diff options
author | Anton Altaparmakov <aia21@cantab.net> | 2005-05-05 10:15:25 +0100 |
---|---|---|
committer | Anton Altaparmakov <aia21@cantab.net> | 2005-05-05 10:15:25 +0100 |
commit | 899101aebb9ab3692aa8efe2805174ee0ee3edb5 (patch) | |
tree | eee4728a7d82c6a33409313b561296eb66d984ef | |
parent | 36050271e6ec19390184e1a83470eb7e725cad65 (diff) | |
parent | 897f5ab2cd733a77a2279268262919caa8154b9d (diff) | |
download | linux-899101aebb9ab3692aa8efe2805174ee0ee3edb5.tar.gz linux-899101aebb9ab3692aa8efe2805174ee0ee3edb5.tar.bz2 linux-899101aebb9ab3692aa8efe2805174ee0ee3edb5.zip |
Merge with /usr/src/ntfs-2.6.git
44 files changed, 8697 insertions, 2040 deletions
diff --git a/arch/ia64/Kconfig b/arch/ia64/Kconfig index 468dbe8a6b9c..ce13ad689d19 100644 --- a/arch/ia64/Kconfig +++ b/arch/ia64/Kconfig @@ -217,6 +217,16 @@ config IA64_SGI_SN_SIM If you are compiling a kernel that will run under SGI's IA-64 simulator (Medusa) then say Y, otherwise say N. +config IA64_SGI_SN_XP + tristate "Support communication between SGI SSIs" + depends on MSPEC + help + An SGI machine can be divided into multiple Single System + Images which act independently of each other and have + hardware based memory protection from the others. Enabling + this feature will allow for direct communication between SSIs + based on a network adapter and DMA messaging. + config FORCE_MAX_ZONEORDER int default "18" @@ -261,6 +271,15 @@ config HOTPLUG_CPU can be controlled through /sys/devices/system/cpu/cpu#. Say N if you want to disable CPU hotplug. +config SCHED_SMT + bool "SMT scheduler support" + depends on SMP + default off + help + Improves the CPU scheduler's decision making when dealing with + Intel IA64 chips with MultiThreading at a cost of slightly increased + overhead in some places. If unsure say N here. + config PREEMPT bool "Preemptible Kernel" help diff --git a/arch/ia64/configs/tiger_defconfig b/arch/ia64/configs/tiger_defconfig index 99830e8fc9ba..9086b789f6ac 100644 --- a/arch/ia64/configs/tiger_defconfig +++ b/arch/ia64/configs/tiger_defconfig @@ -1,7 +1,7 @@ # # Automatically generated make config: don't edit -# Linux kernel version: 2.6.11-rc2 -# Sat Jan 22 11:17:02 2005 +# Linux kernel version: 2.6.12-rc3 +# Tue May 3 15:55:04 2005 # # @@ -10,6 +10,7 @@ CONFIG_EXPERIMENTAL=y CONFIG_CLEAN_COMPILE=y CONFIG_LOCK_KERNEL=y +CONFIG_INIT_ENV_ARG_LIMIT=32 # # General setup @@ -21,24 +22,27 @@ CONFIG_POSIX_MQUEUE=y # CONFIG_BSD_PROCESS_ACCT is not set CONFIG_SYSCTL=y # CONFIG_AUDIT is not set -CONFIG_LOG_BUF_SHIFT=20 CONFIG_HOTPLUG=y CONFIG_KOBJECT_UEVENT=y CONFIG_IKCONFIG=y CONFIG_IKCONFIG_PROC=y +# CONFIG_CPUSETS is not set # CONFIG_EMBEDDED is not set CONFIG_KALLSYMS=y CONFIG_KALLSYMS_ALL=y # CONFIG_KALLSYMS_EXTRA_PASS is not set +CONFIG_PRINTK=y +CONFIG_BUG=y +CONFIG_BASE_FULL=y CONFIG_FUTEX=y CONFIG_EPOLL=y -# CONFIG_CC_OPTIMIZE_FOR_SIZE is not set CONFIG_SHMEM=y CONFIG_CC_ALIGN_FUNCTIONS=0 CONFIG_CC_ALIGN_LABELS=0 CONFIG_CC_ALIGN_LOOPS=0 CONFIG_CC_ALIGN_JUMPS=0 # CONFIG_TINY_SHMEM is not set +CONFIG_BASE_SMALL=0 # # Loadable module support @@ -85,6 +89,7 @@ CONFIG_FORCE_MAX_ZONEORDER=18 CONFIG_SMP=y CONFIG_NR_CPUS=4 CONFIG_HOTPLUG_CPU=y +# CONFIG_SCHED_SMT is not set # CONFIG_PREEMPT is not set CONFIG_HAVE_DEC_LOCK=y CONFIG_IA32_SUPPORT=y @@ -135,6 +140,7 @@ CONFIG_PCI_DOMAINS=y # CONFIG_PCI_MSI is not set CONFIG_PCI_LEGACY_PROC=y CONFIG_PCI_NAMES=y +# CONFIG_PCI_DEBUG is not set # # PCI Hotplug Support @@ -152,10 +158,6 @@ CONFIG_HOTPLUG_PCI_ACPI=m # CONFIG_PCCARD is not set # -# PC-card bridges -# - -# # Device Drivers # @@ -195,9 +197,10 @@ CONFIG_BLK_DEV_CRYPTOLOOP=m CONFIG_BLK_DEV_NBD=m # CONFIG_BLK_DEV_SX8 is not set # CONFIG_BLK_DEV_UB is not set -CONFIG_BLK_DEV_RAM=m +CONFIG_BLK_DEV_RAM=y CONFIG_BLK_DEV_RAM_COUNT=16 CONFIG_BLK_DEV_RAM_SIZE=4096 +CONFIG_BLK_DEV_INITRD=y CONFIG_INITRAMFS_SOURCE="" # CONFIG_CDROM_PKTCDVD is not set @@ -313,7 +316,6 @@ CONFIG_SCSI_FC_ATTRS=y # CONFIG_SCSI_BUSLOGIC is not set # CONFIG_SCSI_DMX3191D is not set # CONFIG_SCSI_EATA is not set -# CONFIG_SCSI_EATA_PIO is not set # CONFIG_SCSI_FUTURE_DOMAIN is not set # CONFIG_SCSI_GDTH is not set # CONFIG_SCSI_IPS is not set @@ -325,7 +327,6 @@ CONFIG_SCSI_SYM53C8XX_DEFAULT_TAGS=16 CONFIG_SCSI_SYM53C8XX_MAX_TAGS=64 # CONFIG_SCSI_SYM53C8XX_IOMAPPED is not set # CONFIG_SCSI_IPR is not set -# CONFIG_SCSI_QLOGIC_ISP is not set CONFIG_SCSI_QLOGIC_FC=y # CONFIG_SCSI_QLOGIC_FC_FIRMWARE is not set CONFIG_SCSI_QLOGIC_1280=y @@ -336,6 +337,7 @@ CONFIG_SCSI_QLA22XX=m CONFIG_SCSI_QLA2300=m CONFIG_SCSI_QLA2322=m # CONFIG_SCSI_QLA6312 is not set +# CONFIG_SCSI_LPFC is not set # CONFIG_SCSI_DC395x is not set # CONFIG_SCSI_DC390T is not set # CONFIG_SCSI_DEBUG is not set @@ -358,6 +360,7 @@ CONFIG_DM_CRYPT=m CONFIG_DM_SNAPSHOT=m CONFIG_DM_MIRROR=m CONFIG_DM_ZERO=m +# CONFIG_DM_MULTIPATH is not set # # Fusion MPT device support @@ -386,7 +389,6 @@ CONFIG_NET=y # CONFIG_PACKET=y # CONFIG_PACKET_MMAP is not set -CONFIG_NETLINK_DEV=y CONFIG_UNIX=y # CONFIG_NET_KEY is not set CONFIG_INET=y @@ -446,7 +448,6 @@ CONFIG_DUMMY=m # CONFIG_BONDING is not set # CONFIG_EQUALIZER is not set # CONFIG_TUN is not set -# CONFIG_ETHERTAP is not set # # ARCnet devices @@ -484,7 +485,6 @@ CONFIG_NET_PCI=y # CONFIG_DGRS is not set CONFIG_EEPRO100=m CONFIG_E100=m -# CONFIG_E100_NAPI is not set # CONFIG_FEALNX is not set # CONFIG_NATSEMI is not set # CONFIG_NE2K_PCI is not set @@ -566,25 +566,6 @@ CONFIG_INPUT_MOUSEDEV_SCREEN_Y=768 # CONFIG_INPUT_EVBUG is not set # -# Input I/O drivers -# -CONFIG_GAMEPORT=m -CONFIG_SOUND_GAMEPORT=m -# CONFIG_GAMEPORT_NS558 is not set -# CONFIG_GAMEPORT_L4 is not set -# CONFIG_GAMEPORT_EMU10K1 is not set -# CONFIG_GAMEPORT_VORTEX is not set -# CONFIG_GAMEPORT_FM801 is not set -# CONFIG_GAMEPORT_CS461X is not set -CONFIG_SERIO=y -CONFIG_SERIO_I8042=y -# CONFIG_SERIO_SERPORT is not set -# CONFIG_SERIO_CT82C710 is not set -# CONFIG_SERIO_PCIPS2 is not set -CONFIG_SERIO_LIBPS2=y -# CONFIG_SERIO_RAW is not set - -# # Input Device Drivers # CONFIG_INPUT_KEYBOARD=y @@ -602,6 +583,24 @@ CONFIG_MOUSE_PS2=y # CONFIG_INPUT_MISC is not set # +# Hardware I/O ports +# +CONFIG_SERIO=y +CONFIG_SERIO_I8042=y +# CONFIG_SERIO_SERPORT is not set +# CONFIG_SERIO_PCIPS2 is not set +CONFIG_SERIO_LIBPS2=y +# CONFIG_SERIO_RAW is not set +CONFIG_GAMEPORT=m +# CONFIG_GAMEPORT_NS558 is not set +# CONFIG_GAMEPORT_L4 is not set +# CONFIG_GAMEPORT_EMU10K1 is not set +# CONFIG_GAMEPORT_VORTEX is not set +# CONFIG_GAMEPORT_FM801 is not set +# CONFIG_GAMEPORT_CS461X is not set +CONFIG_SOUND_GAMEPORT=m + +# # Character devices # CONFIG_VT=y @@ -615,6 +614,8 @@ CONFIG_SERIAL_NONSTANDARD=y # CONFIG_SYNCLINK is not set # CONFIG_SYNCLINKMP is not set # CONFIG_N_HDLC is not set +# CONFIG_SPECIALIX is not set +# CONFIG_SX is not set # CONFIG_STALDRV is not set # @@ -635,6 +636,7 @@ CONFIG_SERIAL_8250_SHARE_IRQ=y # CONFIG_SERIAL_CORE=y CONFIG_SERIAL_CORE_CONSOLE=y +# CONFIG_SERIAL_JSM is not set CONFIG_UNIX98_PTYS=y CONFIG_LEGACY_PTYS=y CONFIG_LEGACY_PTY_COUNT=256 @@ -670,6 +672,12 @@ CONFIG_HPET=y # CONFIG_HPET_RTC_IRQ is not set CONFIG_HPET_MMAP=y CONFIG_MAX_RAW_DEVS=256 +# CONFIG_HANGCHECK_TIMER is not set + +# +# TPM devices +# +# CONFIG_TCG_TPM is not set # # I2C support @@ -705,7 +713,6 @@ CONFIG_MAX_RAW_DEVS=256 # CONFIG_VGA_CONSOLE=y CONFIG_DUMMY_CONSOLE=y -# CONFIG_BACKLIGHT_LCD_SUPPORT is not set # # Sound @@ -715,6 +722,8 @@ CONFIG_DUMMY_CONSOLE=y # # USB support # +CONFIG_USB_ARCH_HAS_HCD=y +CONFIG_USB_ARCH_HAS_OHCI=y CONFIG_USB=y # CONFIG_USB_DEBUG is not set @@ -726,8 +735,6 @@ CONFIG_USB_DEVICEFS=y # CONFIG_USB_DYNAMIC_MINORS is not set # CONFIG_USB_SUSPEND is not set # CONFIG_USB_OTG is not set -CONFIG_USB_ARCH_HAS_HCD=y -CONFIG_USB_ARCH_HAS_OHCI=y # # USB Host Controller Drivers @@ -736,6 +743,8 @@ CONFIG_USB_EHCI_HCD=m # CONFIG_USB_EHCI_SPLIT_ISO is not set # CONFIG_USB_EHCI_ROOT_HUB_TT is not set CONFIG_USB_OHCI_HCD=m +# CONFIG_USB_OHCI_BIG_ENDIAN is not set +CONFIG_USB_OHCI_LITTLE_ENDIAN=y CONFIG_USB_UHCI_HCD=y # CONFIG_USB_SL811_HCD is not set @@ -751,12 +760,11 @@ CONFIG_USB_UHCI_HCD=y # CONFIG_USB_STORAGE=m # CONFIG_USB_STORAGE_DEBUG is not set -# CONFIG_USB_STORAGE_RW_DETECT is not set # CONFIG_USB_STORAGE_DATAFAB is not set # CONFIG_USB_STORAGE_FREECOM is not set # CONFIG_USB_STORAGE_ISD200 is not set # CONFIG_USB_STORAGE_DPCM is not set -# CONFIG_USB_STORAGE_HP8200e is not set +# CONFIG_USB_STORAGE_USBAT is not set # CONFIG_USB_STORAGE_SDDR09 is not set # CONFIG_USB_STORAGE_SDDR55 is not set # CONFIG_USB_STORAGE_JUMPSHOT is not set @@ -800,6 +808,7 @@ CONFIG_USB_HIDINPUT=y # CONFIG_USB_PEGASUS is not set # CONFIG_USB_RTL8150 is not set # CONFIG_USB_USBNET is not set +# CONFIG_USB_MON is not set # # USB port drivers @@ -824,6 +833,7 @@ CONFIG_USB_HIDINPUT=y # CONFIG_USB_PHIDGETKIT is not set # CONFIG_USB_PHIDGETSERVO is not set # CONFIG_USB_IDMOUSE is not set +# CONFIG_USB_SISUSBVGA is not set # CONFIG_USB_TEST is not set # @@ -867,7 +877,12 @@ CONFIG_REISERFS_FS_POSIX_ACL=y CONFIG_REISERFS_FS_SECURITY=y # CONFIG_JFS_FS is not set CONFIG_FS_POSIX_ACL=y + +# +# XFS support +# CONFIG_XFS_FS=y +CONFIG_XFS_EXPORT=y # CONFIG_XFS_RT is not set # CONFIG_XFS_QUOTA is not set # CONFIG_XFS_SECURITY is not set @@ -945,7 +960,7 @@ CONFIG_NFSD_V4=y CONFIG_NFSD_TCP=y CONFIG_LOCKD=m CONFIG_LOCKD_V4=y -CONFIG_EXPORTFS=m +CONFIG_EXPORTFS=y CONFIG_SUNRPC=m CONFIG_SUNRPC_GSS=m CONFIG_RPCSEC_GSS_KRB5=m @@ -1042,8 +1057,10 @@ CONFIG_GENERIC_IRQ_PROBE=y # # Kernel hacking # +# CONFIG_PRINTK_TIME is not set CONFIG_DEBUG_KERNEL=y CONFIG_MAGIC_SYSRQ=y +CONFIG_LOG_BUF_SHIFT=20 # CONFIG_SCHEDSTATS is not set # CONFIG_DEBUG_SLAB is not set # CONFIG_DEBUG_SPINLOCK is not set @@ -1077,6 +1094,7 @@ CONFIG_CRYPTO_MD5=m # CONFIG_CRYPTO_SHA256 is not set # CONFIG_CRYPTO_SHA512 is not set # CONFIG_CRYPTO_WP512 is not set +# CONFIG_CRYPTO_TGR192 is not set CONFIG_CRYPTO_DES=m # CONFIG_CRYPTO_BLOWFISH is not set # CONFIG_CRYPTO_TWOFISH is not set diff --git a/arch/ia64/hp/common/sba_iommu.c b/arch/ia64/hp/common/sba_iommu.c index 6a8fcba7a853..b8db6e3e5e81 100644 --- a/arch/ia64/hp/common/sba_iommu.c +++ b/arch/ia64/hp/common/sba_iommu.c @@ -1944,43 +1944,17 @@ sba_connect_bus(struct pci_bus *bus) static void __init sba_map_ioc_to_node(struct ioc *ioc, acpi_handle handle) { - struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; - union acpi_object *obj; - acpi_handle phandle; unsigned int node; + int pxm; ioc->node = MAX_NUMNODES; - /* - * Check for a _PXM on this node first. We don't typically see - * one here, so we'll end up getting it from the parent. - */ - if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PXM", NULL, &buffer))) { - if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) - return; - - /* Reset the acpi buffer */ - buffer.length = ACPI_ALLOCATE_BUFFER; - buffer.pointer = NULL; - - if (ACPI_FAILURE(acpi_evaluate_object(phandle, "_PXM", NULL, - &buffer))) - return; - } + pxm = acpi_get_pxm(handle); - if (!buffer.length || !buffer.pointer) + if (pxm < 0) return; - obj = buffer.pointer; - - if (obj->type != ACPI_TYPE_INTEGER || - obj->integer.value >= MAX_PXM_DOMAINS) { - acpi_os_free(buffer.pointer); - return; - } - - node = pxm_to_nid_map[obj->integer.value]; - acpi_os_free(buffer.pointer); + node = pxm_to_nid_map[pxm]; if (node >= MAX_NUMNODES || !node_online(node)) return; diff --git a/arch/ia64/kernel/acpi.c b/arch/ia64/kernel/acpi.c index a8e99c56a768..72dfd9e7de0f 100644 --- a/arch/ia64/kernel/acpi.c +++ b/arch/ia64/kernel/acpi.c @@ -779,7 +779,7 @@ acpi_map_iosapic (acpi_handle handle, u32 depth, void *context, void **ret) union acpi_object *obj; struct acpi_table_iosapic *iosapic; unsigned int gsi_base; - int node; + int pxm, node; /* Only care about objects w/ a method that returns the MADT */ if (ACPI_FAILURE(acpi_evaluate_object(handle, "_MAT", NULL, &buffer))) @@ -805,29 +805,16 @@ acpi_map_iosapic (acpi_handle handle, u32 depth, void *context, void **ret) gsi_base = iosapic->global_irq_base; acpi_os_free(buffer.pointer); - buffer.length = ACPI_ALLOCATE_BUFFER; - buffer.pointer = NULL; /* - * OK, it's an IOSAPIC MADT entry, look for a _PXM method to tell + * OK, it's an IOSAPIC MADT entry, look for a _PXM value to tell * us which node to associate this with. */ - if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PXM", NULL, &buffer))) - return AE_OK; - - if (!buffer.length || !buffer.pointer) - return AE_OK; - - obj = buffer.pointer; - - if (obj->type != ACPI_TYPE_INTEGER || - obj->integer.value >= MAX_PXM_DOMAINS) { - acpi_os_free(buffer.pointer); + pxm = acpi_get_pxm(handle); + if (pxm < 0) return AE_OK; - } - node = pxm_to_nid_map[obj->integer.value]; - acpi_os_free(buffer.pointer); + node = pxm_to_nid_map[pxm]; if (node >= MAX_NUMNODES || !node_online(node) || cpus_empty(node_to_cpumask(node))) diff --git a/arch/ia64/kernel/entry.S b/arch/ia64/kernel/entry.S index d3f093820bc7..81c45d447394 100644 --- a/arch/ia64/kernel/entry.S +++ b/arch/ia64/kernel/entry.S @@ -782,7 +782,7 @@ GLOBAL_ENTRY(ia64_ret_from_ia32_execve) st8.spill [r2]=r8 // store return value in slot for r8 and set unat bit .mem.offset 8,0 st8.spill [r3]=r0 // clear error indication in slot for r10 and set unat bit -END(ia64_ret_from_ia32_execve_syscall) +END(ia64_ret_from_ia32_execve) // fall through #endif /* CONFIG_IA32_SUPPORT */ GLOBAL_ENTRY(ia64_leave_kernel) diff --git a/arch/ia64/kernel/fsys.S b/arch/ia64/kernel/fsys.S index 0d8650f7fce7..4f3cdef75797 100644 --- a/arch/ia64/kernel/fsys.S +++ b/arch/ia64/kernel/fsys.S @@ -611,8 +611,10 @@ GLOBAL_ENTRY(fsys_bubble_down) movl r2=ia64_ret_from_syscall ;; mov rp=r2 // set the real return addr - tbit.z p8,p0=r3,TIF_SYSCALL_TRACE + and r3=_TIF_SYSCALL_TRACEAUDIT,r3 ;; + cmp.eq p8,p0=r3,r0 + (p10) br.cond.spnt.many ia64_ret_from_syscall // p10==true means out registers are more than 8 (p8) br.call.sptk.many b6=b6 // ignore this return addr br.cond.sptk ia64_trace_syscall diff --git a/arch/ia64/kernel/mca_drv.c b/arch/ia64/kernel/mca_drv.c index ab478172c349..abc0113a821d 100644 --- a/arch/ia64/kernel/mca_drv.c +++ b/arch/ia64/kernel/mca_drv.c @@ -132,8 +132,7 @@ mca_handler_bh(unsigned long paddr) spin_unlock(&mca_bh_lock); /* This process is about to be killed itself */ - force_sig(SIGKILL, current); - schedule(); + do_exit(SIGKILL); } /** @@ -439,6 +438,7 @@ recover_from_read_error(slidx_table_t *slidx, peidx_table_t *peidx, pal_bus_chec psr2 = (struct ia64_psr *)&pmsa->pmsa_ipsr; psr2->cpl = 0; psr2->ri = 0; + psr2->i = 0; return 1; } diff --git a/arch/ia64/kernel/mca_drv_asm.S b/arch/ia64/kernel/mca_drv_asm.S index bcfa05acc561..2d7e0217638d 100644 --- a/arch/ia64/kernel/mca_drv_asm.S +++ b/arch/ia64/kernel/mca_drv_asm.S @@ -10,6 +10,7 @@ #include <asm/asmmacro.h> #include <asm/processor.h> +#include <asm/ptrace.h> GLOBAL_ENTRY(mca_handler_bhhook) invala // clear RSE ? @@ -20,12 +21,21 @@ GLOBAL_ENTRY(mca_handler_bhhook) ;; alloc r16=ar.pfs,0,2,1,0 // make a new frame ;; + mov ar.rsc=0 + ;; mov r13=IA64_KR(CURRENT) // current task pointer ;; - adds r12=IA64_TASK_THREAD_KSP_OFFSET,r13 + mov r2=r13 + ;; + addl r22=IA64_RBS_OFFSET,r2 + ;; + mov ar.bspstore=r22 ;; - ld8 r12=[r12] // stack pointer + addl sp=IA64_STK_OFFSET-IA64_PT_REGS_SIZE,r2 ;; + adds r2=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 + ;; + st1 [r2]=r0 // clear current->thread.on_ustack flag mov loc0=r16 movl loc1=mca_handler_bh // recovery C function ;; @@ -34,7 +44,9 @@ GLOBAL_ENTRY(mca_handler_bhhook) ;; mov loc1=rp ;; - br.call.sptk.many rp=b6 // not return ... + ssm psr.i + ;; + br.call.sptk.many rp=b6 // does not return ... ;; mov ar.pfs=loc0 mov rp=loc1 diff --git a/arch/ia64/kernel/perfmon.c b/arch/ia64/kernel/perfmon.c index 376fcbc3f8da..71c101601e3e 100644 --- a/arch/ia64/kernel/perfmon.c +++ b/arch/ia64/kernel/perfmon.c @@ -1265,6 +1265,8 @@ out: } EXPORT_SYMBOL(pfm_unregister_buffer_fmt); +extern void update_pal_halt_status(int); + static int pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) { @@ -1311,6 +1313,11 @@ pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) is_syswide, cpu)); + /* + * disable default_idle() to go to PAL_HALT + */ + update_pal_halt_status(0); + UNLOCK_PFS(flags); return 0; @@ -1366,6 +1373,12 @@ pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) is_syswide, cpu)); + /* + * if possible, enable default_idle() to go into PAL_HALT + */ + if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0) + update_pal_halt_status(1); + UNLOCK_PFS(flags); return 0; @@ -4202,7 +4215,7 @@ pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", req->load_pid, ctx->ctx_state)); - return -EINVAL; + return -EBUSY; } DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); @@ -4704,16 +4717,26 @@ recheck: if (task == current || ctx->ctx_fl_system) return 0; /* - * if context is UNLOADED we are safe to go - */ - if (state == PFM_CTX_UNLOADED) return 0; - - /* - * no command can operate on a zombie context + * we are monitoring another thread */ - if (state == PFM_CTX_ZOMBIE) { - DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); - return -EINVAL; + switch(state) { + case PFM_CTX_UNLOADED: + /* + * if context is UNLOADED we are safe to go + */ + return 0; + case PFM_CTX_ZOMBIE: + /* + * no command can operate on a zombie context + */ + DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); + return -EINVAL; + case PFM_CTX_MASKED: + /* + * PMU state has been saved to software even though + * the thread may still be running. + */ + if (cmd != PFM_UNLOAD_CONTEXT) return 0; } /* diff --git a/arch/ia64/kernel/process.c b/arch/ia64/kernel/process.c index 7c43aea5f7f7..ebb71f3d6d19 100644 --- a/arch/ia64/kernel/process.c +++ b/arch/ia64/kernel/process.c @@ -50,7 +50,7 @@ #include "sigframe.h" void (*ia64_mark_idle)(int); -static cpumask_t cpu_idle_map; +static DEFINE_PER_CPU(unsigned int, cpu_idle_state); unsigned long boot_option_idle_override = 0; EXPORT_SYMBOL(boot_option_idle_override); @@ -173,7 +173,9 @@ do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall ia64_do_signal(oldset, scr, in_syscall); } -static int pal_halt = 1; +static int pal_halt = 1; +static int can_do_pal_halt = 1; + static int __init nohalt_setup(char * str) { pal_halt = 0; @@ -181,16 +183,20 @@ static int __init nohalt_setup(char * str) } __setup("nohalt", nohalt_setup); +void +update_pal_halt_status(int status) +{ + can_do_pal_halt = pal_halt && status; +} + /* * We use this if we don't have any better idle routine.. */ void default_idle (void) { - unsigned long pmu_active = ia64_getreg(_IA64_REG_PSR) & (IA64_PSR_PP | IA64_PSR_UP); - while (!need_resched()) - if (pal_halt && !pmu_active) + if (can_do_pal_halt) safe_halt(); else cpu_relax(); @@ -223,20 +229,31 @@ static inline void play_dead(void) } #endif /* CONFIG_HOTPLUG_CPU */ - void cpu_idle_wait(void) { - int cpu; - cpumask_t map; + unsigned int cpu, this_cpu = get_cpu(); + cpumask_t map; - for_each_online_cpu(cpu) - cpu_set(cpu, cpu_idle_map); + set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); + put_cpu(); - wmb(); - do { - ssleep(1); - cpus_and(map, cpu_idle_map, cpu_online_map); - } while (!cpus_empty(map)); + cpus_clear(map); + for_each_online_cpu(cpu) { + per_cpu(cpu_idle_state, cpu) = 1; + cpu_set(cpu, map); + } + + __get_cpu_var(cpu_idle_state) = 0; + + wmb(); + do { + ssleep(1); + for_each_online_cpu(cpu) { + if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) + cpu_clear(cpu, map); + } + cpus_and(map, map, cpu_online_map); + } while (!cpus_empty(map)); } EXPORT_SYMBOL_GPL(cpu_idle_wait); @@ -244,7 +261,6 @@ void __attribute__((noreturn)) cpu_idle (void) { void (*mark_idle)(int) = ia64_mark_idle; - int cpu = smp_processor_id(); /* endless idle loop with no priority at all */ while (1) { @@ -255,12 +271,13 @@ cpu_idle (void) while (!need_resched()) { void (*idle)(void); + if (__get_cpu_var(cpu_idle_state)) + __get_cpu_var(cpu_idle_state) = 0; + + rmb(); if (mark_idle) (*mark_idle)(1); - if (cpu_isset(cpu, cpu_idle_map)) - cpu_clear(cpu, cpu_idle_map); - rmb(); idle = pm_idle; if (!idle) idle = default_idle; diff --git a/arch/ia64/kernel/signal.c b/arch/ia64/kernel/signal.c index 6891d86937d9..499b7e5317cf 100644 --- a/arch/ia64/kernel/signal.c +++ b/arch/ia64/kernel/signal.c @@ -224,7 +224,8 @@ ia64_rt_sigreturn (struct sigscratch *scr) * could be corrupted. */ retval = (long) &ia64_leave_kernel; - if (test_thread_flag(TIF_SYSCALL_TRACE)) + if (test_thread_flag(TIF_SYSCALL_TRACE) + || test_thread_flag(TIF_SYSCALL_AUDIT)) /* * strace expects to be notified after sigreturn returns even though the * context to which we return may not be in the middle of a syscall. diff --git a/arch/ia64/lib/flush.S b/arch/ia64/lib/flush.S index 29c802b19669..a1af9146cfdb 100644 --- a/arch/ia64/lib/flush.S +++ b/arch/ia64/lib/flush.S @@ -1,8 +1,8 @@ /* * Cache flushing routines. * - * Copyright (C) 1999-2001 Hewlett-Packard Co - * Copyright (C) 1999-2001 David Mosberger-Tang <davidm@hpl.hp.com> + * Copyright (C) 1999-2001, 2005 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> */ #include <asm/asmmacro.h> #include <asm/page.h> @@ -26,7 +26,7 @@ GLOBAL_ENTRY(flush_icache_range) mov ar.lc=r8 ;; -.Loop: fc in0 // issuable on M0 only +.Loop: fc.i in0 // issuable on M2 only add in0=32,in0 br.cloop.sptk.few .Loop ;; diff --git a/arch/ia64/lib/memcpy_mck.S b/arch/ia64/lib/memcpy_mck.S index 3c2cd2f04db9..6f308e62c137 100644 --- a/arch/ia64/lib/memcpy_mck.S +++ b/arch/ia64/lib/memcpy_mck.S @@ -75,6 +75,7 @@ GLOBAL_ENTRY(memcpy) mov f6=f0 br.cond.sptk .common_code ;; +END(memcpy) GLOBAL_ENTRY(__copy_user) .prologue // check dest alignment @@ -524,7 +525,6 @@ EK(.ex_handler, (p17) st8 [dst1]=r39,8); \ #undef B #undef C #undef D -END(memcpy) /* * Due to lack of local tag support in gcc 2.x assembler, it is not clear which diff --git a/arch/ia64/lib/memset.S b/arch/ia64/lib/memset.S index bd8cf907fe22..f26c16aefb1c 100644 --- a/arch/ia64/lib/memset.S +++ b/arch/ia64/lib/memset.S @@ -57,10 +57,10 @@ GLOBAL_ENTRY(memset) { .mmi .prologue alloc tmp = ar.pfs, 3, 0, 0, 0 - .body lfetch.nt1 [dest] // .save ar.lc, save_lc mov.i save_lc = ar.lc + .body } { .mmi mov ret0 = dest // return value cmp.ne p_nz, p_zr = value, r0 // use stf.spill if value is zero diff --git a/arch/ia64/sn/kernel/Makefile b/arch/ia64/sn/kernel/Makefile index 4f381fb25049..4351c4ff9845 100644 --- a/arch/ia64/sn/kernel/Makefile +++ b/arch/ia64/sn/kernel/Makefile @@ -4,10 +4,15 @@ # License. See the file "COPYING" in the main directory of this archive # for more details. # -# Copyright (C) 1999,2001-2003 Silicon Graphics, Inc. All Rights Reserved. +# Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All Rights Reserved. # obj-y += setup.o bte.o bte_error.o irq.o mca.o idle.o \ huberror.o io_init.o iomv.o klconflib.o sn2/ obj-$(CONFIG_IA64_GENERIC) += machvec.o obj-$(CONFIG_SGI_TIOCX) += tiocx.o +obj-$(CONFIG_IA64_SGI_SN_XP) += xp.o +xp-y := xp_main.o xp_nofault.o +obj-$(CONFIG_IA64_SGI_SN_XP) += xpc.o +xpc-y := xpc_main.o xpc_channel.o xpc_partition.o +obj-$(CONFIG_IA64_SGI_SN_XP) += xpnet.o diff --git a/arch/ia64/sn/kernel/io_init.c b/arch/ia64/sn/kernel/io_init.c index 18160a06a8c9..9e07f5463f21 100644 --- a/arch/ia64/sn/kernel/io_init.c +++ b/arch/ia64/sn/kernel/io_init.c @@ -174,6 +174,12 @@ static void sn_fixup_ionodes(void) if (status) continue; + /* Attach the error interrupt handlers */ + if (nasid & 1) + ice_error_init(hubdev); + else + hub_error_init(hubdev); + for (widget = 0; widget <= HUB_WIDGET_ID_MAX; widget++) hubdev->hdi_xwidget_info[widget].xwi_hubinfo = hubdev; @@ -211,10 +217,6 @@ static void sn_fixup_ionodes(void) sn_flush_device_list; } - if (!(i & 1)) - hub_error_init(hubdev); - else - ice_error_init(hubdev); } } diff --git a/arch/ia64/sn/kernel/mca.c b/arch/ia64/sn/kernel/mca.c index 857774bb2c9a..6546db6abdba 100644 --- a/arch/ia64/sn/kernel/mca.c +++ b/arch/ia64/sn/kernel/mca.c @@ -37,6 +37,11 @@ static u64 *sn_oemdata_size, sn_oemdata_bufsize; * This function is the callback routine that SAL calls to log error * info for platform errors. buf is appended to sn_oemdata, resizing as * required. + * Note: this is a SAL to OS callback, running under the same rules as the SAL + * code. SAL calls are run with preempt disabled so this routine must not + * sleep. vmalloc can sleep so print_hook cannot resize the output buffer + * itself, instead it must set the required size and return to let the caller + * resize the buffer then redrive the SAL call. */ static int print_hook(const char *fmt, ...) { @@ -47,18 +52,8 @@ static int print_hook(const char *fmt, ...) vsnprintf(buf, sizeof(buf), fmt, args); va_end(args); len = strlen(buf); - while (*sn_oemdata_size + len + 1 > sn_oemdata_bufsize) { - u8 *newbuf = vmalloc(sn_oemdata_bufsize += 1000); - if (!newbuf) { - printk(KERN_ERR "%s: unable to extend sn_oemdata\n", - __FUNCTION__); - return 0; - } - memcpy(newbuf, *sn_oemdata, *sn_oemdata_size); - vfree(*sn_oemdata); - *sn_oemdata = newbuf; - } - memcpy(*sn_oemdata + *sn_oemdata_size, buf, len + 1); + if (*sn_oemdata_size + len <= sn_oemdata_bufsize) + memcpy(*sn_oemdata + *sn_oemdata_size, buf, len); *sn_oemdata_size += len; return 0; } @@ -98,7 +93,20 @@ sn_platform_plat_specific_err_print(const u8 * sect_header, u8 ** oemdata, sn_oemdata = oemdata; sn_oemdata_size = oemdata_size; sn_oemdata_bufsize = 0; - ia64_sn_plat_specific_err_print(print_hook, (char *)sect_header); + *sn_oemdata_size = PAGE_SIZE; /* first guess at how much data will be generated */ + while (*sn_oemdata_size > sn_oemdata_bufsize) { + u8 *newbuf = vmalloc(*sn_oemdata_size); + if (!newbuf) { + printk(KERN_ERR "%s: unable to extend sn_oemdata\n", + __FUNCTION__); + return 1; + } + vfree(*sn_oemdata); + *sn_oemdata = newbuf; + sn_oemdata_bufsize = *sn_oemdata_size; + *sn_oemdata_size = 0; + ia64_sn_plat_specific_err_print(print_hook, (char *)sect_header); + } up(&sn_oemdata_mutex); return 0; } diff --git a/arch/ia64/sn/kernel/setup.c b/arch/ia64/sn/kernel/setup.c index d35f2a6f9c94..4fb44984afe6 100644 --- a/arch/ia64/sn/kernel/setup.c +++ b/arch/ia64/sn/kernel/setup.c @@ -3,7 +3,7 @@ * License. See the file "COPYING" in the main directory of this archive * for more details. * - * Copyright (C) 1999,2001-2004 Silicon Graphics, Inc. All rights reserved. + * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved. */ #include <linux/config.h> @@ -73,6 +73,12 @@ EXPORT_SYMBOL(sn_rtc_cycles_per_second); DEFINE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); EXPORT_PER_CPU_SYMBOL(__sn_hub_info); +DEFINE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]); +EXPORT_PER_CPU_SYMBOL(__sn_cnodeid_to_nasid); + +DEFINE_PER_CPU(struct nodepda_s *, __sn_nodepda); +EXPORT_PER_CPU_SYMBOL(__sn_nodepda); + partid_t sn_partid = -1; EXPORT_SYMBOL(sn_partid); char sn_system_serial_number_string[128]; @@ -373,11 +379,11 @@ static void __init sn_init_pdas(char **cmdline_p) { cnodeid_t cnode; - memset(pda->cnodeid_to_nasid_table, -1, - sizeof(pda->cnodeid_to_nasid_table)); + memset(sn_cnodeid_to_nasid, -1, + sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); for_each_online_node(cnode) - pda->cnodeid_to_nasid_table[cnode] = - pxm_to_nasid(nid_to_pxm_map[cnode]); + sn_cnodeid_to_nasid[cnode] = + pxm_to_nasid(nid_to_pxm_map[cnode]); numionodes = num_online_nodes(); scan_for_ionodes(); @@ -477,7 +483,8 @@ void __init sn_cpu_init(void) cnode = nasid_to_cnodeid(nasid); - pda->p_nodepda = nodepdaindr[cnode]; + sn_nodepda = nodepdaindr[cnode]; + pda->led_address = (typeof(pda->led_address)) (LED0 + (slice << LED_CPU_SHIFT)); pda->led_state = LED_ALWAYS_SET; @@ -486,15 +493,18 @@ void __init sn_cpu_init(void) pda->idle_flag = 0; if (cpuid != 0) { - memcpy(pda->cnodeid_to_nasid_table, - pdacpu(0)->cnodeid_to_nasid_table, - sizeof(pda->cnodeid_to_nasid_table)); + /* copy cpu 0's sn_cnodeid_to_nasid table to this cpu's */ + memcpy(sn_cnodeid_to_nasid, + (&per_cpu(__sn_cnodeid_to_nasid, 0)), + sizeof(__ia64_per_cpu_var(__sn_cnodeid_to_nasid))); } /* * Check for WARs. * Only needs to be done once, on BSP. - * Has to be done after loop above, because it uses pda.cnodeid_to_nasid_table[i]. + * Has to be done after loop above, because it uses this cpu's + * sn_cnodeid_to_nasid table which was just initialized if this + * isn't cpu 0. * Has to be done before assignment below. */ if (!wars_have_been_checked) { @@ -580,8 +590,7 @@ static void __init scan_for_ionodes(void) brd = find_lboard_any(brd, KLTYPE_SNIA); while (brd) { - pda->cnodeid_to_nasid_table[numionodes] = - brd->brd_nasid; + sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid; physical_node_map[brd->brd_nasid] = numionodes; root_lboard[numionodes] = brd; numionodes++; @@ -602,8 +611,7 @@ static void __init scan_for_ionodes(void) root_lboard[nasid_to_cnodeid(nasid)], KLTYPE_TIO); while (brd) { - pda->cnodeid_to_nasid_table[numionodes] = - brd->brd_nasid; + sn_cnodeid_to_nasid[numionodes] = brd->brd_nasid; physical_node_map[brd->brd_nasid] = numionodes; root_lboard[numionodes] = brd; numionodes++; @@ -614,7 +622,6 @@ static void __init scan_for_ionodes(void) brd = find_lboard_any(brd, KLTYPE_TIO); } } - } int @@ -623,7 +630,8 @@ nasid_slice_to_cpuid(int nasid, int slice) long cpu; for (cpu=0; cpu < NR_CPUS; cpu++) - if (nodepda->phys_cpuid[cpu].nasid == nasid && nodepda->phys_cpuid[cpu].slice == slice) + if (cpuid_to_nasid(cpu) == nasid && + cpuid_to_slice(cpu) == slice) return cpu; return -1; diff --git a/arch/ia64/sn/kernel/tiocx.c b/arch/ia64/sn/kernel/tiocx.c index 66190d7e492d..ab9b5f35c2a7 100644 --- a/arch/ia64/sn/kernel/tiocx.c +++ b/arch/ia64/sn/kernel/tiocx.c @@ -21,6 +21,8 @@ #include <asm/sn/types.h> #include <asm/sn/shubio.h> #include <asm/sn/tiocx.h> +#include <asm/sn/l1.h> +#include <asm/sn/module.h> #include "tio.h" #include "xtalk/xwidgetdev.h" #include "xtalk/hubdev.h" @@ -308,14 +310,12 @@ void tiocx_irq_free(struct sn_irq_info *sn_irq_info) } } -uint64_t -tiocx_dma_addr(uint64_t addr) +uint64_t tiocx_dma_addr(uint64_t addr) { return PHYS_TO_TIODMA(addr); } -uint64_t -tiocx_swin_base(int nasid) +uint64_t tiocx_swin_base(int nasid) { return TIO_SWIN_BASE(nasid, TIOCX_CORELET); } @@ -330,19 +330,6 @@ EXPORT_SYMBOL(tiocx_bus_type); EXPORT_SYMBOL(tiocx_dma_addr); EXPORT_SYMBOL(tiocx_swin_base); -static uint64_t tiocx_get_hubdev_info(u64 handle, u64 address) -{ - - struct ia64_sal_retval ret_stuff; - ret_stuff.status = 0; - ret_stuff.v0 = 0; - - ia64_sal_oemcall_nolock(&ret_stuff, - SN_SAL_IOIF_GET_HUBDEV_INFO, - handle, address, 0, 0, 0, 0, 0); - return ret_stuff.v0; -} - static void tio_conveyor_set(nasid_t nasid, int enable_flag) { uint64_t ice_frz; @@ -379,7 +366,29 @@ static void tio_corelet_reset(nasid_t nasid, int corelet) udelay(2000); } -static int fpga_attached(nasid_t nasid) +static int tiocx_btchar_get(int nasid) +{ + moduleid_t module_id; + geoid_t geoid; + int cnodeid; + + cnodeid = nasid_to_cnodeid(nasid); + geoid = cnodeid_get_geoid(cnodeid); + module_id = geo_module(geoid); + return MODULE_GET_BTCHAR(module_id); +} + +static int is_fpga_brick(int nasid) +{ + switch (tiocx_btchar_get(nasid)) { + case L1_BRICKTYPE_SA: + case L1_BRICKTYPE_ATHENA: + return 1; + } + return 0; +} + +static int bitstream_loaded(nasid_t nasid) { uint64_t cx_credits; @@ -396,7 +405,7 @@ static int tiocx_reload(struct cx_dev *cx_dev) int mfg_num = CX_DEV_NONE; nasid_t nasid = cx_dev->cx_id.nasid; - if (fpga_attached(nasid)) { + if (bitstream_loaded(nasid)) { uint64_t cx_id; cx_id = @@ -427,9 +436,10 @@ static ssize_t show_cxdev_control(struct device *dev, char *buf) { struct cx_dev *cx_dev = to_cx_dev(dev); - return sprintf(buf, "0x%x 0x%x 0x%x\n", + return sprintf(buf, "0x%x 0x%x 0x%x %d\n", cx_dev->cx_id.nasid, - cx_dev->cx_id.part_num, cx_dev->cx_id.mfg_num); + cx_dev->cx_id.part_num, cx_dev->cx_id.mfg_num, + tiocx_btchar_get(cx_dev->cx_id.nasid)); } static ssize_t store_cxdev_control(struct device *dev, const char *buf, @@ -475,20 +485,14 @@ static int __init tiocx_init(void) if ((nasid = cnodeid_to_nasid(cnodeid)) < 0) break; /* No more nasids .. bail out of loop */ - if (nasid & 0x1) { /* TIO's are always odd */ + if ((nasid & 0x1) && is_fpga_brick(nasid)) { struct hubdev_info *hubdev; - uint64_t status; struct xwidget_info *widgetp; DBG("Found TIO at nasid 0x%x\n", nasid); hubdev = (struct hubdev_info *)(NODEPDA(cnodeid)->pdinfo); - status = - tiocx_get_hubdev_info(nasid, - (uint64_t) __pa(hubdev)); - if (status) - continue; widgetp = &hubdev->hdi_xwidget_info[TIOCX_CORELET]; diff --git a/arch/ia64/sn/kernel/xp_main.c b/arch/ia64/sn/kernel/xp_main.c new file mode 100644 index 000000000000..3be52a34c80f --- /dev/null +++ b/arch/ia64/sn/kernel/xp_main.c @@ -0,0 +1,289 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * Cross Partition (XP) base. + * + * XP provides a base from which its users can interact + * with XPC, yet not be dependent on XPC. + * + */ + + +#include <linux/kernel.