diff options
author | Peter Zijlstra <peterz@infradead.org> | 2023-05-31 13:58:44 +0200 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2023-07-19 09:43:58 +0200 |
commit | 147f3efaa24182a21706bca15eab2f3f4630b5fe (patch) | |
tree | 555ff76e8d3aabc2e62f43856e50ebff7e3bfbd9 | |
parent | 99d4d26551b56f4e523dd04e4970b94aa796a64e (diff) | |
download | linux-147f3efaa24182a21706bca15eab2f3f4630b5fe.tar.gz linux-147f3efaa24182a21706bca15eab2f3f4630b5fe.tar.bz2 linux-147f3efaa24182a21706bca15eab2f3f4630b5fe.zip |
sched/fair: Implement an EEVDF-like scheduling policy
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.
Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.
EEVDF has two parameters:
- weight, or time-slope: which is mapped to nice just as before
- request size, or slice length: which is used to compute
the virtual deadline as: vd_i = ve_i + r_i/w_i
Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.
Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.
Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
-rw-r--r-- | include/linux/sched.h | 4 | ||||
-rw-r--r-- | kernel/sched/core.c | 1 | ||||
-rw-r--r-- | kernel/sched/debug.c | 6 | ||||
-rw-r--r-- | kernel/sched/fair.c | 338 | ||||
-rw-r--r-- | kernel/sched/features.h | 3 | ||||
-rw-r--r-- | kernel/sched/sched.h | 4 |
6 files changed, 308 insertions, 48 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index ba1828b2a6a5..177b3f3676ef 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -549,6 +549,9 @@ struct sched_entity { /* For load-balancing: */ struct load_weight load; struct rb_node run_node; + u64 deadline; + u64 min_deadline; + struct list_head group_node; unsigned int on_rq; @@ -557,6 +560,7 @@ struct sched_entity { u64 prev_sum_exec_runtime; u64 vruntime; s64 vlag; + u64 slice; u64 nr_migrations; diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 84b0d47ed9b8..e85a2fd258e2 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -4502,6 +4502,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) p->se.nr_migrations = 0; p->se.vruntime = 0; p->se.vlag = 0; + p->se.slice = sysctl_sched_min_granularity; INIT_LIST_HEAD(&p->se.group_node); #ifdef CONFIG_FAIR_GROUP_SCHED diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index e48d2b2db7bc..18efc6d0cc5a 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -582,9 +582,13 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) else SEQ_printf(m, " %c", task_state_to_char(p)); - SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", + SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ", p->comm, task_pid_nr(p), SPLIT_NS(p->se.vruntime), + entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N', + SPLIT_NS(p->se.deadline), + SPLIT_NS(p->se.slice), + SPLIT_NS(p->se.sum_exec_runtime), (long long)(p->nvcsw + p->nivcsw), p->prio); diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index dd12ada69b12..4d3505dba476 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -47,6 +47,7 @@ #include <linux/psi.h> #include <linux/ratelimit.h> #include <linux/task_work.h> +#include <linux/rbtree_augmented.h> #include <asm/switch_to.h> @@ -347,6 +348,16 @@ static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight return mul_u64_u32_shr(delta_exec, fact, shift); } +/* + * delta /= w + */ +static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) +{ + if (unlikely(se->load.weight != NICE_0_LOAD)) + delta = __calc_delta(delta, NICE_0_LOAD, &se->load); + + return delta; +} const struct sched_class fair_sched_class; @@ -717,11 +728,62 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq) /* * lag_i = S - s_i = w_i * (V - v_i) + * + * However, since V is approximated by the weighted average of all entities it + * is possible -- by addition/removal/reweight to the tree -- to move V around + * and end up with a larger lag than we started with. + * + * Limit this to either double the slice length with a minimum of TICK_NSEC + * since that is the timing granularity. + * + * EEVDF gives the following limit for a steady state system: + * + * -r_max < lag < max(r_max, q) + * + * XXX could add max_slice to the augmented data to track this. */ void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) { + s64 lag, limit; + SCHED_WARN_ON(!se->on_rq); - se->vlag = avg_vruntime(cfs_rq) - se->vruntime; + lag = avg_vruntime(cfs_rq) - se->vruntime; + + limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); + se->vlag = clamp(lag, -limit, limit); +} + +/* + * Entity is eligible once it received less service than it ought to have, + * eg. lag >= 0. + * + * lag_i = S - s_i = w_i*(V - v_i) + * + * lag_i >= 0 -> V >= v_i + * + * \Sum (v_i - v)*w_i + * V = ------------------ + v + * \Sum w_i + * + * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) + * + * Note: