summaryrefslogtreecommitdiffstats
path: root/kernel/timer.c
blob: 8256f3f5ec0d1db576787e58923d80f4b83c7e57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
/*
 *  linux/kernel/timer.c
 *
 *  Kernel internal timers, kernel timekeeping, basic process system calls
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
#include <linux/delay.h>

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

#ifdef CONFIG_TIME_INTERPOLATION
static void time_interpolator_update(long delta_nsec);
#else
#define time_interpolator_update(x)
#endif

u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;

EXPORT_SYMBOL(jiffies_64);

/*
 * per-CPU timer vector definitions:
 */

#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)

struct timer_base_s {
	spinlock_t lock;
	struct timer_list *running_timer;
};

typedef struct tvec_s {
	struct list_head vec[TVN_SIZE];
} tvec_t;

typedef struct tvec_root_s {
	struct list_head vec[TVR_SIZE];
} tvec_root_t;

struct tvec_t_base_s {
	struct timer_base_s t_base;
	unsigned long timer_jiffies;
	tvec_root_t tv1;
	tvec_t tv2;
	tvec_t tv3;
	tvec_t tv4;
	tvec_t tv5;
} ____cacheline_aligned_in_smp;

typedef struct tvec_t_base_s tvec_base_t;
static DEFINE_PER_CPU(tvec_base_t, tvec_bases);

static inline void set_running_timer(tvec_base_t *base,
					struct timer_list *timer)
{
#ifdef CONFIG_SMP
	base->t_base.running_timer = timer;
#endif
}

static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
	struct list_head *vec;

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
		/* If the timeout is larger than 0xffffffff on 64-bit
		 * architectures then we use the maximum timeout:
		 */
		if (idx > 0xffffffffUL) {
			idx = 0xffffffffUL;
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
	/*
	 * Timers are FIFO:
	 */
	list_add_tail(&timer->entry, vec);
}

typedef struct timer_base_s timer_base_t;
/*
 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
 * at compile time, and we need timer->base to lock the timer.
 */
timer_base_t __init_timer_base
	____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
EXPORT_SYMBOL(__init_timer_base);

/***
 * init_timer - initialize a timer.
 * @timer: the timer to be initialized
 *
 * init_timer() must be done to a timer prior calling *any* of the
 * other timer functions.
 */
void fastcall init_timer(struct timer_list *timer)
{
	timer->entry.next = NULL;
	timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
}
EXPORT_SYMBOL(init_timer);

static inline void detach_timer(struct timer_list *timer,
					int clear_pending)
{
	struct list_head *entry = &timer->entry;

	__list_del(entry->prev, entry->next);
	if (clear_pending)
		entry->next = NULL;
	entry->prev = LIST_POISON2;
}

/*
 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
static timer_base_t *lock_timer_base(struct timer_list *timer,
					unsigned long *flags)
{
	timer_base_t *base;

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
			spin_lock_irqsave(&base->lock, *flags);
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU */
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

int __mod_timer(struct timer_list *timer, unsigned long expires)
{
	timer_base_t *base;
	tvec_base_t *new_base;
	unsigned long flags;
	int ret = 0;

	BUG_ON(!timer->function);

	base = lock_timer_base(timer, &flags);

	if (timer_pending(timer)) {
		detach_timer(timer, 0);
		ret = 1;
	}

	new_base = &__get_cpu_var(tvec_bases);

	if (base != &new_base->t_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
		 */
		if (unlikely(base->running_timer == timer)) {
			/* The timer remains on a former base */
			new_base = container_of(base, tvec_base_t, t_base);
		} else {
			/* See the comment in lock_timer_base() */
			timer->base = NULL;
			spin_unlock(&base->lock);
			spin_lock(&new_base->t_base.lock);
			timer->base = &new_base->t_base;
		}
	}

	timer->expires = expires;
	internal_add_timer(new_base, timer);
	spin_unlock_irqrestore(&new_base->t_base.lock, flags);

	return ret;
}

EXPORT_SYMBOL(__mod_timer);

/***
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
	tvec_base_t *base = &per_cpu(tvec_bases, cpu);
  	unsigned long flags;