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <asm/sn/intr.h> +#include <asm/sn/sn_sal.h> +#include <asm/sn/xp.h> + + +/* + * Target of nofault PIO read. + */ +u64 xp_nofault_PIOR_target; + + +/* + * xpc_registrations[] keeps track of xpc_connect()'s done by the kernel-level + * users of XPC. + */ +struct xpc_registration xpc_registrations[XPC_NCHANNELS]; + + +/* + * Initialize the XPC interface to indicate that XPC isn't loaded. + */ +static enum xpc_retval xpc_notloaded(void) { return xpcNotLoaded; } + +struct xpc_interface xpc_interface = { + (void (*)(int)) xpc_notloaded, + (void (*)(int)) xpc_notloaded, + (enum xpc_retval (*)(partid_t, int, u32, void **)) xpc_notloaded, + (enum xpc_retval (*)(partid_t, int, void *)) xpc_notloaded, + (enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func, void *)) + xpc_notloaded, + (void (*)(partid_t, int, void *)) xpc_notloaded, + (enum xpc_retval (*)(partid_t, void *)) xpc_notloaded +}; + + +/* + * XPC calls this when it (the XPC module) has been loaded. + */ +void +xpc_set_interface(void (*connect)(int), + void (*disconnect)(int), + enum xpc_retval (*allocate)(partid_t, int, u32, void **), + enum xpc_retval (*send)(partid_t, int, void *), + enum xpc_retval (*send_notify)(partid_t, int, void *, + xpc_notify_func, void *), + void (*received)(partid_t, int, void *), + enum xpc_retval (*partid_to_nasids)(partid_t, void *)) +{ + xpc_interface.connect = connect; + xpc_interface.disconnect = disconnect; + xpc_interface.allocate = allocate; + xpc_interface.send = send; + xpc_interface.send_notify = send_notify; + xpc_interface.received = received; + xpc_interface.partid_to_nasids = partid_to_nasids; +} + + +/* + * XPC calls this when it (the XPC module) is being unloaded. + */ +void +xpc_clear_interface(void) +{ + xpc_interface.connect = (void (*)(int)) xpc_notloaded; + xpc_interface.disconnect = (void (*)(int)) xpc_notloaded; + xpc_interface.allocate = (enum xpc_retval (*)(partid_t, int, u32, + void **)) xpc_notloaded; + xpc_interface.send = (enum xpc_retval (*)(partid_t, int, void *)) + xpc_notloaded; + xpc_interface.send_notify = (enum xpc_retval (*)(partid_t, int, void *, + xpc_notify_func, void *)) xpc_notloaded; + xpc_interface.received = (void (*)(partid_t, int, void *)) + xpc_notloaded; + xpc_interface.partid_to_nasids = (enum xpc_retval (*)(partid_t, void *)) + xpc_notloaded; +} + + +/* + * Register for automatic establishment of a channel connection whenever + * a partition comes up. + * + * Arguments: + * + * ch_number - channel # to register for connection. + * func - function to call for asynchronous notification of channel + * state changes (i.e., connection, disconnection, error) and + * the arrival of incoming messages. + * key - pointer to optional user-defined value that gets passed back + * to the user on any callouts made to func. + * payload_size - size in bytes of the XPC message's payload area which + * contains a user-defined message. The user should make + * this large enough to hold their largest message. + * nentries - max #of XPC message entries a message queue can contain. + * The actual number, which is determined when a connection + * is established and may be less then requested, will be + * passed to the user via the xpcConnected callout. + * assigned_limit - max number of kthreads allowed to be processing + * messages (per connection) at any given instant. + * idle_limit - max number of kthreads allowed to be idle at any given + * instant. + */ +enum xpc_retval +xpc_connect(int ch_number, xpc_channel_func func, void *key, u16 payload_size, + u16 nentries, u32 assigned_limit, u32 idle_limit) +{ + struct xpc_registration *registration; + + + DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); + DBUG_ON(payload_size == 0 || nentries == 0); + DBUG_ON(func == NULL); + DBUG_ON(assigned_limit == 0 || idle_limit > assigned_limit); + + registration = &xpc_registrations[ch_number]; + + if (down_interruptible(®istration->sema) != 0) { + return xpcInterrupted; + } + + /* if XPC_CHANNEL_REGISTERED(ch_number) */ + if (registration->func != NULL) { + up(®istration->sema); + return xpcAlreadyRegistered; + } + + /* register the channel for connection */ + registration->msg_size = XPC_MSG_SIZE(payload_size); + registration->nentries = nentries; + registration->assigned_limit = assigned_limit; + registration->idle_limit = idle_limit; + registration->key = key; + registration->func = func; + + up(®istration->sema); + + xpc_interface.connect(ch_number); + + return xpcSuccess; +} + + +/* + * Remove the registration for automatic connection of the specified channel + * when a partition comes up. + * + * Before returning this xpc_disconnect() will wait for all connections on the + * specified channel have been closed/torndown. So the caller can be assured + * that they will not be receiving any more callouts from XPC to their + * function registered via xpc_connect(). + * + * Arguments: + * + * ch_number - channel # to unregister. + */ +void +xpc_disconnect(int ch_number) +{ + struct xpc_registration *registration; + + + DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); + + registration = &xpc_registrations[ch_number]; + + /* + * We've decided not to make this a down_interruptible(), since we + * figured XPC's users will just turn around and call xpc_disconnect() + * again anyways, so we might as well wait, if need be. + */ + down(®istration->sema); + + /* if !XPC_CHANNEL_REGISTERED(ch_number) */ + if (registration->func == NULL) { + up(®istration->sema); + return; + } + + /* remove the connection registration for the specified channel */ + registration->func = NULL; + registration->key = NULL; + registration->nentries = 0; + registration->msg_size = 0; + registration->assigned_limit = 0; + registration->idle_limit = 0; + + xpc_interface.disconnect(ch_number); + + up(®istration->sema); + + return; +} + + +int __init +xp_init(void) +{ + int ret, ch_number; + u64 func_addr = *(u64 *) xp_nofault_PIOR; + u64 err_func_addr = *(u64 *) xp_error_PIOR; + + + if (!ia64_platform_is("sn2")) { + return -ENODEV; + } + + /* + * Register a nofault code region which performs a cross-partition + * PIO read. If the PIO read times out, the MCA handler will consume + * the error and return to a kernel-provided instruction to indicate + * an error. This PIO read exists because it is guaranteed to timeout + * if the destination is down (AMO operations do not timeout on at + * least some CPUs on Shubs <= v1.2, which unfortunately we have to + * work around). + */ + if ((ret = sn_register_nofault_code(func_addr, err_func_addr, + err_func_addr, 1, 1)) != 0) { + printk(KERN_ERR "XP: can't register nofault code, error=%d\n", + ret); + } + /* + * Setup the nofault PIO read target. (There is no special reason why + * SH_IPI_ACCESS was selected.) + */ + if (is_shub2()) { + xp_nofault_PIOR_target = SH2_IPI_ACCESS0; + } else { + xp_nofault_PIOR_target = SH1_IPI_ACCESS; + } + + /* initialize the connection registration semaphores */ + for (ch_number = 0; ch_number < XPC_NCHANNELS; ch_number++) { + sema_init(&xpc_registrations[ch_number].sema, 1); /* mutex */ + } + + return 0; +} +module_init(xp_init); + + +void __exit +xp_exit(void) +{ + u64 func_addr = *(u64 *) xp_nofault_PIOR; + u64 err_func_addr = *(u64 *) xp_error_PIOR; + + + /* unregister the PIO read nofault code region */ + (void) sn_register_nofault_code(func_addr, err_func_addr, + err_func_addr, 1, 0); +} +module_exit(xp_exit); + + +MODULE_AUTHOR("Silicon Graphics, Inc."); +MODULE_DESCRIPTION("Cross Partition (XP) base"); +MODULE_LICENSE("GPL"); + +EXPORT_SYMBOL(xp_nofault_PIOR); +EXPORT_SYMBOL(xp_nofault_PIOR_target); +EXPORT_SYMBOL(xpc_registrations); +EXPORT_SYMBOL(xpc_interface); +EXPORT_SYMBOL(xpc_clear_interface); +EXPORT_SYMBOL(xpc_set_interface); +EXPORT_SYMBOL(xpc_connect); +EXPORT_SYMBOL(xpc_disconnect); + diff --git a/arch/ia64/sn/kernel/xp_nofault.S b/arch/ia64/sn/kernel/xp_nofault.S new file mode 100644 index 000000000000..b772543053c9 --- /dev/null +++ b/arch/ia64/sn/kernel/xp_nofault.S @@ -0,0 +1,31 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * The xp_nofault_PIOR function takes a pointer to a remote PIO register + * and attempts to load and consume a value from it. This function + * will be registered as a nofault code block. In the event that the + * PIO read fails, the MCA handler will force the error to look + * corrected and vector to the xp_error_PIOR which will return an error. + * + * extern int xp_nofault_PIOR(void *remote_register); + */ + + .global xp_nofault_PIOR +xp_nofault_PIOR: + mov r8=r0 // Stage a success return value + ld8.acq r9=[r32];; // PIO Read the specified register + adds r9=1,r9 // Add to force a consume + br.ret.sptk.many b0;; // Return success + + .global xp_error_PIOR +xp_error_PIOR: + mov r8=1 // Return value of 1 + br.ret.sptk.many b0;; // Return failure + diff --git a/arch/ia64/sn/kernel/xpc.h b/arch/ia64/sn/kernel/xpc.h new file mode 100644 index 000000000000..1a0aed8490d1 --- /dev/null +++ b/arch/ia64/sn/kernel/xpc.h @@ -0,0 +1,991 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * Cross Partition Communication (XPC) structures and macros. + */ + +#ifndef _IA64_SN_KERNEL_XPC_H +#define _IA64_SN_KERNEL_XPC_H + + +#include <linux/config.h> +#include <linux/interrupt.h> +#include <linux/sysctl.h> +#include <linux/device.h> +#include <asm/pgtable.h> +#include <asm/processor.h> +#include <asm/sn/bte.h> +#include <asm/sn/clksupport.h> +#include <asm/sn/addrs.h> +#include <asm/sn/mspec.h> +#include <asm/sn/shub_mmr.h> +#include <asm/sn/xp.h> + + +/* + * XPC Version numbers consist of a major and minor number. XPC can always + * talk to versions with same major #, and never talk to versions with a + * different major #. + */ +#define _XPC_VERSION(_maj, _min) (((_maj) << 4) | ((_min) & 0xf)) +#define XPC_VERSION_MAJOR(_v) ((_v) >> 4) +#define XPC_VERSION_MINOR(_v) ((_v) & 0xf) + + +/* + * The next macros define word or bit representations for given + * C-brick nasid in either the SAL provided bit array representing + * nasids in the partition/machine or the AMO_t array used for + * inter-partition initiation communications. + * + * For SN2 machines, C-Bricks are alway even numbered NASIDs. As + * such, some space will be saved by insisting that nasid information + * passed from SAL always be packed for C-Bricks and the + * cross-partition interrupts use the same packing scheme. + */ +#define XPC_NASID_W_INDEX(_n) (((_n) / 64) / 2) +#define XPC_NASID_B_INDEX(_n) (((_n) / 2) & (64 - 1)) +#define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \ + (1UL << XPC_NASID_B_INDEX(_n))) +#define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2) + +#define XPC_HB_DEFAULT_INTERVAL 5 /* incr HB every x secs */ +#define XPC_HB_CHECK_DEFAULT_TIMEOUT 20 /* check HB every x secs */ + +/* define the process name of HB checker and the CPU it is pinned to */ +#define XPC_HB_CHECK_THREAD_NAME "xpc_hb" +#define XPC_HB_CHECK_CPU 0 + +/* define the process name of the discovery thread */ +#define XPC_DISCOVERY_THREAD_NAME "xpc_discovery" + + +#define XPC_HB_ALLOWED(_p, _v) ((_v)->heartbeating_to_mask & (1UL << (_p))) +#define XPC_ALLOW_HB(_p, _v) (_v)->heartbeating_to_mask |= (1UL << (_p)) +#define XPC_DISALLOW_HB(_p, _v) (_v)->heartbeating_to_mask &= (~(1UL << (_p))) + + +/* + * Reserved Page provided by SAL. + * + * SAL provides one page per partition of reserved memory. When SAL + * initialization is complete, SAL_signature, SAL_version, partid, + * part_nasids, and mach_nasids are set. + * + * Note: Until vars_pa is set, the partition XPC code has not been initialized. + */ +struct xpc_rsvd_page { + u64 SAL_signature; /* SAL unique signature */ + u64 SAL_version; /* SAL specified version */ + u8 partid; /* partition ID from SAL */ + u8 version; + u8 pad[6]; /* pad to u64 align */ + u64 vars_pa; + u64 part_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned; + u64 mach_nasids[XP_NASID_MASK_WORDS] ____cacheline_aligned; +}; +#define XPC_RP_VERSION _XPC_VERSION(1,0) /* version 1.0 of the reserved page */ + +#define XPC_RSVD_PAGE_ALIGNED_SIZE \ + (L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))) + + +/* + * Define the structures by which XPC variables can be exported to other + * partitions. (There are two: struct xpc_vars and struct xpc_vars_part) + */ + +/* + * The following structure describes the partition generic variables + * needed by other partitions in order to properly initialize. + * + * struct xpc_vars version number also applies to struct xpc_vars_part. + * Changes to either structure and/or related functionality should be + * reflected by incrementing either the major or minor version numbers + * of struct xpc_vars. + */ +struct xpc_vars { + u8 version; + u64 heartbeat; + u64 heartbeating_to_mask; + u64 kdb_status; /* 0 = machine running */ + int act_nasid; + int act_phys_cpuid; + u64 vars_part_pa; + u64 amos_page_pa; /* paddr of page of AMOs from MSPEC driver */ + AMO_t *amos_page; /* vaddr of page of AMOs from MSPEC driver */ + AMO_t *act_amos; /* pointer to the first activation AMO */ +}; +#define XPC_V_VERSION _XPC_VERSION(3,0) /* version 3.0 of the cross vars */ + +#define XPC_VARS_ALIGNED_SIZE (L1_CACHE_ALIGN(sizeof(struct xpc_vars))) + +/* + * The following structure describes the per partition specific variables. + * + * An array of these structures, one per partition, will be defined. As a + * partition becomes active XPC will copy the array entry corresponding to + * itself from that partition. It is desirable that the size of this + * structure evenly divide into a cacheline, such that none of the entries + * in this array crosses a cacheline boundary. As it is now, each entry + * occupies half a cacheline. + */ +struct xpc_vars_part { + u64 magic; + + u64 openclose_args_pa; /* physical address of open and close args */ + u64 GPs_pa; /* physical address of Get/Put values */ + + u64 IPI_amo_pa; /* physical address of IPI AMO_t structure */ + int IPI_nasid; /* nasid of where to send IPIs */ + int IPI_phys_cpuid; /* physical CPU ID of where to send IPIs */ + + u8 nchannels; /* #of defined channels supported */ + + u8 reserved[23]; /* pad to a full 64 bytes */ +}; + +/* + * The vars_part MAGIC numbers play a part in the first contact protocol. + * + * MAGIC1 indicates that the per partition specific variables for a remote + * partition have been initialized by this partition. + * + * MAGIC2 indicates that this partition has pulled the remote partititions + * per partition variables that pertain to this partition. + */ +#define XPC_VP_MAGIC1 0x0053524156435058L /* 'XPCVARS\0'L (little endian) */ +#define XPC_VP_MAGIC2 0x0073726176435058L /* 'XPCvars\0'L (little endian) */ + + + +/* + * Functions registered by add_timer() or called by kernel_thread() only + * allow for a single 64-bit argument. The following macros can be used to + * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from + * the passed argument. + */ +#define XPC_PACK_ARGS(_arg1, _arg2) \ + ((((u64) _arg1) & 0xffffffff) | \ + ((((u64) _arg2) & 0xffffffff) << 32)) + +#define XPC_UNPACK_ARG1(_args) (((u64) _args) & 0xffffffff) +#define XPC_UNPACK_ARG2(_args) ((((u64) _args) >> 32) & 0xffffffff) + + + +/* + * Define a Get/Put value pair (pointers) used with a message queue. + */ +struct xpc_gp { + s64 get; /* Get value */ + s64 put; /* Put value */ +}; + +#define XPC_GP_SIZE \ + L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS) + + + +/* + * Define a structure that contains arguments associated with opening and + * closing a channel. + */ +struct xpc_openclose_args { + u16 reason; /* reason why channel is closing */ + u16 msg_size; /* sizeof each message entry */ + u16 remote_nentries; /* #of message entries in remote msg queue */ + u16 local_nentries; /* #of message entries in local msg queue */ + u64 local_msgqueue_pa; /* physical address of local message queue */ +}; + +#define XPC_OPENCLOSE_ARGS_SIZE \ + L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS) + + + +/* struct xpc_msg flags */ + +#define XPC_M_DONE 0x01 /* msg has been received/consumed */ +#define XPC_M_READY 0x02 /* msg is ready to be sent */ +#define XPC_M_INTERRUPT 0x04 /* send interrupt when msg consumed */ + + +#define XPC_MSG_ADDRESS(_payload) \ + ((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET)) + + + +/* + * Defines notify entry. + * + * This is used to notify a message's sender that their message was received + * and consumed by the intended recipient. + */ +struct xpc_notify { + struct semaphore sema; /* notify semaphore */ + u8 type; /* type of notification */ + + /* the following two fields are only used if type == XPC_N_CALL */ + xpc_notify_func func; /* user's notify function */ + void *key; /* pointer to user's key */ +}; + +/* struct xpc_notify type of notification */ + +#define XPC_N_CALL 0x01 /* notify function provided by user */ + + + +/* + * Define the structure that manages all the stuff required by a channel. In + * particular, they are used to manage the messages sent across the channel. + * + * This structure is private to a partition, and is NOT shared across the + * partition boundary. + * + * There is an array of these structures for each remote partition. It is + * allocated at the time a partition becomes active. The array contains one + * of these structures for each potential channel connection to that partition. + * + * Each of these structures manages two message queues (circular buffers). + * They are allocated at the time a channel connection is made. One of + * these message queues (local_msgqueue) holds the locally created messages + * that are destined for the remote partition. The other of these message + * queues (remote_msgqueue) is a locally cached copy of the remote partition's + * own local_msgqueue. + * + * The following is a description of the Get/Put pointers used to manage these + * two message queues. Consider the local_msgqueue to be on one partition + * and the remote_msgqueue to be its cached copy on another partition. A + * description of what each of the lettered areas contains is included. + * + * + * local_msgqueue remote_msgqueue + * + * |/////////| |/////////| + * w_remote_GP.get --> +---------+ |/////////| + * | F | |/////////| + * remote_GP.get --> +---------+ +---------+ <-- local_GP->get + * | | | | + * | | | E | + * | | | | + * | | +---------+ <-- w_local_GP.get + * | B | |/////////| + * | | |////D////| + * | | |/////////| + * | | +---------+ <-- w_remote_GP.put + * | | |////C////| + * local_GP->put --> +---------+ +---------+ <-- remote_GP.put + * | | |/////////| + * | A | |/////////| + * | | |/////////| + * w_local_GP.put --> +---------+ |/////////| + * |/////////| |/////////| + * + * + * ( remote_GP.