");
			return ret;
		}
	}

	return lvts_debugfs_init(dev, lvts_td);
}

static int lvts_probe(struct platform_device *pdev)
{
	const struct lvts_data *lvts_data;
	struct lvts_domain *lvts_td;
	struct device *dev = &pdev->dev;
	struct resource *res;
	int irq, ret;

	lvts_td = devm_kzalloc(dev, sizeof(*lvts_td), GFP_KERNEL);
	if (!lvts_td)
		return -ENOMEM;

	lvts_data = of_device_get_match_data(dev);

	lvts_td->clk = devm_clk_get_enabled(dev, NULL);
	if (IS_ERR(lvts_td->clk))
		return dev_err_probe(dev, PTR_ERR(lvts_td->clk), "Failed to retrieve clock\n");

	res = platform_get_mem_or_io(pdev, 0);
	if (!res)
		return dev_err_probe(dev, (-ENXIO), "No IO resource\n");

	lvts_td->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
	if (IS_ERR(lvts_td->base))
		return dev_err_probe(dev, PTR_ERR(lvts_td->base), "Failed to map io resource\n");

	lvts_td->reset = devm_reset_control_get_by_index(dev, 0);
	if (IS_ERR(lvts_td->reset))
		return dev_err_probe(dev, PTR_ERR(lvts_td->reset), "Failed to get reset control\n");

	irq = platform_get_irq(pdev, 0);
	if (irq < 0)
		return dev_err_probe(dev, irq, "No irq resource\n");

	ret = lvts_domain_init(dev, lvts_td, lvts_data);
	if (ret)
		return dev_err_probe(dev, ret, "Failed to initialize the lvts domain\n");

	/*
	 * At this point the LVTS is initialized and enabled. We can
	 * safely enable the interrupt.
	 */
	ret = devm_request_threaded_irq(dev, irq, NULL, lvts_irq_handler,
					IRQF_ONESHOT, dev_name(dev), lvts_td);
	if (ret)
		return dev_err_probe(dev, ret, "Failed to request interrupt\n");

	platform_set_drvdata(pdev, lvts_td);

	return 0;
}

static int lvts_remove(struct platform_device *pdev)
{
	struct lvts_domain *lvts_td;
	int i;

	lvts_td = platform_get_drvdata(pdev);

	for (i = 0; i < lvts_td->num_lvts_ctrl; i++)
		lvts_ctrl_set_enable(&lvts_td->lvts_ctrl[i], false);

	lvts_debugfs_exit(lvts_td);

	return 0;
}

static const struct lvts_ctrl_data mt8195_lvts_data_ctrl[] = {
	{
		.cal_offset = { 0x04, 0x07 },
		.lvts_sensor = {
			{ .dt_id = MT8195_MCU_BIG_CPU0 },
			{ .dt_id = MT8195_MCU_BIG_CPU1 }
		},
		.num_lvts_sensor = 2,
		.offset = 0x0,
		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
	},
	{
		.cal_offset = { 0x0d, 0x10 },
		.lvts_sensor = {
			{ .dt_id = MT8195_MCU_BIG_CPU2 },
			{ .dt_id = MT8195_MCU_BIG_CPU3 }
		},
		.num_lvts_sensor = 2,
		.offset = 0x100,
		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
	},
	{
		.cal_offset = { 0x16, 0x19, 0x1c, 0x1f },
		.lvts_sensor = {
			{ .dt_id = MT8195_MCU_LITTLE_CPU0 },
			{ .dt_id = MT8195_MCU_LITTLE_CPU1 },
			{ .dt_id = MT8195_MCU_LITTLE_CPU2 },
			{ .dt_id = MT8195_MCU_LITTLE_CPU3 }
		},
		.num_lvts_sensor = 4,
		.offset = 0x200,
		.hw_tshut_temp = LVTS_HW_SHUTDOWN_MT8195,
	}
};

static const struct lvts_data mt8195_lvts_mcu_data = {
	.lvts_ctrl	= mt8195_lvts_data_ctrl,
	.num_lvts_ctrl	= ARRAY_SIZE(mt8195_lvts_data_ctrl),
};

static const struct of_device_id lvts_of_match[] = {
	{ .compatible = "mediatek,mt8195-lvts-mcu", .data = &mt8195_lvts_mcu_data },
	{},
};
MODULE_DEVICE_TABLE(of, lvts_of_match);

static struct platform_driver lvts_driver = {
	.probe = lvts_probe,
	.remove = lvts_remove,
	.driver = {
		.name = "mtk-lvts-thermal",
		.of_match_table = lvts_of_match,
	},
};
module_platform_driver(lvts_driver);

MODULE_AUTHOR("Balsam CHIHI <bchihi@baylibre.com>");
MODULE_DESCRIPTION("MediaTek LVTS Thermal Driver");
MODULE_LICENSE("GPL");