  	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->t_base.lock, flags);
	timer->base = &base->t_base;
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->t_base.lock, flags);
}


/***
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
 *
 * mod_timer is a more efficient way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
	BUG_ON(!timer->function);

	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires);
}

EXPORT_SYMBOL(mod_timer);

/***
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
	timer_base_t *base;
	unsigned long flags;
	int ret = 0;

	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
		if (timer_pending(timer)) {
			detach_timer(timer, 1);
			ret = 1;
		}
		spin_unlock_irqrestore(&base->lock, flags);
	}

	return ret;
}

EXPORT_SYMBOL(del_timer);

#ifdef CONFIG_SMP
/*
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 *
 * It must not be called from interrupt contexts.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
	timer_base_t *base;
	unsigned long flags;
	int ret = -1;

	base = lock_timer_base(timer, &flags);

	if (base->running_timer == timer)
		goto out;

	ret = 0;
	if (timer_pending(timer)) {
		detach_timer(timer, 1);
		ret = 1;
	}
out:
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}

/***
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
 * Synchronization rules: callers must prevent restarting of the timer,
 * otherwise this function is meaningless. It must not be called from
 * interrupt contexts. The caller must not hold locks which would prevent
 * completion of the timer's handler. The timer's handler must not call
 * add_timer_on(). Upon exit the timer is not queued and the handler is
 * not running on any CPU.
 *
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
	}
}

EXPORT_SYMBOL(del_timer_sync);
#endif

static int cascade(tvec_base_t *base, tvec_t *tv, int index)
{
	/* cascade all the timers from tv up one level */
	struct list_head *head, *curr;

	head = tv->vec + index;
	curr = head->next;
	/*
	 * We are removing _all_ timers from the list, so we don't  have to
	 * detach them individually, just clear the list afterwards.
	 */
	while (curr != head) {
		struct timer_list *tmp;

		tmp = list_entry(curr, struct timer_list, entry);
		BUG_ON(tmp->base != &base->t_base);
		curr = curr->next;
		internal_add_timer(base, tmp);
	}
	INIT_LIST_HEAD(head);

	return index;
}

/***
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK

static inline void __run_timers(tvec_base_t *base)
{
	struct timer_list *timer;

	spin_lock_irq(&base->t_base.lock);
	while (time_after_eq(jiffies, base->timer_jiffies)) {
		struct list_head work_list = LIST_HEAD_INIT(work_list);
		struct list_head *head = &work_list;
 		int index = base->timer_jiffies & TVR_MASK;
 
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
		++base->timer_jiffies; 
		list_splice_init(base->tv1.vec + index, &work_list);
		while (!list_empty(head)) {
			void (*fn)(unsigned long);
			unsigned long data;

			timer = list_entry(head->next,struct timer_list,entry);
 			fn = timer->function;
 			data = timer->data;

			set_running_timer(base, timer);
			detach_timer(timer, 1);
			spin_unlock_irq(&base->t_base.lock);
			{
				int preempt_count = preempt_count();
				fn(data);
				if (preempt_count != preempt_count()) {
					printk(KERN_WARNING "huh, entered %p "
					       "with preempt_count %08x, exited"
					       " with %08x?\n",
					       fn, preempt_count,
					       preempt_count());
					BUG();
				}
			}
			spin_lock_irq(&base->t_base.lock);
		}
	}
	set_running_timer(base, NULL);
	spin_unlock_irq(&base->t_base.lock);
}

#ifdef CONFIG_NO_IDLE_HZ
/*
 * Find out when the next timer event is due to happen. This
 * is used on S/390 to stop all activity when a cpus is idle.
 * This functions needs to be called disabled.
 */
unsigned long next_timer_interrupt(void)
{
	tvec_base_t *base;
	struct list_head *list;
	struct timer_list *nte;
	unsigned long expires;
	unsigned long hr_expires = MAX_JIFFY_OFFSET;
	ktime_t hr_delta;
	tvec_t *varray[4];
	int i, j;

	hr_delta = hrtimer_get_next_event();
	if (hr_delta.tv64 != KTIME_MAX) {
		struct timespec tsdelta;
		tsdelta = ktime_to_timespec(hr_delta);
		hr_expires = timespec_to_jiffies(&tsdelta);
		if (hr_expires < 3)
			return hr_expires + jiffies;
	}
	hr_expires += jiffies;

	base = &__get_cpu_var(tvec_bases);
	spin_lock(&base->t_base.lock);
	expires = base->timer_jiffies + (LONG_MAX >> 1);
	list = NULL;