[get|put] are cached copies of the remote + * partition's local_GP->[get|put], and thus their values can + * lag behind their counterparts on the remote partition. ) + * + * + * A - Messages that have been allocated, but have not yet been sent to the + * remote partition. + * + * B - Messages that have been sent, but have not yet been acknowledged by the + * remote partition as having been received. + * + * C - Area that needs to be prepared for the copying of sent messages, by + * the clearing of the message flags of any previously received messages. + * + * D - Area into which sent messages are to be copied from the remote + * partition's local_msgqueue and then delivered to their intended + * recipients. [ To allow for a multi-message copy, another pointer + * (next_msg_to_pull) has been added to keep track of the next message + * number needing to be copied (pulled). It chases after w_remote_GP.put. + * Any messages lying between w_local_GP.get and next_msg_to_pull have + * been copied and are ready to be delivered. ] + * + * E - Messages that have been copied and delivered, but have not yet been + * acknowledged by the recipient as having been received. + * + * F - Messages that have been acknowledged, but XPC has not yet notified the + * sender that the message was received by its intended recipient. + * This is also an area that needs to be prepared for the allocating of + * new messages, by the clearing of the message flags of the acknowledged + * messages. + */ +struct xpc_channel { + partid_t partid; /* ID of remote partition connected */ + spinlock_t lock; /* lock for updating this structure */ + u32 flags; /* general flags */ + + enum xpc_retval reason; /* reason why channel is disconnect'g */ + int reason_line; /* line# disconnect initiated from */ + + u16 number; /* channel # */ + + u16 msg_size; /* sizeof each msg entry */ + u16 local_nentries; /* #of msg entries in local msg queue */ + u16 remote_nentries; /* #of msg entries in remote msg queue*/ + + void *local_msgqueue_base; /* base address of kmalloc'd space */ + struct xpc_msg *local_msgqueue; /* local message queue */ + void *remote_msgqueue_base; /* base address of kmalloc'd space */ + struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */ + /* local message queue */ + u64 remote_msgqueue_pa; /* phys addr of remote partition's */ + /* local message queue */ + + atomic_t references; /* #of external references to queues */ + + atomic_t n_on_msg_allocate_wq; /* #on msg allocation wait queue */ + wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */ + + /* queue of msg senders who want to be notified when msg received */ + + atomic_t n_to_notify; /* #of msg senders to notify */ + struct xpc_notify *notify_queue;/* notify queue for messages sent */ + + xpc_channel_func func; /* user's channel function */ + void *key; /* pointer to user's key */ + + struct semaphore msg_to_pull_sema; /* next msg to pull serialization */ + struct semaphore teardown_sema; /* wait for teardown completion */ + + struct xpc_openclose_args *local_openclose_args; /* args passed on */ + /* opening or closing of channel */ + + /* various flavors of local and remote Get/Put values */ + + struct xpc_gp *local_GP; /* local Get/Put values */ + struct xpc_gp remote_GP; /* remote Get/Put values */ + struct xpc_gp w_local_GP; /* working local Get/Put values */ + struct xpc_gp w_remote_GP; /* working remote Get/Put values */ + s64 next_msg_to_pull; /* Put value of next msg to pull */ + + /* kthread management related fields */ + +// >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps +// >>> allow the assigned limit be unbounded and let the idle limit be dynamic +// >>> dependent on activity over the last interval of time + atomic_t kthreads_assigned; /* #of kthreads assigned to channel */ + u32 kthreads_assigned_limit; /* limit on #of kthreads assigned */ + atomic_t kthreads_idle; /* #of kthreads idle waiting for work */ + u32 kthreads_idle_limit; /* limit on #of kthreads idle */ + atomic_t kthreads_active; /* #of kthreads actively working */ + // >>> following field is temporary + u32 kthreads_created; /* total #of kthreads created */ + + wait_queue_head_t idle_wq; /* idle kthread wait queue */ + +} ____cacheline_aligned; + + +/* struct xpc_channel flags */ + +#define XPC_C_WASCONNECTED 0x00000001 /* channel was connected */ + +#define XPC_C_ROPENREPLY 0x00000002 /* remote open channel reply */ +#define XPC_C_OPENREPLY 0x00000004 /* local open channel reply */ +#define XPC_C_ROPENREQUEST 0x00000008 /* remote open channel request */ +#define XPC_C_OPENREQUEST 0x00000010 /* local open channel request */ + +#define XPC_C_SETUP 0x00000020 /* channel's msgqueues are alloc'd */ +#define XPC_C_CONNECTCALLOUT 0x00000040 /* channel connected callout made */ +#define XPC_C_CONNECTED 0x00000080 /* local channel is connected */ +#define XPC_C_CONNECTING 0x00000100 /* channel is being connected */ + +#define XPC_C_RCLOSEREPLY 0x00000200 /* remote close channel reply */ +#define XPC_C_CLOSEREPLY 0x00000400 /* local close channel reply */ +#define XPC_C_RCLOSEREQUEST 0x00000800 /* remote close channel request */ +#define XPC_C_CLOSEREQUEST 0x00001000 /* local close channel request */ + +#define XPC_C_DISCONNECTED 0x00002000 /* channel is disconnected */ +#define XPC_C_DISCONNECTING 0x00004000 /* channel is being disconnected */ + + + +/* + * Manages channels on a partition basis. There is one of these structures + * for each partition (a partition will never utilize the structure that + * represents itself). + */ +struct xpc_partition { + + /* XPC HB infrastructure */ + + u64 remote_rp_pa; /* phys addr of partition's rsvd pg */ + u64 remote_vars_pa; /* phys addr of partition's vars */ + u64 remote_vars_part_pa; /* phys addr of partition's vars part */ + u64 last_heartbeat; /* HB at last read */ + u64 remote_amos_page_pa; /* phys addr of partition's amos page */ + int remote_act_nasid; /* active part's act/deact nasid */ + int remote_act_phys_cpuid; /* active part's act/deact phys cpuid */ + u32 act_IRQ_rcvd; /* IRQs since activation */ + spinlock_t act_lock; /* protect updating of act_state */ + u8 act_state; /* from XPC HB viewpoint */ + enum xpc_retval reason; /* reason partition is deactivating */ + int reason_line; /* line# deactivation initiated from */ + int reactivate_nasid; /* nasid in partition to reactivate */ + + + /* XPC infrastructure referencing and teardown control */ + + u8 setup_state; /* infrastructure setup state */ + wait_queue_head_t teardown_wq; /* kthread waiting to teardown infra */ + atomic_t references; /* #of references to infrastructure */ + + + /* + * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN + * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION + * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE + * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.) + */ + + + u8 nchannels; /* #of defined channels supported */ + atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */ + struct xpc_channel *channels;/* array of channel structures */ + + void *local_GPs_base; /* base address of kmalloc'd space */ + struct xpc_gp *local_GPs; /* local Get/Put values */ + void *remote_GPs_base; /* base address of kmalloc'd space */ + struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */ + /* values */ + u64 remote_GPs_pa; /* phys address of remote partition's local */ + /* Get/Put values */ + + + /* fields used to pass args when opening or closing a channel */ + + void *local_openclose_args_base; /* base address of kmalloc'd space */ + struct xpc_openclose_args *local_openclose_args; /* local's args */ + void *remote_openclose_args_base; /* base address of kmalloc'd space */ + struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */ + /* args */ + u64 remote_openclose_args_pa; /* phys addr of remote's args */ + + + /* IPI sending, receiving and handling related fields */ + + int remote_IPI_nasid; /* nasid of where to send IPIs */ + int remote_IPI_phys_cpuid; /* phys CPU ID of where to send IPIs */ + AMO_t *remote_IPI_amo_va; /* address of remote IPI AMO_t structure */ + + AMO_t *local_IPI_amo_va; /* address of IPI AMO_t structure */ + u64 local_IPI_amo; /* IPI amo flags yet to be handled */ + char IPI_owner[8]; /* IPI owner's name */ + struct timer_list dropped_IPI_timer; /* dropped IPI timer */ + + spinlock_t IPI_lock; /* IPI handler lock */ + + + /* channel manager related fields */ + + atomic_t channel_mgr_requests; /* #of requests to activate chan mgr */ + wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */ + +} ____cacheline_aligned; + + +/* struct xpc_partition act_state values (for XPC HB) */ + +#define XPC_P_INACTIVE 0x00 /* partition is not active */ +#define XPC_P_ACTIVATION_REQ 0x01 /* created thread to activate */ +#define XPC_P_ACTIVATING 0x02 /* activation thread started */ +#define XPC_P_ACTIVE 0x03 /* xpc_partition_up() was called */ +#define XPC_P_DEACTIVATING 0x04 /* partition deactivation initiated */ + + +#define XPC_DEACTIVATE_PARTITION(_p, _reason) \ + xpc_deactivate_partition(__LINE__, (_p), (_reason)) + + +/* struct xpc_partition setup_state values */ + +#define XPC_P_UNSET 0x00 /* infrastructure was never setup */ +#define XPC_P_SETUP 0x01 /* infrastructure is setup */ +#define XPC_P_WTEARDOWN 0x02 /* waiting to teardown infrastructure */ +#define XPC_P_TORNDOWN 0x03 /* infrastructure is torndown */ + + +/* + * struct xpc_partition IPI_timer #of seconds to wait before checking for + * dropped IPIs. These occur whenever an IPI amo write doesn't complete until + * after the IPI was received. + */ +#define XPC_P_DROPPED_IPI_WAIT (0.25 * HZ) + + +#define XPC_PARTID(_p) ((partid_t) ((_p) - &xpc_partitions[0])) + + + +/* found in xp_main.c */ +extern struct xpc_registration xpc_registrations[]; + + +/* >>> found in xpc_main.c only */ +extern struct device *xpc_part; +extern struct device *xpc_chan; +extern irqreturn_t xpc_notify_IRQ_handler(int, void *, struct pt_regs *); +extern void xpc_dropped_IPI_check(struct xpc_partition *); +extern void xpc_activate_kthreads(struct xpc_channel *, int); +extern void xpc_create_kthreads(struct xpc_channel *, int); +extern void xpc_disconnect_wait(int); + + +/* found in xpc_main.c and efi-xpc.c */ +extern void xpc_activate_partition(struct xpc_partition *); + + +/* found in xpc_partition.c */ +extern int xpc_exiting; +extern int xpc_hb_interval; +extern int xpc_hb_check_interval; +extern struct xpc_vars *xpc_vars; +extern struct xpc_rsvd_page *xpc_rsvd_page; +extern struct xpc_vars_part *xpc_vars_part; +extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; +extern char xpc_remote_copy_buffer[]; +extern struct xpc_rsvd_page *xpc_rsvd_page_init(void); +extern void xpc_allow_IPI_ops(void); +extern void xpc_restrict_IPI_ops(void); +extern int xpc_identify_act_IRQ_sender(void); +extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *); +extern void xpc_mark_partition_inactive(struct xpc_partition *); +extern void xpc_discovery(void); +extern void xpc_check_remote_hb(void); +extern void xpc_deactivate_partition(const int, struct xpc_partition *, + enum xpc_retval); +extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *); + + +/* found in xpc_channel.c */ +extern void xpc_initiate_connect(int); +extern void xpc_initiate_disconnect(int); +extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **); +extern enum xpc_retval xpc_initiate_send(partid_t, int, void *); +extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *, + xpc_notify_func, void *); +extern void xpc_initiate_received(partid_t, int, void *); +extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *); +extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *); +extern void xpc_process_channel_activity(struct xpc_partition *); +extern void xpc_connected_callout(struct xpc_channel *); +extern void xpc_deliver_msg(struct xpc_channel *); +extern void xpc_disconnect_channel(const int, struct xpc_channel *, + enum xpc_retval, unsigned long *); +extern void xpc_disconnected_callout(struct xpc_channel *); +extern void xpc_partition_down(struct xpc_partition *, enum xpc_retval); +extern void xpc_teardown_infrastructure(struct xpc_partition *); + + + +static inline void +xpc_wakeup_channel_mgr(struct xpc_partition *part) +{ + if (atomic_inc_return(&part->channel_mgr_requests) == 1) { + wake_up(&part->channel_mgr_wq); + } +} + + + +/* + * These next two inlines are used to keep us from tearing down a channel's + * msg queues while a thread may be referencing them. + */ +static inline void +xpc_msgqueue_ref(struct xpc_channel *ch) +{ + atomic_inc(&ch->references); +} + +static inline void +xpc_msgqueue_deref(struct xpc_channel *ch) +{ + s32 refs = atomic_dec_return(&ch->references); + + DBUG_ON(refs < 0); + if (refs == 0) { + xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]); + } +} + + + +#define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \ + xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs) + + +/* + * These two inlines are used to keep us from tearing down a partition's + * setup infrastructure while a thread may be referencing it. + */ +static inline void +xpc_part_deref(struct xpc_partition *part) +{ + s32 refs = atomic_dec_return(&part->references); + + + DBUG_ON(refs < 0); + if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) { + wake_up(&part->teardown_wq); + } +} + +static inline int +xpc_part_ref(struct xpc_partition *part) +{ + int setup; + + + atomic_inc(&part->references); + setup = (part->setup_state == XPC_P_SETUP); + if (!setup) { + xpc_part_deref(part); + } + return setup; +} + + + +/* + * The following macro is to be used for the setting of the reason and + * reason_line fields in both the struct xpc_channel and struct xpc_partition + * structures. + */ +#define XPC_SET_REASON(_p, _reason, _line) \ + { \ + (_p)->reason = _reason; \ + (_p)->reason_line = _line; \ + } + + + +/* + * The following set of macros and inlines are used for the sending and + * receiving of IPIs (also known as IRQs). There are two flavors of IPIs, + * one that is associated with partition activity (SGI_XPC_ACTIVATE) and + * the other that is associated with channel activity (SGI_XPC_NOTIFY). + */ + +static inline u64 +xpc_IPI_receive(AMO_t *amo) +{ + return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR); +} + + +static inline enum xpc_retval +xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector) +{ + int ret = 0; + unsigned long irq_flags; + + + local_irq_save(irq_flags); + + FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag); + sn_send_IPI_phys(nasid, phys_cpuid, vector, 0); + + /* + * We must always use the nofault function regardless of whether we + * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we + * didn't, we'd never know that the other partition is down and would + * keep sending IPIs and AMOs to it until the heartbeat times out. + */ + ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable), + xp_nofault_PIOR_target)); + + local_irq_restore(irq_flags); + + return ((ret == 0) ? xpcSuccess : xpcPioReadError); +} + + +/* + * IPIs associated with SGI_XPC_ACTIVATE IRQ. + */ + +/* + * Flag the appropriate AMO variable and send an IPI to the specified