using 'avg_vruntime() > se->vruntime' is inacurate due + * to the loss in precision caused by the division. + */ +int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + struct sched_entity *curr = cfs_rq->curr; + s64 avg = cfs_rq->avg_vruntime; + long load = cfs_rq->avg_load; + + if (curr && curr->on_rq) { + unsigned long weight = scale_load_down(curr->load.weight); + + avg += entity_key(cfs_rq, curr) * weight; + load += weight; + } + + return avg >= entity_key(cfs_rq, se) * load; } static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) @@ -740,8 +802,8 @@ static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) static void update_min_vruntime(struct cfs_rq *cfs_rq) { + struct sched_entity *se = __pick_first_entity(cfs_rq); struct sched_entity *curr = cfs_rq->curr; - struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); u64 vruntime = cfs_rq->min_vruntime; @@ -752,9 +814,7 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq) curr = NULL; } - if (leftmost) { /* non-empty tree */ - struct sched_entity *se = __node_2_se(leftmost); - + if (se) { if (!curr) vruntime = se->vruntime; else @@ -771,18 +831,50 @@ static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) return entity_before(__node_2_se(a), __node_2_se(b)); } +#define deadline_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) + +static inline void __update_min_deadline(struct sched_entity *se, struct rb_node *node) +{ + if (node) { + struct sched_entity *rse = __node_2_se(node); + if (deadline_gt(min_deadline, se, rse)) + se->min_deadline = rse->min_deadline; + } +} + +/* + * se->min_deadline = min(se->deadline, left->min_deadline, right->min_deadline) + */ +static inline bool min_deadline_update(struct sched_entity *se, bool exit) +{ + u64 old_min_deadline = se->min_deadline; + struct rb_node *node = &se->run_node; + + se->min_deadline = se->deadline; + __update_min_deadline(se, node->rb_right); + __update_min_deadline(se, node->rb_left); + + return se->min_deadline == old_min_deadline; +} + +RB_DECLARE_CALLBACKS(static, min_deadline_cb, struct sched_entity, + run_node, min_deadline, min_deadline_update); + /* * Enqueue an entity into the rb-tree: */ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { avg_vruntime_add(cfs_rq, se); - rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); + se->min_deadline = se->deadline; + rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, + __entity_less, &min_deadline_cb); } static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) { - rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); + rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, + &min_deadline_cb); avg_vruntime_sub(cfs_rq, se); } @@ -806,6 +898,97 @@ static struct sched_entity *__pick_next_entity(struct sched_entity *se) return __node_2_se(next); } +static struct sched_entity *pick_cfs(struct cfs_rq *cfs_rq, struct sched_entity *curr) +{ + struct sched_entity *left = __pick_first_entity(cfs_rq); + + /* + * If curr is set we have to see if its left of the leftmost entity + * still in the tree, provided there was anything in the tree at all. + */ + if (!left || (curr && entity_before(curr, left))) + left = curr; + + return left; +} + +/* + * Earliest Eligible Virtual Deadline First + * + * In order to provide latency guarantees for different request sizes + * EEVDF selects the best runnable task from two criteria: + * + * 1) the task must be eligible (must be owed service) + * + * 2) from those tasks that meet 1), we select the one + * with the earliest virtual deadline. + * + * We can do this in O(log n) time due to an augmented RB-tree. The + * tree keeps the entries sorted on service, but also functions as a + * heap based on the deadline by keeping: + * + * se->min_deadline = min(se->deadline, se->{left,right}->min_deadline) + * + * Which allows an EDF like search on (sub)trees. + */ +static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) +{ + struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; + struct sched_entity *curr = cfs_rq->curr; + struct sched_entity *best = NULL; + + if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) + curr = NULL; + + while (node) { + struct sched_entity *se = __node_2_se(node); + + /* + * If this entity is not eligible, try the left subtree. + */ + if (!entity_eligible(cfs_rq, se)) { + node = node->rb_left; + continue; + } + + /* + * If this entity has an earlier deadline than the previous + * best, take this one. If it also has the earliest deadline + * of its subtree, we're done. + */ + if (!best || deadline_gt(deadline, best, se)) { + best = se; + if (best->deadline == best->min_deadline) + break; + } + + /* + * If the earlest deadline in this subtree is