	/* Look for timer events in tv1. */
	j = base->timer_jiffies & TVR_MASK;
	do {
		list_for_each_entry(nte, base->tv1.vec + j, entry) {
			expires = nte->expires;
			if (j < (base->timer_jiffies & TVR_MASK))
				list = base->tv2.vec + (INDEX(0));
			goto found;
		}
		j = (j + 1) & TVR_MASK;
	} while (j != (base->timer_jiffies & TVR_MASK));

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
	for (i = 0; i < 4; i++) {
		j = INDEX(i);
		do {
			if (list_empty(varray[i]->vec + j)) {
				j = (j + 1) & TVN_MASK;
				continue;
			}
			list_for_each_entry(nte, varray[i]->vec + j, entry)
				if (time_before(nte->expires, expires))
					expires = nte->expires;
			if (j < (INDEX(i)) && i < 3)
				list = varray[i + 1]->vec + (INDEX(i + 1));
			goto found;
		} while (j != (INDEX(i)));
	}
found:
	if (list) {
		/*
		 * The search wrapped. We need to look at the next list
		 * from next tv element that would cascade into tv element
		 * where we found the timer element.
		 */
		list_for_each_entry(nte, list, entry) {
			if (time_before(nte->expires, expires))
				expires = nte->expires;
		}
	}
	spin_unlock(&base->t_base.lock);

	if (time_before(hr_expires, expires))
		return hr_expires;

	return expires;
}
#endif

/******************************************************************/

/*
 * Timekeeping variables
 */
unsigned long tick_usec = TICK_USEC; 		/* USER_HZ period (usec) */
unsigned long tick_nsec = TICK_NSEC;		/* ACTHZ period (nsec) */

/* 
 * The current time 
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
 */
struct timespec xtime __attribute__ ((aligned (16)));
struct timespec wall_to_monotonic __attribute__ ((aligned (16)));

EXPORT_SYMBOL(xtime);

/* Don't completely fail for HZ > 500.  */
int tickadj = 500/HZ ? : 1;		/* microsecs */


/*
 * phase-lock loop variables
 */
/* TIME_ERROR prevents overwriting the CMOS clock */
int time_state = TIME_OK;		/* clock synchronization status	*/
int time_status = STA_UNSYNC;		/* clock status bits		*/
long time_offset;			/* time adjustment (us)		*/
long time_constant = 2;			/* pll time constant		*/
long time_tolerance = MAXFREQ;		/* frequency tolerance (ppm)	*/
long time_precision = 1;		/* clock precision (us)		*/
long time_maxerror = NTP_PHASE_LIMIT;	/* maximum error (us)		*/
long time_esterror = NTP_PHASE_LIMIT;	/* estimated error (us)		*/
static long time_phase;			/* phase offset (scaled us)	*/
long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
					/* frequency offset (scaled ppm)*/
static long time_adj;			/* tick adjust (scaled 1 / HZ)	*/
long time_reftime;			/* time at last adjustment (s)	*/
long time_adjust;
long time_next_adjust;

/*
 * this routine handles the overflow of the microsecond field
 *
 * The tricky bits of code to handle the accurate clock support
 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 * They were originally developed for SUN and DEC kernels.
 * All the kudos should go to Dave for this stuff.
 *
 */
static void second_overflow(void)
{
	long ltemp;

	/* Bump the maxerror field */
	time_maxerror += time_tolerance >> SHIFT_USEC;
	if (time_maxerror > NTP_PHASE_LIMIT) {
		time_maxerror = NTP_PHASE_LIMIT;
		time_status |= STA_UNSYNC;
	}