node. + */ +static inline void +xpc_activate_IRQ_send(u64 amos_page, int from_nasid, int to_nasid, + int to_phys_cpuid) +{ + int w_index = XPC_NASID_W_INDEX(from_nasid); + int b_index = XPC_NASID_B_INDEX(from_nasid); + AMO_t *amos = (AMO_t *) __va(amos_page + + (XP_MAX_PARTITIONS * sizeof(AMO_t))); + + + (void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid, + to_phys_cpuid, SGI_XPC_ACTIVATE); +} + +static inline void +xpc_IPI_send_activate(struct xpc_vars *vars) +{ + xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0), + vars->act_nasid, vars->act_phys_cpuid); +} + +static inline void +xpc_IPI_send_activated(struct xpc_partition *part) +{ + xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0), + part->remote_act_nasid, part->remote_act_phys_cpuid); +} + +static inline void +xpc_IPI_send_reactivate(struct xpc_partition *part) +{ + xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid, + xpc_vars->act_nasid, xpc_vars->act_phys_cpuid); +} + + +/* + * IPIs associated with SGI_XPC_NOTIFY IRQ. + */ + +/* + * Send an IPI to the remote partition that is associated with the + * specified channel. + */ +#define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \ + xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f) + +static inline void +xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string, + unsigned long *irq_flags) +{ + struct xpc_partition *part = &xpc_partitions[ch->partid]; + enum xpc_retval ret; + + + if (likely(part->act_state != XPC_P_DEACTIVATING)) { + ret = xpc_IPI_send(part->remote_IPI_amo_va, + (u64) ipi_flag << (ch->number * 8), + part->remote_IPI_nasid, + part->remote_IPI_phys_cpuid, + SGI_XPC_NOTIFY); + dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n", + ipi_flag_string, ch->partid, ch->number, ret); + if (unlikely(ret != xpcSuccess)) { + if (irq_flags != NULL) { + spin_unlock_irqrestore(&ch->lock, *irq_flags); + } + XPC_DEACTIVATE_PARTITION(part, ret); + if (irq_flags != NULL) { + spin_lock_irqsave(&ch->lock, *irq_flags); + } + } + } +} + + +/* + * Make it look like the remote partition, which is associated with the + * specified channel, sent us an IPI. This faked IPI will be handled + * by xpc_dropped_IPI_check(). + */ +#define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \ + xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f) + +static inline void +xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag, + char *ipi_flag_string) +{ + struct xpc_partition *part = &xpc_partitions[ch->partid]; + + + FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable), + FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8))); + dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n", + ipi_flag_string, ch->partid, ch->number); +} + + +/* + * The sending and receiving of IPIs includes the setting of an AMO variable + * to indicate the reason the IPI was sent. The 64-bit variable is divided + * up into eight bytes, ordered from right to left. Byte zero pertains to + * channel 0, byte one to channel 1, and so on. Each byte is described by + * the following IPI flags. + */ + +#define XPC_IPI_CLOSEREQUEST 0x01 +#define XPC_IPI_CLOSEREPLY 0x02 +#define XPC_IPI_OPENREQUEST 0x04 +#define XPC_IPI_OPENREPLY 0x08 +#define XPC_IPI_MSGREQUEST 0x10 + + +/* given an AMO variable and a channel#, get its associated IPI flags */ +#define XPC_GET_IPI_FLAGS(_amo, _c) ((u8) (((_amo) >> ((_c) * 8)) & 0xff)) + +#define XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & 0x0f0f0f0f0f0f0f0f) +#define XPC_ANY_MSG_IPI_FLAGS_SET(_amo) ((_amo) & 0x1010101010101010) + + +static inline void +xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags) +{ + struct xpc_openclose_args *args = ch->local_openclose_args; + + + args->reason = ch->reason; + + XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags); +} + +static inline void +xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags) +{ + XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags); +} + +static inline void +xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags) +{ + struct xpc_openclose_args *args = ch->local_openclose_args; + + + args->msg_size = ch->msg_size; + args->local_nentries = ch->local_nentries; + + XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags); +} + +static inline void +xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags) +{ + struct xpc_openclose_args *args = ch->local_openclose_args; + + + args->remote_nentries = ch->remote_nentries; + args->local_nentries = ch->local_nentries; + args->local_msgqueue_pa = __pa(ch->local_msgqueue); + + XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags); +} + +static inline void +xpc_IPI_send_msgrequest(struct xpc_channel *ch) +{ + XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL); +} + +static inline void +xpc_IPI_send_local_msgrequest(struct xpc_channel *ch) +{ + XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST); +} + + +/* + * Memory for XPC's AMO variables is allocated by the MSPEC driver. These + * pages are located in the lowest granule. The lowest granule uses 4k pages + * for cached references and an alternate TLB handler to never provide a + * cacheable mapping for the entire region. This will prevent speculative + * reading of cached copies of our lines from being issued which will cause + * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64 + * (XP_MAX_PARTITIONS) AMO variables for message notification (xpc_main.c) + * and an additional 16 AMO variables for partition activation (xpc_hb.c). + */ +static inline AMO_t * +xpc_IPI_init(partid_t partid) +{ + AMO_t *part_amo = xpc_vars->amos_page + partid; + + + xpc_IPI_receive(part_amo); + return part_amo; +} + + + +static inline enum xpc_retval +xpc_map_bte_errors(bte_result_t error) +{ + switch (error) { + case BTE_SUCCESS: return xpcSuccess; + case BTEFAIL_DIR: return xpcBteDirectoryError; + case BTEFAIL_POISON: return xpcBtePoisonError; + case BTEFAIL_WERR: return xpcBteWriteError; + case BTEFAIL_ACCESS: return xpcBteAccessError; + case BTEFAIL_PWERR: return xpcBtePWriteError; + case BTEFAIL_PRERR: return xpcBtePReadError; + case BTEFAIL_TOUT: return xpcBteTimeOutError; + case BTEFAIL_XTERR: return xpcBteXtalkError; + case BTEFAIL_NOTAVAIL: return xpcBteNotAvailable; + default: return xpcBteUnmappedError; + } +} + + + +static inline void * +xpc_kmalloc_cacheline_aligned(size_t size, int flags, void **base) +{ + /* see if kmalloc will give us cachline aligned memory by default */ + *base = kmalloc(size, flags); + if (*base == NULL) { + return NULL; + } + if ((u64) *base == L1_CACHE_ALIGN((u64) *base)) { + return *base; + } + kfree(*base); + + /* nope, we'll have to do it ourselves */ + *base = kmalloc(size + L1_CACHE_BYTES, flags); + if (*base == NULL) { + return NULL; + } + return (void *) L1_CACHE_ALIGN((u64) *base); +} + + +/* + * Check to see if there is any channel activity to/from the specified + * partition. + */ +static inline void +xpc_check_for_channel_activity(struct xpc_partition *part) +{ + u64 IPI_amo; + unsigned long irq_flags; + + + IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va); + if (IPI_amo == 0) { + return; + } + + spin_lock_irqsave(&part->IPI_lock, irq_flags); + part->local_IPI_amo |= IPI_amo; + spin_unlock_irqrestore(&part->IPI_lock, irq_flags); + + dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n", + XPC_PARTID(part), IPI_amo); + + xpc_wakeup_channel_mgr(part); +} + + +#endif /* _IA64_SN_KERNEL_XPC_H */ + diff --git a/arch/ia64/sn/kernel/xpc_channel.c b/arch/ia64/sn/kernel/xpc_channel.c new file mode 100644 index 000000000000..0bf6fbcc46d2 --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_channel.c @@ -0,0 +1,2297 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * Cross Partition Communication (XPC) channel support. + * + * This is the part of XPC that manages the channels and + * sends/receives messages across them to/from other partitions. + * + */ + + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/cache.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <asm/sn/bte.h> +#include <asm/sn/sn_sal.h> +#include "xpc.h" + + +/* + * Set up the initial values for the XPartition Communication channels. + */ +static void +xpc_initialize_channels(struct xpc_partition *part, partid_t partid) +{ + int ch_number; + struct xpc_channel *ch; + + + for (ch_number = 0; ch_number < part->nchannels; ch_number++) { + ch = &part->channels[ch_number]; + + ch->partid = partid; + ch->number = ch_number; + ch->flags = XPC_C_DISCONNECTED; + + ch->local_GP = &part->local_GPs[ch_number]; + ch->local_openclose_args = + &part->local_openclose_args[ch_number]; + + atomic_set(&ch->kthreads_assigned, 0); + atomic_set(&ch->kthreads_idle, 0); + atomic_set(&ch->kthreads_active, 0); + + atomic_set(&ch->references, 0); + atomic_set(&ch->n_to_notify, 0); + + spin_lock_init(&ch->lock); + sema_init(&ch->msg_to_pull_sema, 1); /* mutex */ + + atomic_set(&ch->n_on_msg_allocate_wq, 0); + init_waitqueue_head(&ch->msg_allocate_wq); + init_waitqueue_head(&ch->idle_wq); + } +} + + +/* + * Setup the infrastructure necessary to support XPartition Communication + * between the specified remote partition and the local one. + */ +enum xpc_retval +xpc_setup_infrastructure(struct xpc_partition *part) +{ + int ret; + struct timer_list *timer; + partid_t partid = XPC_PARTID(part); + + + /* + * Zero out MOST of the entry for this partition. Only the fields + * starting with `nchannels' will be zeroed. The preceding fields must + * remain `viable' across partition ups and downs, since they may be + * referenced during this memset() operation. + */ + memset(&part->nchannels, 0, sizeof(struct xpc_partition) - + offsetof(struct xpc_partition, nchannels)); + + /* + * Allocate all of the channel structures as a contiguous chunk of + * memory. + */ + part->channels = kmalloc(sizeof(struct xpc_channel) * XPC_NCHANNELS, + GFP_KERNEL); + if (part->channels == NULL) { + dev_err(xpc_chan, "can't get memory for channels\n"); + return xpcNoMemory; + } + memset(part->channels, 0, sizeof(struct xpc_channel) * XPC_NCHANNELS); + + part->nchannels = XPC_NCHANNELS; + + + /* allocate all the required GET/PUT values */ + + part->local_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE, + GFP_KERNEL, &part->local_GPs_base); + if (part->local_GPs == NULL) { + kfree(part->channels); + part->channels = NULL; + dev_err(xpc_chan, "can't get memory for local get/put " + "values\n"); + return xpcNoMemory; + } + memset(part->local_GPs, 0, XPC_GP_SIZE); + + part->remote_GPs = xpc_kmalloc_cacheline_aligned(XPC_GP_SIZE, + GFP_KERNEL, &part->remote_GPs_base); + if (part->remote_GPs == NULL) { + kfree(part->channels); + part->channels = NULL; + kfree(part->local_GPs_base); + part->local_GPs = NULL; + dev_err(xpc_chan, "can't get memory for remote get/put " + "values\n"); + return xpcNoMemory; + } + memset(part->remote_GPs, 0, XPC_GP_SIZE); + + + /* allocate all the required open and close args */ + + part->local_openclose_args = xpc_kmalloc_cacheline_aligned( + XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, + &part->local_openclose_args_base); + if (part->local_openclose_args == NULL) { + kfree(part->channels); + part->channels = NULL; + kfree(part->local_GPs_base); + part->local_GPs = NULL; + kfree(part->remote_GPs_base); + part->remote_GPs = NULL; + dev_err(xpc_chan, "can't get memory for local connect args\n"); + return xpcNoMemory; + } + memset(part->local_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE); + + part->remote_openclose_args = xpc_kmalloc_cacheline_aligned( + XPC_OPENCLOSE_ARGS_SIZE, GFP_KERNEL, + &part->remote_openclose_args_base); + if (part->remote_openclose_args == NULL) { + kfree(part->channels); + part->channels = NULL; + kfree(part->local_GPs_base); + part->local_GPs = NULL; + kfree(part->remote_GPs_base); + part->remote_GPs = NULL; + kfree(part->local_openclose_args_base); + part->local_openclose_args = NULL; + dev_err(xpc_chan, "can't get memory for remote connect args\n"); + return xpcNoMemory; + } + memset(part->remote_openclose_args, 0, XPC_OPENCLOSE_ARGS_SIZE); + + + xpc_initialize_channels(part, partid); + + atomic_set(&part->nchannels_active, 0); + + + /* local_IPI_amo were set to 0 by an earlier memset() */ + + /* Initialize this partitions AMO_t structure */ + part->local_IPI_amo_va = xpc_IPI_init(partid); + + spin_lock_init(&part->IPI_lock); + + atomic_set(&part->channel_mgr_requests, 1); + init_waitqueue_head(&part->channel_mgr_wq); + + sprintf(part->IPI_owner, "xpc%02d", partid); + ret = request_irq(SGI_XPC_NOTIFY, xpc_notify_IRQ_handler, SA_SHIRQ, + part->IPI_owner, (void *) (u64) partid); + if (ret != 0) { + kfree(part->channels); + part->channels = NULL; + kfree(part->local_GPs_base); + part->local_GPs = NULL; + kfree(part->remote_GPs_base); + part->remote_GPs = NULL; + kfree(part->local_openclose_args_base); + part->local_openclose_args = NULL; + kfree(part->remote_openclose_args_base); + part->remote_openclose_args = NULL; + dev_err(xpc_chan, "can't register NOTIFY IRQ handler, " + "errno=%d\n", -ret); + return xpcLackOfResources; + } + + /* Setup a timer to check for dropped IPIs */ + timer = &part->dropped_IPI_timer; + init_timer(timer); + timer->function = (void (*)(unsigned long)) xpc_dropped_IPI_check; + timer->data = (unsigned long) part; + timer->expires = jiffies + XPC_P_DROPPED_IPI_WAIT; + add_timer(timer); + + /* + * With the setting of the partition setup_state to XPC_P_SETUP, we're + * declaring that this partition is ready to go. + */ + (volatile u8) part->setup_state = XPC_P_SETUP; + + + /* + * Setup the per partition specific variables required by the + * remote partition to establish channel connections with us. + * + * The setting of the magic # indicates that these per partition + * specific variables are ready to be used. + */ + xpc_vars_part[partid].GPs_pa = __pa(part->local_GPs); + xpc_vars_part[partid].openclose_args_pa = + __pa(part->local_openclose_args); + xpc_vars_part[partid].IPI_amo_pa = __pa(part->local_IPI_amo_va); + xpc_vars_part[partid].IPI_nasid = cpuid_to_nasid(smp_processor_id()); + xpc_vars_part[partid].IPI_phys_cpuid = + cpu_physical_id(smp_processor_id()); + xpc_vars_part[partid].nchannels = part->nchannels; + (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC1; + + return xpcSuccess; +} + + +/* + * Create a wrapper that hides the underlying mechanism for pulling a cacheline + * (or multiple cachelines) from a remote partition. + * + * src must be a cacheline aligned physical address on the remote partition. + * dst must be a cacheline aligned virtual address on this partition. + * cnt must be an cacheline sized + */ +static enum xpc_retval +xpc_pull_remote_cachelines(struct xpc_partition *part, void *dst, + const void *src, size_t cnt) +{ + bte_result_t bte_ret; + + + DBUG_ON((u64) src != L1_CACHE_ALIGN((u64) src)); + DBUG_ON((u64) dst != L1_CACHE_ALIGN((u64) dst)); + DBUG_ON(cnt != L1_CACHE_ALIGN(cnt)); + + if (part->act_state == XPC_P_DEACTIVATING) { + return part->reason; + } + + bte_ret = xp_bte_copy((u64) src, (u64) ia64_tpa((u64) dst), + (u64) cnt, (BTE_NORMAL | BTE_WACQUIRE), NULL); + if (bte_ret == BTE_SUCCESS) { + return xpcSuccess; + } + + dev_dbg(xpc_chan, "xp_bte_copy() from partition %d failed, ret=%d\n", + XPC_PARTID(part), bte_ret); + + return xpc_map_bte_errors(bte_ret); +} + + +/* + * Pull the remote per partititon specific variables from the specified + * partition. + */ +enum xpc_retval +xpc_pull_remote_vars_part(struct xpc_partition *part) +{ + u8 buffer[L1_CACHE_BYTES * 2]; + struct xpc_vars_part *pulled_entry_cacheline = + (struct xpc_vars_part *) L1_CACHE_ALIGN((u64) buffer); + struct xpc_vars_part *pulled_entry; + u64 remote_entry_cacheline_pa, remote_entry_pa; + partid_t partid = XPC_PARTID(part); + enum xpc_retval ret; + + + /* pull the cacheline that contains the variables we're interested in */ + + DBUG_ON(part->remote_vars_part_pa != + L1_CACHE_ALIGN(part->remote_vars_part_pa)); + DBUG_ON(sizeof(struct xpc_vars_part) != L1_CACHE_BYTES / 2); + + remote_entry_pa = part->remote_vars_part_pa + + sn_partition_id * sizeof(struct xpc_vars_part); + + remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1)); + + pulled_entry = (struct xpc_vars_part *) ((u64) pulled_entry_cacheline + + (remote_entry_pa & (L1_CACHE_BYTES - 1))); + + ret = xpc_pull_remote_cachelines(part, pulled_entry_cacheline, + (void *) remote_entry_cacheline_pa, + L1_CACHE_BYTES); + if (ret != xpcSuccess) { + dev_dbg(xpc_chan, "failed to pull XPC vars_part from " + "partition %d, ret=%d\n", partid, ret); + return ret; + } + + + /* see if they've been set up yet */ + + if (pulled_entry->magic != XPC_VP_MAGIC1 && + pulled_entry->magic != XPC_VP_MAGIC2) { + + if (pulled_entry->magic != 0) { + dev_dbg(xpc_chan, "partition %d's XPC vars_part for " + "partition %d has bad magic value (=0x%lx)\n", + partid, sn_partition_id, pulled_entry->magic); + return xpcBadMagic; + } + + /* they've not been initialized yet */ + return xpcRetry; + } + + if (xpc_vars_part[partid].magic == XPC_VP_MAGIC1) { + + /* validate the variables */ + + if (pulled_entry->GPs_pa == 0 || + pulled_entry->openclose_args_pa == 0 || + pulled_entry->IPI_amo_pa == 0) { + + dev_err(xpc_chan, "partition %d's XPC vars_part for " + "partition %d are not valid\n", partid, + sn_partition_id); + return xpcInvalidAddress; + } + + /* the variables we imported look to be valid */ + + part->remote_GPs_pa = pulled_entry->GPs_pa; + part->remote_openclose_args_pa = + pulled_entry->openclose_args_pa; + part->remote_IPI_amo_va = + (AMO_t *) __va(pulled_entry->IPI_amo_pa); + part->remote_IPI_nasid = pulled_entry->IPI_nasid; + part->remote_IPI_phys_cpuid = pulled_entry->IPI_phys_cpuid; + + if (part->nchannels > pulled_entry->nchannels) { + part->nchannels = pulled_entry->nchannels; + } + + /* let the other side know that we've pulled their variables */ + + (volatile u64) xpc_vars_part[partid].magic = XPC_VP_MAGIC2; + } + + if (pulled_entry->magic == XPC_VP_MAGIC1) { + return xpcRetry; + } + + return xpcSuccess; +} + + +/* + * Get the IPI flags and pull the openclose args and/or remote GPs as needed. + */ +static u64 +xpc_get_IPI_flags(struct xpc_partition *part) +{ + unsigned long irq_flags; + u64 IPI_amo; + enum xpc_retval ret; + + + /* + * See if there are any IPI flags to be handled. + */ + + spin_lock_irqsave(&part->IPI_lock, irq_flags); + if ((IPI_amo = part->local_IPI_amo) != 0) { + part->local_IPI_amo = 0; + } + spin_unlock_irqrestore(&part->IPI_lock, irq_flags); + + + if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_amo)) { + ret = xpc_pull_remote_cachelines(part, + part->remote_openclose_args, + (void *) part->remote_openclose_args_pa, + XPC_OPENCLOSE_ARGS_SIZE); + if (ret != xpcSuccess) { + XPC_DEACTIVATE_PARTITION(part, ret); + + dev_dbg(xpc_chan, "failed to pull openclose args from " + "partition %d, ret=%d\n", XPC_PARTID(part), + ret); + + /* don't bother processing IPIs anymore */ + IPI_amo = 0; + } + } + + if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_amo)) { + ret = xpc_pull_remote_cachelines(part, part->remote_GPs, + (void *) part->remote_GPs_pa, + XPC_GP_SIZE); + if (ret != xpcSuccess) { + XPC_DEACTIVATE_PARTITION(part, ret); + + dev_dbg(xpc_chan, "failed to pull GPs from partition " + "%d, ret=%d\n", XPC_PARTID(part), ret); + + /* don't bother processing IPIs anymore */ + IPI_amo = 0; + } + } + + return IPI_amo; +} + + +/* + * Allocate the local message queue and the notify queue. + */ +static enum xpc_retval +xpc_allocate_local_msgqueue(struct xpc_channel *ch) +{ + unsigned long irq_flags; + int nentries; + size_t nbytes; + + + // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between + // >>> iterations of the for-loop, bail if set? + + // >>> should we impose a minumum #of entries? like 4 or 8? + for (nentries = ch->local_nentries; nentries > 0; nentries--) { + + nbytes = nentries * ch->msg_size; + ch->local_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes, + (GFP_KERNEL | GFP_DMA), + &ch->local_msgqueue_base); + if (ch->local_msgqueue == NULL) { + continue; + } + memset(ch->local_msgqueue, 0, nbytes); + + nbytes = nentries * sizeof(struct xpc_notify); + ch->notify_queue = kmalloc(nbytes, (GFP_KERNEL | GFP_DMA)); + if (ch->notify_queue == NULL) { + kfree(ch->local_msgqueue_base); + ch->local_msgqueue = NULL; + continue; + } + memset(ch->notify_queue, 0, nbytes); + + spin_lock_irqsave(&ch->lock, irq_flags); + if (nentries < ch->local_nentries) { + dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, " + "partid=%d, channel=%d\n", nentries, + ch->local_nentries, ch->partid, ch->number); + + ch->local_nentries = nentries; + } + spin_unlock_irqrestore(&ch->lock, irq_flags); + return xpcSuccess; + } + + dev_dbg(xpc_chan, "can't get memory for local message queue and notify " + "queue, partid=%d, channel=%d\n", ch->partid, ch->number); + return xpcNoMemory; +} + + +/* + * Allocate the cached remote message queue. + */ +static enum xpc_retval +xpc_allocate_remote_msgqueue(struct xpc_channel *ch) +{ + unsigned long irq_flags; + int nentries; + size_t nbytes; + + + DBUG_ON(ch->remote_nentries <= 0); + + // >>> may want to check for ch->flags & XPC_C_DISCONNECTING between + // >>> iterations of the for-loop, bail if set? + + // >>> should we impose a minumum #of entries? like 4 or 8? + for (nentries = ch->remote_nentries; nentries > 0; nentries--) { + + nbytes = nentries * ch->msg_size; + ch->remote_msgqueue = xpc_kmalloc_cacheline_aligned(nbytes, + (GFP_KERNEL | GFP_DMA), + &ch->remote_msgqueue_base); + if (ch->remote_msgqueue == NULL) { + continue; + } + memset(ch->remote_msgqueue, 0, nbytes); + + spin_lock_irqsave(&ch->lock, irq_flags); + if (nentries < ch->remote_nentries) { + dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, " + "partid=%d, channel=%d\n", nentries, + ch->remote_nentries, ch->partid, ch->number); + + ch->remote_nentries = nentries; + } + spin_unlock_irqrestore(&ch->lock, irq_flags); + return xpcSuccess; + } + + dev_dbg(xpc_chan, "can't get memory for cached remote message queue, " + "partid=%d, channel=%d\n", ch->partid, ch->number); + return xpcNoMemory; +} + + +/* + * Allocate message queues and other stuff associated with a channel. + * + * Note: Assumes all of the channel sizes are filled in. + */ +static enum xpc_retval +xpc_allocate_msgqueues(struct xpc_channel *ch) +{ + unsigned long irq_flags; + int i; + enum xpc_retval ret; + + + DBUG_ON(ch->flags & XPC_C_SETUP); + + if ((ret = xpc_allocate_local_msgqueue(ch)) != xpcSuccess) { + return ret; + } + + if ((ret = xpc_allocate_remote_msgqueue(ch)) != xpcSuccess) { + kfree(ch->local_msgqueue_base); + ch->local_msgqueue = NULL; + kfree(ch->notify_queue); + ch->notify_queue = NULL; + return ret; + } + + for (i = 0; i < ch->local_nentries; i++) { + /* use a semaphore as an event wait queue */ + sema_init(&ch->notify_queue[i].sema, 0); + } + + sema_init(&ch->teardown_sema, 0); /* event wait */ + + spin_lock_irqsave(&ch->lock, irq_flags); + ch->flags |= XPC_C_SETUP; + spin_unlock_irqrestore(&ch->lock, irq_flags); + + return xpcSuccess; +} + + +/* + * Process a connect message from a remote partition. + * + * Note: xpc_process_connect() is expecting to be called with the + * spin_lock_irqsave held and will leave it locked upon return. + */ +static void +xpc_process_connect(struct xpc_channel *ch, unsigned long *irq_flags) +{ + enum xpc_retval ret; + + + DBUG_ON(!spin_is_locked(&ch->lock)); + + if (!(ch->flags & XPC_C_OPENREQUEST) || + !(ch->flags & XPC_C_ROPENREQUEST)) { + /* nothing more to do for now */ + return; + } + DBUG_ON(!(ch->flags & XPC_C_CONNECTING)); + + if (!(ch->flags & XPC_C_SETUP)) { + spin_unlock_irqrestore(&ch->lock, *irq_flags); + ret = xpc_allocate_msgqueues(ch); + spin_lock_irqsave(&ch->lock, *irq_flags); + + if (ret != xpcSuccess) { + XPC_DISCONNECT_CHANNEL(ch, ret, irq_flags); + } + if (ch->flags & (XPC_C_CONNECTED | XPC_C_DISCONNECTING)) { + return; + } + + DBUG_ON(!(ch->flags & XPC_C_SETUP)); + DBUG_ON(ch->local_msgqueue == NULL); + DBUG_ON(ch->remote_msgqueue == NULL); + } + + if (!(ch->flags & XPC_C_OPENREPLY)) { + ch->flags |= XPC_C_OPENREPLY; + xpc_IPI_send_openreply(ch, irq_flags); + } + + if (!(ch->flags & XPC_C_ROPENREPLY)) { + return; + } + + DBUG_ON(ch->remote_msgqueue_pa == 0); + + ch->flags = (XPC_C_CONNECTED | XPC_C_SETUP); /* clear all else */ + + dev_info(xpc_chan, "channel %d to partition %d connected\n", + ch->number, ch->partid); + + spin_unlock_irqrestore(&ch->lock, *irq_flags); + xpc_create_kthreads(ch, 1); + spin_lock_irqsave(&ch->lock, *irq_flags); +} + + +/* + * Free up message queues and other stuff that were allocated for the specified + * channel. + * + * Note: ch->reason and ch->reason_line are left set for debugging purposes, + * they're cleared when XPC_C_DISCONNECTED is cleared. + */ +static void +xpc_free_msgqueues(struct xpc_channel *ch) +{ + DBUG_ON(!spin_is_locked(&ch->lock)); + DBUG_ON(atomic_read(&ch->n_to_notify) != 0); + + ch->remote_msgqueue_pa = 0; + ch->func = NULL; + ch->key = NULL; + ch->msg_size = 0; + ch->local_nentries = 0; + ch->remote_nentries = 0; + ch->kthreads_assigned_limit = 0; + ch->kthreads_idle_limit = 0; + + ch->local_GP->get = 0; + ch->local_GP->put = 0; + ch->remote_GP.get = 0; + ch->remote_GP.put = 0; + ch->w_local_GP.get = 0; + ch->w_local_GP.put = 0; + ch->w_remote_GP.get = 0; + ch->w_remote_GP.put = 0; + ch->next_msg_to_pull = 0; + + if (ch->flags & XPC_C_SETUP) { + ch->flags &= ~XPC_C_SETUP; + + dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n", + ch->flags, ch->partid, ch->number); + + kfree(ch->local_msgqueue_base); + ch->local_msgqueue = NULL; + kfree(ch->remote_msgqueue_base); + ch->remote_msgqueue = NULL; + kfree(ch->notify_queue); + ch->notify_queue = NULL; + + /* in case someone is waiting for the teardown to complete */ + up(&ch->teardown_sema); + } +} + + +/* + * spin_lock_irqsave() is expected to be held on entry. + */ +static void +xpc_process_disconnect(struct xpc_channel *ch, unsigned long *irq_flags) +{ + struct xpc_partition *part = &xpc_partitions[ch->partid]; + u32 ch_flags = ch->flags; + + + DBUG_ON(!spin_is_locked(&ch->lock)); + + if (!(ch->flags & XPC_C_DISCONNECTING)) { + return; + } + + DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); + + /* make sure all activity has settled down first */ + + if (atomic_read(&ch->references) > 0) { + return; + } + DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); + + /* it's now safe to free the channel's message queues */ + + xpc_free_msgqueues(ch); + DBUG_ON(ch->flags & XPC_C_SETUP); + + if (part->act_state != XPC_P_DEACTIVATING) { + + /* as long as the other side is up do the full protocol */ + + if (!(ch->flags & XPC_C_RCLOSEREQUEST)) { + return; + } + + if (!(ch->flags & XPC_C_CLOSEREPLY)) { + ch->flags |= XPC_C_CLOSEREPLY; + xpc_IPI_send_closereply(ch, irq_flags); + } + + if (!(ch->flags & XPC_C_RCLOSEREPLY)) { + return; + } + } + + /* both sides are disconnected now */ + + ch->flags = XPC_C_DISCONNECTED; /* clear all flags, but this one */ + + atomic_dec(&part->nchannels_active); + + if (ch_flags & XPC_C_WASCONNECTED) { + dev_info(xpc_chan, "channel %d to partition %d disconnected, " + "reason=%d\n", ch->number, ch->partid, ch->reason); + } +} + + +/* + * Process a change in the channel's remote connection state. + */ +static void +xpc_process_openclose_IPI(struct xpc_partition *part, int ch_number, + u8 IPI_flags) +{ + unsigned long irq_flags; + struct xpc_openclose_args *args = + &part->remote_openclose_args[ch_number]; + struct xpc_channel *ch = &part->channels[ch_number]; + enum xpc_retval reason; + + + + spin_lock_irqsave(&ch->lock, irq_flags); + + + if (IPI_flags & XPC_IPI_CLOSEREQUEST) { + + dev_dbg(xpc_chan, "XPC_IPI_CLOSEREQUEST (reason=%d) received " + "from partid=%d, channel=%d\n", args->reason, + ch->partid, ch->number); + + /* + * If RCLOSEREQUEST is set, we're probably waiting for + * RCLOSEREPLY. We should find it and a ROPENREQUEST packed + * with this RCLOSEQREUQEST in the IPI_flags. + */ + + if (ch->flags & XPC_C_RCLOSEREQUEST) { + DBUG_ON(!(ch->flags & XPC_C_DISCONNECTING)); + DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); + DBUG_ON(!(ch->flags & XPC_C_CLOSEREPLY)); + DBUG_ON(ch->flags & XPC_C_RCLOSEREPLY); + + DBUG_ON(!(IPI_flags & XPC_IPI_CLOSEREPLY)); + IPI_flags &= ~XPC_IPI_CLOSEREPLY; + ch->flags |= XPC_C_RCLOSEREPLY; + + /* both sides have finished disconnecting */ + xpc_process_disconnect(ch, &irq_flags); + } + + if (ch->flags & XPC_C_DISCONNECTED) { + // >>> explain this section + + if (!(IPI_flags & XPC_IPI_OPENREQUEST)) { + DBUG_ON(part->act_state != + XPC_P_DEACTIVATING); + spin_unlock_irqrestore(&ch->lock, irq_flags); + return; + } + + XPC_SET_REASON(ch, 0, 0); + ch->flags &= ~XPC_C_DISCONNECTED; + + atomic_inc(&part->nchannels_active); + ch->flags |= (XPC_C_CONNECTING | XPC_C_ROPENREQUEST); + } + + IPI_flags &= ~(XPC_IPI_OPENREQUEST | XPC_IPI_OPENREPLY); + + /* + * The meaningful CLOSEREQUEST connection state fields are: + * reason = reason connection is to be closed + */ + + ch->flags |= XPC_C_RCLOSEREQUEST; + + if (!(ch->flags & XPC_C_DISCONNECTING)) { + reason = args->reason; + if (reason <= xpcSuccess || reason > xpcUnknownReason) { + reason = xpcUnknownReason; + } else if (reason == xpcUnregistering) { + reason = xpcOtherUnregistering; + } + + XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); + } else { + xpc_process_disconnect(ch, &irq_flags); + } + } + + + if (IPI_flags & XPC_IPI_CLOSEREPLY) { + + dev_dbg(xpc_chan, "XPC_IPI_CLOSEREPLY received from partid=%d," + " channel=%d\n", ch->partid, ch->number); + + if (ch->flags & XPC_C_DISCONNECTED) { + DBUG_ON(part->act_state != XPC_P_DEACTIVATING); + spin_unlock_irqrestore(&ch->lock, irq_flags); + return; + } + + DBUG_ON(!(ch->flags & XPC_C_CLOSEREQUEST)); + DBUG_ON(!(ch->flags & XPC_C_RCLOSEREQUEST)); + + ch->flags |= XPC_C_RCLOSEREPLY; + + if (ch->flags & XPC_C_CLOSEREPLY) { + /* both sides have finished disconnecting */ + xpc_process_disconnect(ch, &irq_flags); + } + } + + + if (IPI_flags & XPC_IPI_OPENREQUEST) { + + dev_dbg(xpc_chan, "XPC_IPI_OPENREQUEST (msg_size=%d, " + "local_nentries=%d) received from partid=%d, " + "channel=%d\n", args->msg_size, args->local_nentries, + ch->partid, ch->number); + + if ((ch->flags & XPC_C_DISCONNECTING) || + part->act_state == XPC_P_DEACTIVATING) { + spin_unlock_irqrestore(&ch->lock, irq_flags); + return; + } + DBUG_ON(!(ch->flags & (XPC_C_DISCONNECTED | + XPC_C_OPENREQUEST))); + DBUG_ON(ch->flags & (XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | + XPC_C_OPENREPLY | XPC_C_CONNECTED)); + + /* + * The meaningful OPENREQUEST connection state fields are: + * msg_size = size of channel's messages in bytes + * local_nentries = remote partition's local_nentries + */ + DBUG_ON(args->msg_size == 0); + DBUG_ON(args->local_nentries == 0); + + ch->flags |= (XPC_C_ROPENREQUEST | XPC_C_CONNECTING); + ch->remote_nentries = args->local_nentries; + + + if (ch->flags & XPC_C_OPENREQUEST) { + if (args->msg_size != ch->msg_size) { + XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, + &irq_flags); + spin_unlock_irqrestore(&ch->lock, irq_flags); + return; + } + } else { + ch->msg_size = args->msg_size; + + XPC_SET_REASON(ch, 0, 0); + ch->flags &= ~XPC_C_DISCONNECTED; + + atomic_inc(&part->nchannels_active); + } + + xpc_process_connect(ch, &irq_flags); + } + + + if (IPI_flags & XPC_IPI_OPENREPLY) { + + dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY (local_msgqueue_pa=0x%lx, " + "local_nentries=%d, remote_nentries=%d) received from " + "partid=%d, channel=%d\n", args->local_msgqueue_pa, + args->local_nentries, args->remote_nentries, + ch->partid, ch->number); + + if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { + spin_unlock_irqrestore(&ch->lock, irq_flags); + return; + } + DBUG_ON(!(ch->flags & XPC_C_OPENREQUEST)); + DBUG_ON(!