in the fully + * eligible left half of our space, go there. + */ + if (node->rb_left && + __node_2_se(node->rb_left)->min_deadline == se->min_deadline) { + node = node->rb_left; + continue; + } + + node = node->rb_right; + } + + if (!best || (curr && deadline_gt(deadline, best, curr))) + best = curr; + + if (unlikely(!best)) { + struct sched_entity *left = __pick_first_entity(cfs_rq); + if (left) { + pr_err("EEVDF scheduling fail, picking leftmost\n"); + return left; + } + } + + return best; +} + #ifdef CONFIG_SCHED_DEBUG struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) { @@ -840,17 +1023,6 @@ int sched_update_scaling(void) #endif /* - * delta /= w - */ -static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) -{ - if (unlikely(se->load.weight != NICE_0_LOAD)) - delta = __calc_delta(delta, NICE_0_LOAD, &se->load); - - return delta; -} - -/* * The idea is to set a period in which each task runs once. * * When there are too many tasks (sched_nr_latency) we have to stretch @@ -915,6 +1087,48 @@ static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) return slice; } +static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); + +/* + * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i + * this is probably good enough. + */ +static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ + if ((s64)(se->vruntime - se->deadline) < 0) + return; + + if (sched_feat(EEVDF)) { + /* + * For EEVDF the virtual time slope is determined by w_i (iow. + * nice) while the request time r_i is determined by + * sysctl_sched_min_granularity. + */ + se->slice = sysctl_sched_min_granularity; + + /* + * The task has consumed its request, reschedule. + */ + if (cfs_rq->nr_running > 1) { + resched_curr(rq_of(cfs_rq)); + clear_buddies(cfs_rq, se); + } + } else { + /* + * When many tasks blow up the sched_period; it is possible + * that sched_slice() reports unusually large results (when + * many tasks are very light for example). Therefore impose a + * maximum. + */ + se->slice = min_t(u64, sched_slice(cfs_rq, se), sysctl_sched_latency); + } + + /* + * EEVDF: vd_i = ve_i + r_i / w_i + */ + se->deadline = se->vruntime + calc_delta_fair(se->slice, se); +} + #include "pelt.h" #ifdef CONFIG_SMP @@ -1047,6 +1261,7 @@ static void update_curr(struct cfs_rq *cfs_rq) schedstat_add(cfs_rq->exec_clock, delta_exec); curr->vruntime += calc_delta_fair(delta_exec, curr); + update_deadline(cfs_rq, curr); update_min_vruntime(cfs_rq); if (entity_is_task(curr)) { @@ -3521,6 +3736,14 @@ static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, * we need to scale se->vlag when w_i changes. */ se->vlag = div_s64(se->vlag * old_weight, weight); + } else { + s64 deadline = se->deadline - se->vruntime; + /* + * When the weight changes, the virtual time slope changes and + * we should adjust the relative virtual deadline accordingly. + */ + deadline = div_s64(deadline * old_weight, weight); + se->deadline = se->vruntime + deadline; } #ifdef CONFIG_SMP @@ -4871,6 +5094,7 @@ static inline bool entity_is_long_sleeper(struct sched_entity *se) static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) { + u64 vslice = calc_delta_fair(se->slice, se); u64 vruntime = avg_vruntime(cfs_rq); s64 lag = 0; @@ -4942,9 +5166,9 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) */ load = cfs_rq->avg_load; if (curr && curr->on_rq) - load += curr->load.weight; + load += scale_load_down(curr->load.weight); - lag *= load + se->load.weight; + lag *= load + scale_load_down(se->load.weight); if (WARN_ON_ONCE(!load)) load = 1; lag = div_s64(lag, load); @@ -4985,6 +5209,19 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) } se->vruntime = vruntime; + + /* + * When joining the competition; the exisiting tasks will be, + * on average, halfway through their slice, as such start tasks + * off with half a slice to ease into the competition. + */ + if (sched_feat(PLACE_DEADLINE_INITIAL) && initial) + vslice /= 2; + + /* + * EEVDF: vd_i = ve_i + r_i/w_i + */ + se->deadline = se->vruntime + vslice; } static void check_enqueue_throttle(struct cfs_rq *cfs_rq); @@ -5207,19 +5444,12 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) static void check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) { - unsigned long ideal_runtime, delta_exec; + unsigned long delta_exec; struct sched_entity *se; s64 delta; - /* - * When many tasks blow up the sched_period; it is possible that - * sched_slice() reports unusually large results (when many tasks are - * very light for example). Therefore impose a maximum. - */ - ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency); - delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; - if (delta_exec > ideal_runtime) { + if (delta_exec > curr->slice) { resched_curr(rq_of(cfs_rq)); /* * The current task ran long enough, ensure it doesn't get @@ -5243,7 +5473,7 @@ check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) if (delta < 0) return; - if (delta > ideal_runtime) + if (delta > curr->slice) resched_curr(rq_of(cfs_rq)); } @@ -5298,17 +5528,20 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); static struct sched_entity * pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) { - struct sched_entity *left = __pick_first_entity(cfs_rq); - struct sched_entity *se; + struct sched_entity *left, *se; - /* - * If curr is set we have to see if its left of the leftmost entity - * still in the tree, provided there was anything in the tree at all. - */ - if (!left || (curr && entity_before(curr, left))) - left = curr; + if (sched_feat(EEVDF)) { + /* + * Enabling NEXT_BUDDY will affect latency but not fairness. + */ + if (sched_feat(NEXT_BUDDY) && + cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) + return cfs_rq->next; + + return pick_eevdf(cfs_rq); + } - se = left; /* ideally we run the leftmost entity */ + se = left = pick_cfs(cfs_rq, curr); /* * Avoid running the skip buddy, if running something else can @@ -5401,7 +5634,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) return; #endif - if (cfs_rq->nr_running > 1) + if (!sched_feat(EEVDF) && cfs_rq->nr_running > 1) check_preempt_tick(cfs_rq, curr); } @@ -6445,13 +6678,12 @@ static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} static void hrtick_start_fair(struct rq *rq, struct task_struct *p) { struct sched_entity *se = &p->se; - struct cfs_rq *cfs_rq = cfs_rq_of(se); SCHED_WARN_ON(task_rq(p) != rq); if (rq->cfs.h_nr_running > 1) { - u64 slice = sched_slice(cfs_rq, se); u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; + u64 slice = se->slice; s64 delta = slice - ran; if (delta < 0) { @@ -8228,7 +8460,19 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ if (cse_is_idle != pse_is_idle) return; - update_curr(cfs_rq_of(se)); + cfs_rq = cfs_rq_of(se); + update_curr(cfs_rq); + + if (sched_feat(EEVDF)) { + /* + * XXX pick_eevdf(cfs_rq) != se ? + */ + if (pick_eevdf(cfs_rq) == pse) + goto preempt; + + return; + } + if (wakeup_preempt_entity(se, pse) == 1) { /* * Bias pick_next to pick the sched entity that is @@ -8474,7 +8718,7 @@ static void yield_task_fair(struct rq *rq) clear_buddies(cfs_rq, se); - if (curr->policy != SCHED_BATCH) { + if (sched_feat(EEVDF) || curr->policy != SCHED_BATCH) { update_rq_clock(rq); /* * Update run-time statistics of the 'current'. @@ -8487,6 +8731,8 @@ static void yield_task_fair(struct rq *rq) */ rq_clock_skip_update(rq); } + if (sched_feat(EEVDF)) + se->deadline += calc_delta_fair(se->slice, se); set_skip_buddy(se); } @@ -12363,8 +12609,8 @@ static void rq_offline_fair(struct rq *rq) static inline bool __entity_slice_used(struct sched_entity *se, int min_nr_tasks) { - u64 slice = sched_slice(cfs_rq_of(se), se); u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; + u64 slice = se->slice; return (rtime * min_nr_tasks > slice); } @@ -13059,7 +13305,7 @@ static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task * idle runqueue: */ if (rq->cfs.load.weight) - rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); + rr_interval = NS_TO_JIFFIES(se->slice); return rr_interval; } diff --git a/kernel/sched/features.h b/kernel/sched/features.h index 7958a10fe23b..60cce1e6f37b 100644 --- a/kernel/sched/features.h +++ b/kernel/sched/features.h @@ -13,6 +13,7 @@ SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true) * sleep+wake cycles. EEVDF placement strategy #1, #2 if disabled. */ SCHED_FEAT(PLACE_LAG, true) +SCHED_FEAT(PLACE_DEADLINE_INITIAL, true) /* * Prefer to schedule the task we woke last (assuming it failed @@ -103,3 +104,5 @@ SCHED_FEAT(LATENCY_WARN, false) SCHED_FEAT(ALT_PERIOD, true) SCHED_FEAT(BASE_SLICE, true) + +SCHED_FEAT(EEVDF, true) diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 52a0a4bde193..aa5b293ca4ed 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2505,9 +2505,10 @@ extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); extern const_debug unsigned int sysctl_sched_nr_migrate; extern const_debug unsigned int sysctl_sched_migration_cost; +extern unsigned int sysctl_sched_min_granularity; + #ifdef CONFIG_SCHED_DEBUG extern unsigned int sysctl_sched_latency; -extern unsigned int sysctl_sched_min_granularity; extern unsigned int sysctl_sched_idle_min_granularity; extern unsigned int sysctl_sched_wakeup_granularity; extern int sysctl_resched_latency_warn_ms; @@ -3487,5 +3488,6 @@ static inline void init_sched_mm_cid(struct task_struct *t) { } #endif extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); #endif /* _KERNEL_SCHED_SCHED_H */ |