	/*
	 * Leap second processing. If in leap-insert state at the end of the
	 * day, the system clock is set back one second; if in leap-delete
	 * state, the system clock is set ahead one second. The microtime()
	 * routine or external clock driver will insure that reported time is
	 * always monotonic. The ugly divides should be replaced.
	 */
	switch (time_state) {
	case TIME_OK:
		if (time_status & STA_INS)
			time_state = TIME_INS;
		else if (time_status & STA_DEL)
			time_state = TIME_DEL;
		break;
	case TIME_INS:
		if (xtime.tv_sec % 86400 == 0) {
			xtime.tv_sec--;
			wall_to_monotonic.tv_sec++;
			/*
			 * The timer interpolator will make time change
			 * gradually instead of an immediate jump by one second
			 */
			time_interpolator_update(-NSEC_PER_SEC);
			time_state = TIME_OOP;
			clock_was_set();
			printk(KERN_NOTICE "Clock: inserting leap second "
					"23:59:60 UTC\n");
		}
		break;
	case TIME_DEL:
		if ((xtime.tv_sec + 1) % 86400 == 0) {
			xtime.tv_sec++;
			wall_to_monotonic.tv_sec--;
			/*
			 * Use of time interpolator for a gradual change of
			 * time
			 */
			time_interpolator_update(NSEC_PER_SEC);
			time_state = TIME_WAIT;
			clock_was_set();
			printk(KERN_NOTICE "Clock: deleting leap second "
					"23:59:59 UTC\n");
		}
		break;
	case TIME_OOP:
		time_state = TIME_WAIT;
		break;
	case TIME_WAIT:
		if (!(time_status & (STA_INS | STA_DEL)))
		time_state = TIME_OK;
	}

	/*
	 * Compute the phase adjustment for the next second. In PLL mode, the
	 * offset is reduced by a fixed factor times the time constant. In FLL
	 * mode the offset is used directly. In either mode, the maximum phase
	 * adjustment for each second is clamped so as to spread the adjustment
	 * over not more than the number of seconds between updates.
	 */
	ltemp = time_offset;
	if (!(time_status & STA_FLL))
		ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
	ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
	ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
	time_offset -= ltemp;
	time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);

	/*
	 * Compute the frequency estimate and additional phase adjustment due
	 * to frequency error for the next second. When the PPS signal is
	 * engaged, gnaw on the watchdog counter and update the frequency
	 * computed by the pll and the PPS signal.
	 */
	pps_valid++;
	if (pps_valid == PPS_VALID) {	/* PPS signal lost */
		pps_jitter = MAXTIME;
		pps_stabil = MAXFREQ;
		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
				STA_PPSWANDER | STA_PPSERROR);
	}
	ltemp = time_freq + pps_freq;
	time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));

#if HZ == 100
	/*
	 * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
	 * get 128.125; => only 0.125% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
#endif
#if HZ == 250
	/*
	 * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
	 * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
#endif
#if HZ == 1000
	/*
	 * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
	 * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
	 */
	time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
#endif
}

/*
 * Returns how many microseconds we need to add to xtime this tick
 * in doing an adjustment requested with adjtime.
 */
static long adjtime_adjustment(void)
{
	long time_adjust_step;

	time_adjust_step = time_adjust;
	if (time_adjust_step) {
		/*
		 * We are doing an adjtime thing.  Prepare time_adjust_step to
		 * be within bounds.  Note that a positive time_adjust means we
		 * want the clock to run faster.
		 *
		 * Limit the amount of the step to be in the range
		 * -tickadj .. +tickadj
		 */
		time_adjust_step = min(time_adjust_step, (long)tickadj);
		time_adjust_step = max(time_adjust_step, (long)-tickadj);
	}
	return time_adjust_step;
}

/* in the NTP reference this is called "hardclock()" */
static void update_wall_time_one_tick(void)
{
	long time_adjust_step, delta_nsec;

	time_adjust_step = adjtime_adjustment();
	if (time_adjust_step)
		/* Reduce by this step the amount of time left  */
		time_adjust -= time_adjust_step;
	delta_nsec = tick_nsec + time_adjust_step * 1000;
	/*
	 * Advance the phase, once it gets to one microsecond, then
	 * advance the tick more.
	 */
	time_phase += time_adj;
	if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
		long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
		time_phase -= ltemp << (SHIFT_SCALE - 10);
		delta_nsec += ltemp;
	}
	xtime.tv_nsec += delta_nsec;
	time_interpolator_update(delta_nsec);