(ch->flags & XPC_C_ROPENREQUEST)); + DBUG_ON(ch->flags & XPC_C_CONNECTED); + + /* + * The meaningful OPENREPLY connection state fields are: + * local_msgqueue_pa = physical address of remote + * partition's local_msgqueue + * local_nentries = remote partition's local_nentries + * remote_nentries = remote partition's remote_nentries + */ + DBUG_ON(args->local_msgqueue_pa == 0); + DBUG_ON(args->local_nentries == 0); + DBUG_ON(args->remote_nentries == 0); + + ch->flags |= XPC_C_ROPENREPLY; + ch->remote_msgqueue_pa = args->local_msgqueue_pa; + + if (args->local_nentries < ch->remote_nentries) { + dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " + "remote_nentries=%d, old remote_nentries=%d, " + "partid=%d, channel=%d\n", + args->local_nentries, ch->remote_nentries, + ch->partid, ch->number); + + ch->remote_nentries = args->local_nentries; + } + if (args->remote_nentries < ch->local_nentries) { + dev_dbg(xpc_chan, "XPC_IPI_OPENREPLY: new " + "local_nentries=%d, old local_nentries=%d, " + "partid=%d, channel=%d\n", + args->remote_nentries, ch->local_nentries, + ch->partid, ch->number); + + ch->local_nentries = args->remote_nentries; + } + + xpc_process_connect(ch, &irq_flags); + } + + spin_unlock_irqrestore(&ch->lock, irq_flags); +} + + +/* + * Attempt to establish a channel connection to a remote partition. + */ +static enum xpc_retval +xpc_connect_channel(struct xpc_channel *ch) +{ + unsigned long irq_flags; + struct xpc_registration *registration = &xpc_registrations[ch->number]; + + + if (down_interruptible(®istration->sema) != 0) { + return xpcInterrupted; + } + + if (!XPC_CHANNEL_REGISTERED(ch->number)) { + up(®istration->sema); + return xpcUnregistered; + } + + spin_lock_irqsave(&ch->lock, irq_flags); + + DBUG_ON(ch->flags & XPC_C_CONNECTED); + DBUG_ON(ch->flags & XPC_C_OPENREQUEST); + + if (ch->flags & XPC_C_DISCONNECTING) { + spin_unlock_irqrestore(&ch->lock, irq_flags); + up(®istration->sema); + return ch->reason; + } + + + /* add info from the channel connect registration to the channel */ + + ch->kthreads_assigned_limit = registration->assigned_limit; + ch->kthreads_idle_limit = registration->idle_limit; + DBUG_ON(atomic_read(&ch->kthreads_assigned) != 0); + DBUG_ON(atomic_read(&ch->kthreads_idle) != 0); + DBUG_ON(atomic_read(&ch->kthreads_active) != 0); + + ch->func = registration->func; + DBUG_ON(registration->func == NULL); + ch->key = registration->key; + + ch->local_nentries = registration->nentries; + + if (ch->flags & XPC_C_ROPENREQUEST) { + if (registration->msg_size != ch->msg_size) { + /* the local and remote sides aren't the same */ + + /* + * Because XPC_DISCONNECT_CHANNEL() can block we're + * forced to up the registration sema before we unlock + * the channel lock. But that's okay here because we're + * done with the part that required the registration + * sema. XPC_DISCONNECT_CHANNEL() requires that the + * channel lock be locked and will unlock and relock + * the channel lock as needed. + */ + up(®istration->sema); + XPC_DISCONNECT_CHANNEL(ch, xpcUnequalMsgSizes, + &irq_flags); + spin_unlock_irqrestore(&ch->lock, irq_flags); + return xpcUnequalMsgSizes; + } + } else { + ch->msg_size = registration->msg_size; + + XPC_SET_REASON(ch, 0, 0); + ch->flags &= ~XPC_C_DISCONNECTED; + + atomic_inc(&xpc_partitions[ch->partid].nchannels_active); + } + + up(®istration->sema); + + + /* initiate the connection */ + + ch->flags |= (XPC_C_OPENREQUEST | XPC_C_CONNECTING); + xpc_IPI_send_openrequest(ch, &irq_flags); + + xpc_process_connect(ch, &irq_flags); + + spin_unlock_irqrestore(&ch->lock, irq_flags); + + return xpcSuccess; +} + + +/* + * Notify those who wanted to be notified upon delivery of their message. + */ +static void +xpc_notify_senders(struct xpc_channel *ch, enum xpc_retval reason, s64 put) +{ + struct xpc_notify *notify; + u8 notify_type; + s64 get = ch->w_remote_GP.get - 1; + + + while (++get < put && atomic_read(&ch->n_to_notify) > 0) { + + notify = &ch->notify_queue[get % ch->local_nentries]; + + /* + * See if the notify entry indicates it was associated with + * a message who's sender wants to be notified. It is possible + * that it is, but someone else is doing or has done the + * notification. + */ + notify_type = notify->type; + if (notify_type == 0 || + cmpxchg(¬ify->type, notify_type, 0) != + notify_type) { + continue; + } + + DBUG_ON(notify_type != XPC_N_CALL); + + atomic_dec(&ch->n_to_notify); + + if (notify->func != NULL) { + dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, " + "msg_number=%ld, partid=%d, channel=%d\n", + (void *) notify, get, ch->partid, ch->number); + + notify->func(reason, ch->partid, ch->number, + notify->key); + + dev_dbg(xpc_chan, "notify->func() returned, " + "notify=0x%p, msg_number=%ld, partid=%d, " + "channel=%d\n", (void *) notify, get, + ch->partid, ch->number); + } + } +} + + +/* + * Clear some of the msg flags in the local message queue. + */ +static inline void +xpc_clear_local_msgqueue_flags(struct xpc_channel *ch) +{ + struct xpc_msg *msg; + s64 get; + + + get = ch->w_remote_GP.get; + do { + msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + + (get % ch->local_nentries) * ch->msg_size); + msg->flags = 0; + } while (++get < (volatile s64) ch->remote_GP.get); +} + + +/* + * Clear some of the msg flags in the remote message queue. + */ +static inline void +xpc_clear_remote_msgqueue_flags(struct xpc_channel *ch) +{ + struct xpc_msg *msg; + s64 put; + + + put = ch->w_remote_GP.put; + do { + msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + + (put % ch->remote_nentries) * ch->msg_size); + msg->flags = 0; + } while (++put < (volatile s64) ch->remote_GP.put); +} + + +static void +xpc_process_msg_IPI(struct xpc_partition *part, int ch_number) +{ + struct xpc_channel *ch = &part->channels[ch_number]; + int nmsgs_sent; + + + ch->remote_GP = part->remote_GPs[ch_number]; + + + /* See what, if anything, has changed for each connected channel */ + + xpc_msgqueue_ref(ch); + + if (ch->w_remote_GP.get == ch->remote_GP.get && + ch->w_remote_GP.put == ch->remote_GP.put) { + /* nothing changed since GPs were last pulled */ + xpc_msgqueue_deref(ch); + return; + } + + if (!(ch->flags & XPC_C_CONNECTED)){ + xpc_msgqueue_deref(ch); + return; + } + + + /* + * First check to see if messages recently sent by us have been + * received by the other side. (The remote GET value will have + * changed since we last looked at it.) + */ + + if (ch->w_remote_GP.get != ch->remote_GP.get) { + + /* + * We need to notify any senders that want to be notified + * that their sent messages have been received by their + * intended recipients. We need to do this before updating + * w_remote_GP.get so that we don't allocate the same message + * queue entries prematurely (see xpc_allocate_msg()). + */ + if (atomic_read(&ch->n_to_notify) > 0) { + /* + * Notify senders that messages sent have been + * received and delivered by the other side. + */ + xpc_notify_senders(ch, xpcMsgDelivered, + ch->remote_GP.get); + } + + /* + * Clear msg->flags in previously sent messages, so that + * they're ready for xpc_allocate_msg(). + */ + xpc_clear_local_msgqueue_flags(ch); + + (volatile s64) ch->w_remote_GP.get = ch->remote_GP.get; + + dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, " + "channel=%d\n", ch->w_remote_GP.get, ch->partid, + ch->number); + + /* + * If anyone was waiting for message queue entries to become + * available, wake them up. + */ + if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { + wake_up(&ch->msg_allocate_wq); + } + } + + + /* + * Now check for newly sent messages by the other side. (The remote + * PUT value will have changed since we last looked at it.) + */ + + if (ch->w_remote_GP.put != ch->remote_GP.put) { + /* + * Clear msg->flags in previously received messages, so that + * they're ready for xpc_get_deliverable_msg(). + */ + xpc_clear_remote_msgqueue_flags(ch); + + (volatile s64) ch->w_remote_GP.put = ch->remote_GP.put; + + dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, " + "channel=%d\n", ch->w_remote_GP.put, ch->partid, + ch->number); + + nmsgs_sent = ch->w_remote_GP.put - ch->w_local_GP.get; + if (nmsgs_sent > 0) { + dev_dbg(xpc_chan, "msgs waiting to be copied and " + "delivered=%d, partid=%d, channel=%d\n", + nmsgs_sent, ch->partid, ch->number); + + if (ch->flags & XPC_C_CONNECTCALLOUT) { + xpc_activate_kthreads(ch, nmsgs_sent); + } + } + } + + xpc_msgqueue_deref(ch); +} + + +void +xpc_process_channel_activity(struct xpc_partition *part) +{ + unsigned long irq_flags; + u64 IPI_amo, IPI_flags; + struct xpc_channel *ch; + int ch_number; + + + IPI_amo = xpc_get_IPI_flags(part); + + /* + * Initiate channel connections for registered channels. + * + * For each connected channel that has pending messages activate idle + * kthreads and/or create new kthreads as needed. + */ + + for (ch_number = 0; ch_number < part->nchannels; ch_number++) { + ch = &part->channels[ch_number]; + + + /* + * Process any open or close related IPI flags, and then deal + * with connecting or disconnecting the channel as required. + */ + + IPI_flags = XPC_GET_IPI_FLAGS(IPI_amo, ch_number); + + if (XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(IPI_flags)) { + xpc_process_openclose_IPI(part, ch_number, IPI_flags); + } + + + if (ch->flags & XPC_C_DISCONNECTING) { + spin_lock_irqsave(&ch->lock, irq_flags); + xpc_process_disconnect(ch, &irq_flags); + spin_unlock_irqrestore(&ch->lock, irq_flags); + continue; + } + + if (part->act_state == XPC_P_DEACTIVATING) { + continue; + } + + if (!(ch->flags & XPC_C_CONNECTED)) { + if (!(ch->flags & XPC_C_OPENREQUEST)) { + DBUG_ON(ch->flags & XPC_C_SETUP); + (void) xpc_connect_channel(ch); + } else { + spin_lock_irqsave(&ch->lock, irq_flags); + xpc_process_connect(ch, &irq_flags); + spin_unlock_irqrestore(&ch->lock, irq_flags); + } + continue; + } + + + /* + * Process any message related IPI flags, this may involve the + * activation of kthreads to deliver any pending messages sent + * from the other partition. + */ + + if (XPC_ANY_MSG_IPI_FLAGS_SET(IPI_flags)) { + xpc_process_msg_IPI(part, ch_number); + } + } +} + + +/* + * XPC's heartbeat code calls this function to inform XPC that a partition has + * gone down. XPC responds by tearing down the XPartition Communication + * infrastructure used for the just downed partition. + * + * XPC's heartbeat code will never call this function and xpc_partition_up() + * at the same time. Nor will it ever make multiple calls to either function + * at the same time. + */ +void +xpc_partition_down(struct xpc_partition *part, enum xpc_retval reason) +{ + unsigned long irq_flags; + int ch_number; + struct xpc_channel *ch; + + + dev_dbg(xpc_chan, "deactivating partition %d, reason=%d\n", + XPC_PARTID(part), reason); + + if (!xpc_part_ref(part)) { + /* infrastructure for this partition isn't currently set up */ + return; + } + + + /* disconnect all channels associated with the downed partition */ + + for (ch_number = 0; ch_number < part->nchannels; ch_number++) { + ch = &part->channels[ch_number]; + + + xpc_msgqueue_ref(ch); + spin_lock_irqsave(&ch->lock, irq_flags); + + XPC_DISCONNECT_CHANNEL(ch, reason, &irq_flags); + + spin_unlock_irqrestore(&ch->lock, irq_flags); + xpc_msgqueue_deref(ch); + } + + xpc_wakeup_channel_mgr(part); + + xpc_part_deref(part); +} + + +/* + * Teardown the infrastructure necessary to support XPartition Communication + * between the specified remote partition and the local one. + */ +void +xpc_teardown_infrastructure(struct xpc_partition *part) +{ + partid_t partid = XPC_PARTID(part); + + + /* + * We start off by making this partition inaccessible to local + * processes by marking it as no longer setup. Then we make it + * inaccessible to remote processes by clearing the XPC per partition + * specific variable's magic # (which indicates that these variables + * are no longer valid) and by ignoring all XPC notify IPIs sent to + * this partition. + */ + + DBUG_ON(atomic_read(&part->nchannels_active) != 0); + DBUG_ON(part->setup_state != XPC_P_SETUP); + part->setup_state = XPC_P_WTEARDOWN; + + xpc_vars_part[partid].magic = 0; + + + free_irq(SGI_XPC_NOTIFY, (void *) (u64) partid); + + + /* + * Before proceding with the teardown we have to wait until all + * existing references cease. + */ + wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); + + + /* now we can begin tearing down the infrastructure */ + + part->setup_state = XPC_P_TORNDOWN; + + /* in case we've still got outstanding timers registered... */ + del_timer_sync(&part->dropped_IPI_timer); + + kfree(part->remote_openclose_args_base); + part->remote_openclose_args = NULL; + kfree(part->local_openclose_args_base); + part->local_openclose_args = NULL; + kfree(part->remote_GPs_base); + part->remote_GPs = NULL; + kfree(part->local_GPs_base); + part->local_GPs = NULL; + kfree(part->channels); + part->channels = NULL; + part->local_IPI_amo_va = NULL; +} + + +/* + * Called by XP at the time of channel connection registration to cause + * XPC to establish connections to all currently active partitions. + */ +void +xpc_initiate_connect(int ch_number) +{ + partid_t partid; + struct xpc_partition *part; + struct xpc_channel *ch; + + + DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); + + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + part = &xpc_partitions[partid]; + + if (xpc_part_ref(part)) { + ch = &part->channels[ch_number]; + + if (!(ch->flags & XPC_C_DISCONNECTING)) { + DBUG_ON(ch->flags & XPC_C_OPENREQUEST); + DBUG_ON(ch->flags & XPC_C_CONNECTED); + DBUG_ON(ch->flags & XPC_C_SETUP); + + /* + * Initiate the establishment of a connection + * on the newly registered channel to the + * remote partition. + */ + xpc_wakeup_channel_mgr(part); + } + + xpc_part_deref(part); + } + } +} + + +void +xpc_connected_callout(struct xpc_channel *ch) +{ + unsigned long irq_flags; + + + /* let the registerer know that a connection has been established */ + + if (ch->func != NULL) { + dev_dbg(xpc_chan, "ch->func() called, reason=xpcConnected, " + "partid=%d, channel=%d\n", ch->partid, ch->number); + + ch->func(xpcConnected, ch->partid, ch->number, + (void *) (u64) ch->local_nentries, ch->key); + + dev_dbg(xpc_chan, "ch->func() returned, reason=xpcConnected, " + "partid=%d, channel=%d\n", ch->partid, ch->number); + } + + spin_lock_irqsave(&ch->lock, irq_flags); + ch->flags |= XPC_C_CONNECTCALLOUT; + spin_unlock_irqrestore(&ch->lock, irq_flags); +} + + +/* + * Called by XP at the time of channel connection unregistration to cause + * XPC to teardown all current connections for the specified channel. + * + * Before returning xpc_initiate_disconnect() will wait until all connections + * on the specified channel have been closed/torndown. So the caller can be + * assured that they will not be receiving any more callouts from XPC to the + * function they registered via xpc_connect(). + * + * Arguments: + * + * ch_number - channel # to unregister. + */ +void +xpc_initiate_disconnect(int ch_number) +{ + unsigned long irq_flags; + partid_t partid; + struct xpc_partition *part; + struct xpc_channel *ch; + + + DBUG_ON(ch_number < 0 || ch_number >= XPC_NCHANNELS); + + /* initiate the channel disconnect for every active partition */ + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + part = &xpc_partitions[partid]; + + if (xpc_part_ref(part)) { + ch = &part->channels[ch_number]; + xpc_msgqueue_ref(ch); + + spin_lock_irqsave(&ch->lock, irq_flags); + + XPC_DISCONNECT_CHANNEL(ch, xpcUnregistering, + &irq_flags); + + spin_unlock_irqrestore(&ch->lock, irq_flags); + + xpc_msgqueue_deref(ch); + xpc_part_deref(part); + } + } + + xpc_disconnect_wait(ch_number); +} + + +/* + * To disconnect a channel, and reflect it back to all who may be waiting. + * + * >>> An OPEN is not allowed until XPC_C_DISCONNECTING is cleared by + * >>> xpc_free_msgqueues(). + * + * THE CHANNEL IS TO BE LOCKED BY THE CALLER AND WILL REMAIN LOCKED UPON RETURN. + */ +void +xpc_disconnect_channel(const int line, struct xpc_channel *ch, + enum xpc_retval reason, unsigned long *irq_flags) +{ + u32 flags; + + + DBUG_ON(!spin_is_locked(&ch->lock)); + + if (ch->flags & (XPC_C_DISCONNECTING | XPC_C_DISCONNECTED)) { + return; + } + DBUG_ON(!(ch->flags & (XPC_C_CONNECTING | XPC_C_CONNECTED))); + + dev_dbg(xpc_chan, "reason=%d, line=%d, partid=%d, channel=%d\n", + reason, line, ch->partid, ch->number); + + XPC_SET_REASON(ch, reason, line); + + flags = ch->flags; + /* some of these may not have been set */ + ch->flags &= ~(XPC_C_OPENREQUEST | XPC_C_OPENREPLY | + XPC_C_ROPENREQUEST | XPC_C_ROPENREPLY | + XPC_C_CONNECTING | XPC_C_CONNECTED); + + ch->flags |= (XPC_C_CLOSEREQUEST | XPC_C_DISCONNECTING); + xpc_IPI_send_closerequest(ch, irq_flags); + + if (flags & XPC_C_CONNECTED) { + ch->flags |= XPC_C_WASCONNECTED; + } + + if (atomic_read(&ch->kthreads_idle) > 0) { + /* wake all idle kthreads so they can exit */ + wake_up_all(&ch->idle_wq); + } + + spin_unlock_irqrestore(&ch->lock, *irq_flags); + + + /* wake those waiting to allocate an entry from the local msg queue */ + + if (atomic_read(&ch->n_on_msg_allocate_wq) > 0) { + wake_up(&ch->msg_allocate_wq); + } + + /* wake those waiting for notify completion */ + + if (atomic_read(&ch->n_to_notify) > 0) { + xpc_notify_senders(ch, reason, ch->w_local_GP.put); + } + + spin_lock_irqsave(&ch->lock, *irq_flags); +} + + +void +xpc_disconnected_callout(struct xpc_channel *ch) +{ + /* + * Let the channel's registerer know that the channel is now + * disconnected. We don't want to do this if the registerer was never + * informed of a connection being made, unless the disconnect was for + * abnormal reasons. + */ + + if (ch->func != NULL) { + dev_dbg(xpc_chan, "ch->func() called, reason=%d, partid=%d, " + "channel=%d\n", ch->reason, ch->partid, ch->number); + + ch->func(ch->reason, ch->partid, ch->number, NULL, ch->key); + + dev_dbg(xpc_chan, "ch->func() returned, reason=%d, partid=%d, " + "channel=%d\n", ch->reason, ch->partid, ch->number); + } +} + + +/* + * Wait for a message entry to become available for the specified channel, + * but don't wait any longer than 1 jiffy. + */ +static enum xpc_retval +xpc_allocate_msg_wait(struct xpc_channel *ch) +{ + enum xpc_retval ret; + + + if (ch->flags & XPC_C_DISCONNECTING) { + DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? + return ch->reason; + } + + atomic_inc(&ch->n_on_msg_allocate_wq); + ret = interruptible_sleep_on_timeout(&ch->msg_allocate_wq, 1); + atomic_dec(&ch->n_on_msg_allocate_wq); + + if (ch->flags & XPC_C_DISCONNECTING) { + ret = ch->reason; + DBUG_ON(ch->reason == xpcInterrupted); // >>> Is this true? + } else if (ret == 0) { + ret = xpcTimeout; + } else { + ret = xpcInterrupted; + } + + return ret; +} + + +/* + * Allocate an entry for a message from the message queue associated with the + * specified channel. + */ +static enum xpc_retval +xpc_allocate_msg(struct xpc_channel *ch, u32 flags, + struct xpc_msg **address_of_msg) +{ + struct xpc_msg *msg; + enum xpc_retval ret; + s64 put; + + + /* this reference will be dropped in xpc_send_msg() */ + xpc_msgqueue_ref(ch); + + if (ch->flags & XPC_C_DISCONNECTING) { + xpc_msgqueue_deref(ch); + return ch->reason; + } + if (!