1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
#ifndef __LINUX_UACCESS_H__
#define __LINUX_UACCESS_H__
#include <linux/preempt.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
static __always_inline void pagefault_disabled_inc(void)
{
current->pagefault_disabled++;
}
static __always_inline void pagefault_disabled_dec(void)
{
current->pagefault_disabled--;
WARN_ON(current->pagefault_disabled < 0);
}
/*
* These routines enable/disable the pagefault handler. If disabled, it will
* not take any locks and go straight to the fixup table.
*
* We increase the preempt and the pagefault count, to be able to distinguish
* whether we run in simple atomic context or in a real pagefault_disable()
* context.
*
* For now, after pagefault_disabled() has been called, we run in atomic
* context. User access methods will not sleep.
*
*/
static inline void pagefault_disable(void)
{
preempt_count_inc();
pagefault_disabled_inc();
/*
* make sure to have issued the store before a pagefault
* can hit.
*/
barrier();
}
static inline void pagefault_enable(void)
{
/*
* make sure to issue those last loads/stores before enabling
* the pagefault handler again.
*/
barrier();
pagefault_disabled_dec();
#ifndef CONFIG_PREEMPT
preempt_count_dec();
#else
preempt_enable();
#endif
}
/*
* Is the pagefault handler disabled? If so, user access methods will not sleep.
*/
#define pagefault_disabled() (current->pagefault_disabled != 0)
/*
* The pagefault handler is in general disabled by pagefault_disable() or
* when in irq context (via in_atomic()).
*
* This function should only be used by the fault handlers. Other users should
* stick to pagefault_disabled().
* Please NEVER use preempt_disable() to disable the fault handler. With
* !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
* in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
*/
#define faulthandler_disabled() (pagefault_disabled() || in_atomic())
#ifndef ARCH_HAS_NOCACHE_UACCESS
static inline unsigned long __copy_from_user_inatomic_nocache(void *to,
const void __user *from, unsigned long n)
{
return __copy_from_user_inatomic(to, from, n);
}
static inline unsigned long __copy_from_user_nocache(void *to,
const void __user *from, unsigned long n)
{
return __copy_from_user(to, from, n);
}
#endif /* ARCH_HAS_NOCACHE_UACCESS */
/**
* probe_kernel_address(): safely attempt to read from a location
* @addr: address to read from - its type is type typeof(retval)*
* @retval: read into this variable
*
* Safely read from address @addr into variable @revtal. If a kernel fault
* happens, handle that and return -EFAULT.
* We ensure that the __get_user() is executed in atomic context so that
* do_page_fault() doesn't attempt to take mmap_sem. This makes
* probe_kernel_address() suitable for use within regions where the caller
* already holds mmap_sem, or other locks which nest inside mmap_sem.
* This must be a macro because __get_user() needs to know the types of the
* args.
*
* We don't include enough header files to be able to do the set_fs(). We
* require that the probe_kernel_address() caller will do that.
*/
#define probe_kernel_address(addr, retval) \
({ \
long ret; \
mm_segment_t old_fs = get_fs(); \
\
set_fs(KERNEL_DS); \
pagefault_disable(); \
ret = __copy_from_user_inatomic(&(retval), (__force typeof(retval) __user *)(addr), sizeof(retval)); \
pagefault_enable(); \
set_fs(old_fs); \
ret; \
})
/*
* probe_kernel_read(): safely attempt to read from a location
* @dst: pointer to the buffer that shall take the data
* @src: address to read from
* @size: size of the data chunk
*
* Safely read from address @src to the buffer at @dst. If a kernel fault
* happens, handle that and return -EFAULT.
*/
extern long probe_kernel_read(void *dst, const void *src, size_t size);
extern long __probe_kernel_read(void *dst, const void *src, size_t size);
/*
* probe_kernel_write(): safely attempt to write to a location
* @dst: address to write to
* @src: pointer to the data that shall be written
* @size: size of the data chunk
*
* Safely write to address @dst from the buffer at @src. If a kernel fault
* happens, handle that and return -EFAULT.
*/
extern long notrace probe_kernel_write(void *dst, const void *src, size_t size);
extern long notrace __probe_kernel_write(void *dst, const void *src, size_t size);
#endif /* __LINUX_UACCESS_H__ */
|