	/* Changes by adjtime() do not take effect till next tick. */
	if (time_next_adjust != 0) {
		time_adjust = time_next_adjust;
		time_next_adjust = 0;
	}
}

/*
 * Return how long ticks are at the moment, that is, how much time
 * update_wall_time_one_tick will add to xtime next time we call it
 * (assuming no calls to do_adjtimex in the meantime).
 * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
 * bits to the right of the binary point.
 * This function has no side-effects.
 */
u64 current_tick_length(void)
{
	long delta_nsec;

	delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
	return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
}

/*
 * Using a loop looks inefficient, but "ticks" is
 * usually just one (we shouldn't be losing ticks,
 * we're doing this this way mainly for interrupt
 * latency reasons, not because we think we'll
 * have lots of lost timer ticks
 */
static void update_wall_time(unsigned long ticks)
{
	do {
		ticks--;
		update_wall_time_one_tick();
		if (xtime.tv_nsec >= 1000000000) {
			xtime.tv_nsec -= 1000000000;
			xtime.tv_sec++;
			second_overflow();
		}
	} while (ticks);
}

/*
 * Called from the timer interrupt handler to charge one tick to the current 
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;
	int cpu = smp_processor_id();

	/* Note: this timer irq context must be accounted for as well. */
	if (user_tick)
		account_user_time(p, jiffies_to_cputime(1));
	else
		account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_tick);
	scheduler_tick();
 	run_posix_cpu_timers(p);
}

/*
 * Nr of active tasks - counted in fixed-point numbers
 */
static unsigned long count_active_tasks(void)
{
	return (nr_running() + nr_uninterruptible()) * FIXED_1;
}

/*
 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
 * imply that avenrun[] is the standard name for this kind of thing.
 * Nothing else seems to be standardized: the fractional size etc
 * all seem to differ on different machines.
 *
 * Requires xtime_lock to access.
 */
unsigned long avenrun[3];

EXPORT_SYMBOL(avenrun);

/*
 * calc_load - given tick count, update the avenrun load estimates.
 * This is called while holding a write_lock on xtime_lock.
 */
static inline void calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;
	if (count < 0) {
		count += LOAD_FREQ;
		active_tasks = count_active_tasks();
		CALC_LOAD(avenrun[0], EXP_1, active_tasks);
		CALC_LOAD(avenrun[1], EXP_5, active_tasks);
		CALC_LOAD(avenrun[2], EXP_15, active_tasks);
	}
}

/* jiffies at the most recent update of wall time */
unsigned long wall_jiffies = INITIAL_JIFFIES;

/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime and avenrun.
 */
#ifndef ARCH_HAVE_XTIME_LOCK
seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;

EXPORT_SYMBOL(xtime_lock);
#endif

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
	tvec_base_t *base = &__get_cpu_var(tvec_bases);

 	hrtimer_run_queues();
	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
	raise_softirq(TIMER_SOFTIRQ);
}

/*
 * Called by the timer interrupt. xtime_lock must already be taken
 * by the timer IRQ!
 */
static inline void update_times(void)
{
	unsigned long ticks;

	ticks = jiffies - wall_jiffies;
	if (ticks) {
		wall_jiffies += ticks;
		update_wall_time(ticks);
	}
	calc_load(ticks);
}
  
/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */

void do_timer(struct pt_regs *regs)
{
	jiffies_64++;
	update_times();
	softlockup_tick(regs);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
asmlinkage unsigned long sys_alarm(unsigned int seconds)
{
	struct itimerval it_new, it_old;
	unsigned int oldalarm;

	it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
	it_new.it_value.tv_sec = seconds;
	it_new.it_value.tv_usec = 0;
	do_setitimer(ITIMER_REAL, &it_new, &it_old);
	oldalarm = it_old.it_value.tv_sec;
	/* ehhh.. We can't return 0 if we have an alarm pending.. */
	/* And we'd better return too much than too little anyway */
	if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
		oldalarm++;
	return oldalarm;
}

#endif

#ifndef __alpha__

/*
 * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
 * should be moved into arch/i386 instead?
 */

/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
asmlinkage long sys_getpid(void)
{
	return current->tgid;
}

/*
 * Accessing ->group_leader->real_parent is not SMP-safe, it could
 * change from under us. However, rather than getting any lock
 * we can use an optimistic algorithm: get the parent
 * pid, and go back and check that the parent is still
 * the same. If it has changed (which is extremely unlikely
 * indeed), we just try again..
 *
 * NOTE! This depends on the fact that even if we _do_
 * get an old value of "parent", we can happily dereference
 * the pointer (it was and remains a dereferencable kernel pointer
 * no matter what): we just can't necessarily trust the result
 * until we know that the parent pointer is valid.
 *
 * NOTE2: ->group_leader never changes from under us.
 */
asmlinkage long sys_getppid(void)
{
	int pid;
	struct task_struct *me = current;
	struct task_struct *parent;

	parent = me->group_leader->real_parent;
	for (;;) {
		pid = parent->tgid;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
{
		struct task_struct *old = parent;

		/*
		 * Make sure we read the pid before re-reading the
		 * parent pointer:
		 */
		smp_rmb();
		parent = me->group_leader->real_parent;
		if (old != parent)
			continue;
}
#endif
		break;
	}
	return pid;
}

asmlinkage long sys_getuid(void)
{
	/* Only we change this so SMP safe */
	return current->uid;
}

asmlinkage long sys_geteuid(void)
{
	/* Only we change this so SMP safe */
	return current->euid;
}

asmlinkage long sys_getgid(void)
{
	/* Only we change this so SMP safe */
	return current->gid;
}

asmlinkage long sys_getegid(void)
{
	/* Only we change this so SMP safe */
	return  current->egid;
}

#endif

static void process_timeout(unsigned long __data)
{
	wake_up_process((task_t *)__data);
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
fastcall signed long __sched schedule_timeout(signed long timeout)
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
		if (timeout < 0)
		{
			printk(KERN_ERR "schedule_timeout: wrong timeout "
				"value %lx from %p\n", timeout,
				__builtin_return_address(0));
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

	setup_timer(&timer, process_timeout, (unsigned long)current);
	__mod_timer(&timer, expire);
	schedule();
	del_singleshot_timer_sync(&timer);

	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

/* Thread ID - the internal kernel "pid" */
asmlinkage long sys_gettid(void)
{
	return current->pid;
}

/*
 * sys_sysinfo - fill in sysinfo struct
 */ 
asmlinkage long sys_sysinfo(struct sysinfo __user *info)
{
	struct sysinfo val;
	unsigned long mem_total, sav_total;
	unsigned int mem_unit, bitcount;
	unsigned long seq;

	memset((char *)&val, 0, sizeof(struct sysinfo));

	do {
		struct timespec tp;
		seq = read_seqbegin(&xtime_lock);

		/*
		 * This is annoying.  The below is the same thing
		 * posix_get_clock_monotonic() does, but it wants to
		 * take the lock which we want to cover the loads stuff
		 * too.
		 */

		getnstimeofday(&tp);
		tp.tv_sec += wall_to_monotonic.tv_sec;
		tp.tv_nsec += wall_to_monotonic.tv_nsec;
		if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
			tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
			tp.tv_sec++;
		}
		val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);

		val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
		val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);

		val.procs = nr_threads;
	} while (read_seqretry(&xtime_lock, seq));

	si_meminfo(&val);
	si_swapinfo(&val);

	/*
	 * If the sum of all the available memory (i.e. ram + swap)
	 * is less than can be stored in a 32 bit unsigned long then
	 * we can be binary compatible with 2.2.x kernels.  If not,
	 * well, in that case 2.2.x was broken anyways...
	 *
	 *  -Erik Andersen <andersee@debian.org>
	 */

	mem_total = val.totalram + val.totalswap;
	if (mem_total < val.totalram || mem_total < val.totalswap)
		goto out;
	bitcount = 0;
	mem_unit = val.mem_unit;
	while (mem_unit > 1) {
		bitcount++;
		mem_unit >>= 1;
		sav_total = mem_total;
		mem_total <<= 1;
		if (mem_total < sav_total)
			goto out;
	}

	/*
	 * If mem_total did not overflow, multiply all memory values by
	 * val.mem_unit and set it to 1.  This leaves things compatible
	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
	 * kernels...
	 */

	val.mem_unit = 1;
	val.totalram <<= bitcount;
	val.freeram <<= bitcount;
	val.sharedram <<= bitcount;
	val.bufferram <<= bitcount;
	val.totalswap <<= bitcount;
	val.freeswap <<= bitcount;
	val.totalhigh <<= bitcount;
	val.freehigh <<= bitcount;

 out:
	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
		return -EFAULT;

	return 0;
}

static void __devinit init_timers_cpu(int cpu)
{
	int j;
	tvec_base_t *base;

	base = &per_cpu(tvec_bases, cpu);
	spin_lock_init(&base->t_base.lock);
	for (j = 0; j < TVN_SIZE; j++) {
		INIT_LIST_HEAD(base->tv5.vec + j);
		INIT_LIST_HEAD(base->tv4.vec + j);
		INIT_LIST_HEAD(base->tv3.vec + j);
		INIT_LIST_HEAD(base->tv2.vec + j);
	}
	for (j = 0; j < TVR_SIZE; j++)
		INIT_LIST_HEAD(base->tv1.vec + j);

	base->timer_jiffies = jiffies;
}

#ifdef CONFIG_HOTPLUG_CPU
static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
{
	struct timer_list *timer;

	while (!list_empty(head)) {
		timer = list_entry(head->next, struct timer_list, entry);
		detach_timer(timer, 0);
		timer->base = &new_base->t_base;
		internal_add_timer(new_base, timer);
	}
}

static void __devinit migrate_timers(int cpu)
{
	tvec_base_t *old_base;
	tvec_base_t *new_base;
	int i;

	BUG_ON(cpu_online(cpu));
	old_base = &per_cpu(tvec_bases, cpu);
	new_base = &get_cpu_var(tvec_bases);

	local_irq_disable();
	spin_lock(&new_base->t_base.lock);
	spin_lock(&old_base->t_base.lock);

	if (old_base->t_base.running_timer)
		BUG();
	for (i = 0; i < TVR_SIZE; i++)
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

	spin_unlock(&old_base->t_base.lock);
	spin_unlock(&new_base->t_base.lock);
	local_irq_enable();
	put_cpu_var(tvec_bases);
}
#endif /* CONFIG_HOTPLUG_CPU */

static int __devinit timer_cpu_notify(struct notifier_block *self, 
				unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	switch(action) {
	case CPU_UP_PREPARE:
		init_timers_cpu(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		migrate_timers(cpu);
		break;
#endif
	default:
		break;
	}
	return NOTIFY_OK;
}

static struct notifier_block __devinitdata timers_nb = {
	.notifier_call	= timer_cpu_notify,
};


void __init init_timers(void)
{
	timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
				(void *)(long)smp_processor_id());
	register_cpu_notifier(&timers_nb);
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
}

#ifdef CONFIG_TIME_INTERPOLATION

struct time_interpolator *time_interpolator;
static struct time_interpolator *time_interpolator_list;
static DEFINE_SPINLOCK(time_interpolator_lock);

static inline u64 time_interpolator_get_cycles(unsigned int src)
{
	unsigned long (*x)(void);

	switch (src)
	{
		case TIME_SOURCE_FUNCTION:
			x = time_interpolator->addr;
			return x();

		case TIME_SOURCE_MMIO64	:
			return readq_relaxed((void __iomem *)time_interpolator->addr);

		case TIME_SOURCE_MMIO32	:
			return readl_relaxed((void __iomem *)time_interpolator->addr);

		default: return get_cycles();
	}
}

static inline u64 time_interpolator_get_counter(int writelock)
{
	unsigned int src = time_interpolator->source;

	if (time_interpolator->jitter)
	{
		u64 lcycle;
		u64 now;

		do {
			lcycle = time_interpolator->last_cycle;
			now = time_interpolator_get_cycles(src);
			if (lcycle && time_after(lcycle, now))
				return lcycle;

			/* When holding the xtime write lock, there's no need
			 * to add the overhead of the cmpxchg.  Readers are
			 * force to retry until the write lock is released.
			 */
			if (writelock) {
				time_interpolator->last_cycle = now;
				return now;
			}
			/* Keep track of the last timer value returned. The use of cmpxchg here
			 * will cause contention in an SMP environment.
			 */
		} while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
		return now;
	}
	else
		return time_interpolator_get_cycles(src);
}

void time_interpolator_reset(void)
{
	time_interpolator->offset = 0;
	time_interpolator->last_counter = time_interpolator_get_counter(1);
}

#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)

unsigned long time_interpolator_get_offset(void)
{
	/* If we do not have a time interpolator set up then just return zero */
	if (!time_interpolator)
		return 0;

	return time_interpolator->offset +
		GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
}

#define INTERPOLATOR_ADJUST 65536
#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST

static void time_interpolator_update(long delta_nsec)
{
	u64 counter;
	unsigned long offset;

	/* If there is no time interpolator set up then do nothing */
	if (!time_interpolator)
		return;

	/*
	 * The interpolator compensates for late ticks by accumulating the late
	 * time in time_interpolator->offset. A tick earlier than expected will
	 * lead to a reset of the offset and a corresponding jump of the clock
	 * forward. Again this only works if the interpolator clock is running
	 * slightly slower than the regular clock and the tuning logic insures
	 * that.
	 */

	counter = time_interpolator_get_counter(1);
	offset = time_interpolator->offset +
			GET_TI_NSECS(counter, time_interpolator);

	if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
		time_interpolator->offset = offset - delta_nsec;
	else {
		time_interpolator->skips++;
		time_interpolator->ns_skipped += delta_nsec - offset;
		time_interpolator->offset = 0;
	}
	time_interpolator->last_counter = counter;

	/* Tuning logic for time interpolator invoked every minute or so.
	 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
	 * Increase interpolator clock speed if we skip too much time.
	 */
	if (jiffies % INTERPOLATOR_ADJUST == 0)
	{
		if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
			time_interpolator->nsec_per_cyc--;
		if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
			time_interpolator->nsec_per_cyc++;
		time_interpolator->skips = 0;
		time_interpolator->ns_skipped = 0;
	}
}

static inline int
is_better_time_interpolator(struct time_interpolator *new)
{
	if (!time_interpolator)
		return 1;
	return new->frequency > 2*time_interpolator->frequency ||
	    (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
}

void
register_time_interpolator(struct time_interpolator *ti)
{
	unsigned long flags;

	/* Sanity check */
	if (ti->frequency == 0 || ti->mask == 0)
		BUG();

	ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
	spin_lock(&time_interpolator_lock);
	write_seqlock_irqsave(&xtime_lock, flags);
	if (is_better_time_interpolator(ti)) {
		time_interpolator = ti;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);

	ti->next = time_interpolator_list;
	time_interpolator_list = ti;
	spin_unlock(&time_interpolator_lock);
}

void
unregister_time_interpolator(struct time_interpolator *ti)
{
	struct time_interpolator *curr, **prev;
	unsigned long flags;

	spin_lock(&time_interpolator_lock);
	prev = &time_interpolator_list;
	for (curr = *prev; curr; curr = curr->next) {
		if (curr == ti) {
			*prev = curr->next;
			break;
		}
		prev = &curr->next;
	}

	write_seqlock_irqsave(&xtime_lock, flags);
	if (ti == time_interpolator) {
		/* we lost the best time-interpolator: */
		time_interpolator = NULL;
		/* find the next-best interpolator */
		for (curr = time_interpolator_list; curr; curr = curr->next)
			if (is_better_time_interpolator(curr))
				time_interpolator = curr;
		time_interpolator_reset();
	}
	write_sequnlock_irqrestore(&xtime_lock, flags);
	spin_unlock(&time_interpolator_lock);
}
#endif /* CONFIG_TIME_INTERPOLATION */

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
}

EXPORT_SYMBOL(msleep);

/**
 * msleep_interruptible - sleep waiting for signals
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);