(ch->flags & XPC_C_CONNECTED)) { + xpc_msgqueue_deref(ch); + return xpcNotConnected; + } + + + /* + * Get the next available message entry from the local message queue. + * If none are available, we'll make sure that we grab the latest + * GP values. + */ + ret = xpcTimeout; + + while (1) { + + put = (volatile s64) ch->w_local_GP.put; + if (put - (volatile s64) ch->w_remote_GP.get < + ch->local_nentries) { + + /* There are available message entries. We need to try + * to secure one for ourselves. We'll do this by trying + * to increment w_local_GP.put as long as someone else + * doesn't beat us to it. If they do, we'll have to + * try again. + */ + if (cmpxchg(&ch->w_local_GP.put, put, put + 1) == + put) { + /* we got the entry referenced by put */ + break; + } + continue; /* try again */ + } + + + /* + * There aren't any available msg entries at this time. + * + * In waiting for a message entry to become available, + * we set a timeout in case the other side is not + * sending completion IPIs. This lets us fake an IPI + * that will cause the IPI handler to fetch the latest + * GP values as if an IPI was sent by the other side. + */ + if (ret == xpcTimeout) { + xpc_IPI_send_local_msgrequest(ch); + } + + if (flags & XPC_NOWAIT) { + xpc_msgqueue_deref(ch); + return xpcNoWait; + } + + ret = xpc_allocate_msg_wait(ch); + if (ret != xpcInterrupted && ret != xpcTimeout) { + xpc_msgqueue_deref(ch); + return ret; + } + } + + + /* get the message's address and initialize it */ + msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + + (put % ch->local_nentries) * ch->msg_size); + + + DBUG_ON(msg->flags != 0); + msg->number = put; + + dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, " + "msg_number=%ld, partid=%d, channel=%d\n", put + 1, + (void *) msg, msg->number, ch->partid, ch->number); + + *address_of_msg = msg; + + return xpcSuccess; +} + + +/* + * Allocate an entry for a message from the message queue associated with the + * specified channel. NOTE that this routine can sleep waiting for a message + * entry to become available. To not sleep, pass in the XPC_NOWAIT flag. + * + * Arguments: + * + * partid - ID of partition to which the channel is connected. + * ch_number - channel #. + * flags - see xpc.h for valid flags. + * payload - address of the allocated payload area pointer (filled in on + * return) in which the user-defined message is constructed. + */ +enum xpc_retval +xpc_initiate_allocate(partid_t partid, int ch_number, u32 flags, void **payload) +{ + struct xpc_partition *part = &xpc_partitions[partid]; + enum xpc_retval ret = xpcUnknownReason; + struct xpc_msg *msg; + + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); + + *payload = NULL; + + if (xpc_part_ref(part)) { + ret = xpc_allocate_msg(&part->channels[ch_number], flags, &msg); + xpc_part_deref(part); + + if (msg != NULL) { + *payload = &msg->payload; + } + } + + return ret; +} + + +/* + * Now we actually send the messages that are ready to be sent by advancing + * the local message queue's Put value and then send an IPI to the recipient + * partition. + */ +static void +xpc_send_msgs(struct xpc_channel *ch, s64 initial_put) +{ + struct xpc_msg *msg; + s64 put = initial_put + 1; + int send_IPI = 0; + + + while (1) { + + while (1) { + if (put == (volatile s64) ch->w_local_GP.put) { + break; + } + + msg = (struct xpc_msg *) ((u64) ch->local_msgqueue + + (put % ch->local_nentries) * ch->msg_size); + + if (!(msg->flags & XPC_M_READY)) { + break; + } + + put++; + } + + if (put == initial_put) { + /* nothing's changed */ + break; + } + + if (cmpxchg_rel(&ch->local_GP->put, initial_put, put) != + initial_put) { + /* someone else beat us to it */ + DBUG_ON((volatile s64) ch->local_GP->put < initial_put); + break; + } + + /* we just set the new value of local_GP->put */ + + dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, " + "channel=%d\n", put, ch->partid, ch->number); + + send_IPI = 1; + + /* + * We need to ensure that the message referenced by + * local_GP->put is not XPC_M_READY or that local_GP->put + * equals w_local_GP.put, so we'll go have a look. + */ + initial_put = put; + } + + if (send_IPI) { + xpc_IPI_send_msgrequest(ch); + } +} + + +/* + * Common code that does the actual sending of the message by advancing the + * local message queue's Put value and sends an IPI to the partition the + * message is being sent to. + */ +static enum xpc_retval +xpc_send_msg(struct xpc_channel *ch, struct xpc_msg *msg, u8 notify_type, + xpc_notify_func func, void *key) +{ + enum xpc_retval ret = xpcSuccess; + struct xpc_notify *notify = NULL; // >>> to keep the compiler happy!! + s64 put, msg_number = msg->number; + + + DBUG_ON(notify_type == XPC_N_CALL && func == NULL); + DBUG_ON((((u64) msg - (u64) ch->local_msgqueue) / ch->msg_size) != + msg_number % ch->local_nentries); + DBUG_ON(msg->flags & XPC_M_READY); + + if (ch->flags & XPC_C_DISCONNECTING) { + /* drop the reference grabbed in xpc_allocate_msg() */ + xpc_msgqueue_deref(ch); + return ch->reason; + } + + if (notify_type != 0) { + /* + * Tell the remote side to send an ACK interrupt when the + * message has been delivered. + */ + msg->flags |= XPC_M_INTERRUPT; + + atomic_inc(&ch->n_to_notify); + + notify = &ch->notify_queue[msg_number % ch->local_nentries]; + notify->func = func; + notify->key = key; + (volatile u8) notify->type = notify_type; + + // >>> is a mb() needed here? + + if (ch->flags & XPC_C_DISCONNECTING) { + /* + * An error occurred between our last error check and + * this one. We will try to clear the type field from + * the notify entry. If we succeed then + * xpc_disconnect_channel() didn't already process + * the notify entry. + */ + if (cmpxchg(¬ify->type, notify_type, 0) == + notify_type) { + atomic_dec(&ch->n_to_notify); + ret = ch->reason; + } + + /* drop the reference grabbed in xpc_allocate_msg() */ + xpc_msgqueue_deref(ch); + return ret; + } + } + + msg->flags |= XPC_M_READY; + + /* + * The preceding store of msg->flags must occur before the following + * load of ch->local_GP->put. + */ + mb(); + + /* see if the message is next in line to be sent, if so send it */ + + put = ch->local_GP->put; + if (put == msg_number) { + xpc_send_msgs(ch, put); + } + + /* drop the reference grabbed in xpc_allocate_msg() */ + xpc_msgqueue_deref(ch); + return ret; +} + + +/* + * Send a message previously allocated using xpc_initiate_allocate() on the + * specified channel connected to the specified partition. + * + * This routine will not wait for the message to be received, nor will + * notification be given when it does happen. Once this routine has returned + * the message entry allocated via xpc_initiate_allocate() is no longer + * accessable to the caller. + * + * This routine, although called by users, does not call xpc_part_ref() to + * ensure that the partition infrastructure is in place. It relies on the + * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). + * + * Arguments: + * + * partid - ID of partition to which the channel is connected. + * ch_number - channel # to send message on. + * payload - pointer to the payload area allocated via + * xpc_initiate_allocate(). + */ +enum xpc_retval +xpc_initiate_send(partid_t partid, int ch_number, void *payload) +{ + struct xpc_partition *part = &xpc_partitions[partid]; + struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); + enum xpc_retval ret; + + + dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, + partid, ch_number); + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); + DBUG_ON(msg == NULL); + + ret = xpc_send_msg(&part->channels[ch_number], msg, 0, NULL, NULL); + + return ret; +} + + +/* + * Send a message previously allocated using xpc_initiate_allocate on the + * specified channel connected to the specified partition. + * + * This routine will not wait for the message to be sent. Once this routine + * has returned the message entry allocated via xpc_initiate_allocate() is no + * longer accessable to the caller. + * + * Once the remote end of the channel has received the message, the function + * passed as an argument to xpc_initiate_send_notify() will be called. This + * allows the sender to free up or re-use any buffers referenced by the + * message, but does NOT mean the message has been processed at the remote + * end by a receiver. + * + * If this routine returns an error, the caller's function will NOT be called. + * + * This routine, although called by users, does not call xpc_part_ref() to + * ensure that the partition infrastructure is in place. It relies on the + * fact that we called xpc_msgqueue_ref() in xpc_allocate_msg(). + * + * Arguments: + * + * partid - ID of partition to which the channel is connected. + * ch_number - channel # to send message on. + * payload - pointer to the payload area allocated via + * xpc_initiate_allocate(). + * func - function to call with asynchronous notification of message + * receipt. THIS FUNCTION MUST BE NON-BLOCKING. + * key - user-defined key to be passed to the function when it's called. + */ +enum xpc_retval +xpc_initiate_send_notify(partid_t partid, int ch_number, void *payload, + xpc_notify_func func, void *key) +{ + struct xpc_partition *part = &xpc_partitions[partid]; + struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); + enum xpc_retval ret; + + + dev_dbg(xpc_chan, "msg=0x%p, partid=%d, channel=%d\n", (void *) msg, + partid, ch_number); + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); + DBUG_ON(msg == NULL); + DBUG_ON(func == NULL); + + ret = xpc_send_msg(&part->channels[ch_number], msg, XPC_N_CALL, + func, key); + return ret; +} + + +static struct xpc_msg * +xpc_pull_remote_msg(struct xpc_channel *ch, s64 get) +{ + struct xpc_partition *part = &xpc_partitions[ch->partid]; + struct xpc_msg *remote_msg, *msg; + u32 msg_index, nmsgs; + u64 msg_offset; + enum xpc_retval ret; + + + if (down_interruptible(&ch->msg_to_pull_sema) != 0) { + /* we were interrupted by a signal */ + return NULL; + } + + while (get >= ch->next_msg_to_pull) { + + /* pull as many messages as are ready and able to be pulled */ + + msg_index = ch->next_msg_to_pull % ch->remote_nentries; + + DBUG_ON(ch->next_msg_to_pull >= + (volatile s64) ch->w_remote_GP.put); + nmsgs = (volatile s64) ch->w_remote_GP.put - + ch->next_msg_to_pull; + if (msg_index + nmsgs > ch->remote_nentries) { + /* ignore the ones that wrap the msg queue for now */ + nmsgs = ch->remote_nentries - msg_index; + } + + msg_offset = msg_index * ch->msg_size; + msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + + msg_offset); + remote_msg = (struct xpc_msg *) (ch->remote_msgqueue_pa + + msg_offset); + + if ((ret = xpc_pull_remote_cachelines(part, msg, remote_msg, + nmsgs * ch->msg_size)) != xpcSuccess) { + + dev_dbg(xpc_chan, "failed to pull %d msgs starting with" + " msg %ld from partition %d, channel=%d, " + "ret=%d\n", nmsgs, ch->next_msg_to_pull, + ch->partid, ch->number, ret); + + XPC_DEACTIVATE_PARTITION(part, ret); + + up(&ch->msg_to_pull_sema); + return NULL; + } + + mb(); /* >>> this may not be needed, we're not sure */ + + ch->next_msg_to_pull += nmsgs; + } + + up(&ch->msg_to_pull_sema); + + /* return the message we were looking for */ + msg_offset = (get % ch->remote_nentries) * ch->msg_size; + msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + msg_offset); + + return msg; +} + + +/* + * Get a message to be delivered. + */ +static struct xpc_msg * +xpc_get_deliverable_msg(struct xpc_channel *ch) +{ + struct xpc_msg *msg = NULL; + s64 get; + + + do { + if ((volatile u32) ch->flags & XPC_C_DISCONNECTING) { + break; + } + + get = (volatile s64) ch->w_local_GP.get; + if (get == (volatile s64) ch->w_remote_GP.put) { + break; + } + + /* There are messages waiting to be pulled and delivered. + * We need to try to secure one for ourselves. We'll do this + * by trying to increment w_local_GP.get and hope that no one + * else beats us to it. If they do, we'll we'll simply have + * to try again for the next one. + */ + + if (cmpxchg(&ch->w_local_GP.get, get, get + 1) == get) { + /* we got the entry referenced by get */ + + dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, " + "partid=%d, channel=%d\n", get + 1, + ch->partid, ch->number); + + /* pull the message from the remote partition */ + + msg = xpc_pull_remote_msg(ch, get); + + DBUG_ON(msg != NULL && msg->number != get); + DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE)); + DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY)); + + break; + } + + } while (1); + + return msg; +} + + +/* + * Deliver a message to its intended recipient. + */ +void +xpc_deliver_msg(struct xpc_channel *ch) +{ + struct xpc_msg *msg; + + + if ((msg = xpc_get_deliverable_msg(ch)) != NULL) { + + /* + * This ref is taken to protect the payload itself from being + * freed before the user is finished with it, which the user + * indicates by calling xpc_initiate_received(). + */ + xpc_msgqueue_ref(ch); + + atomic_inc(&ch->kthreads_active); + + if (ch->func != NULL) { + dev_dbg(xpc_chan, "ch->func() called, msg=0x%p, " + "msg_number=%ld, partid=%d, channel=%d\n", + (void *) msg, msg->number, ch->partid, + ch->number); + + /* deliver the message to its intended recipient */ + ch->func(xpcMsgReceived, ch->partid, ch->number, + &msg->payload, ch->key); + + dev_dbg(xpc_chan, "ch->func() returned, msg=0x%p, " + "msg_number=%ld, partid=%d, channel=%d\n", + (void *) msg, msg->number, ch->partid, + ch->number); + } + + atomic_dec(&ch->kthreads_active); + } +} + + +/* + * Now we actually acknowledge the messages that have been delivered and ack'd + * by advancing the cached remote message queue's Get value and if requested + * send an IPI to the message sender's partition. + */ +static void +xpc_acknowledge_msgs(struct xpc_channel *ch, s64 initial_get, u8 msg_flags) +{ + struct xpc_msg *msg; + s64 get = initial_get + 1; + int send_IPI = 0; + + + while (1) { + + while (1) { + if (get == (volatile s64) ch->w_local_GP.get) { + break; + } + + msg = (struct xpc_msg *) ((u64) ch->remote_msgqueue + + (get % ch->remote_nentries) * ch->msg_size); + + if (!(msg->flags & XPC_M_DONE)) { + break; + } + + msg_flags |= msg->flags; + get++; + } + + if (get == initial_get) { + /* nothing's changed */ + break; + } + + if (cmpxchg_rel(&ch->local_GP->get, initial_get, get) != + initial_get) { + /* someone else beat us to it */ + DBUG_ON((volatile s64) ch->local_GP->get <= + initial_get); + break; + } + + /* we just set the new value of local_GP->get */ + + dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, " + "channel=%d\n", get, ch->partid, ch->number); + + send_IPI = (msg_flags & XPC_M_INTERRUPT); + + /* + * We need to ensure that the message referenced by + * local_GP->get is not XPC_M_DONE or that local_GP->get + * equals w_local_GP.get, so we'll go have a look. + */ + initial_get = get; + } + + if (send_IPI) { + xpc_IPI_send_msgrequest(ch); + } +} + + +/* + * Acknowledge receipt of a delivered message. + * + * If a message has XPC_M_INTERRUPT set, send an interrupt to the partition + * that sent the message. + * + * This function, although called by users, does not call xpc_part_ref() to + * ensure that the partition infrastructure is in place. It relies on the + * fact that we called xpc_msgqueue_ref() in xpc_deliver_msg(). + * + * Arguments: + * + * partid - ID of partition to which the channel is connected. + * ch_number - channel # message received on. + * payload - pointer to the payload area allocated via + * xpc_initiate_allocate(). + */ +void +xpc_initiate_received(partid_t partid, int ch_number, void *payload) +{ + struct xpc_partition *part = &xpc_partitions[partid]; + struct xpc_channel *ch; + struct xpc_msg *msg = XPC_MSG_ADDRESS(payload); + s64 get, msg_number = msg->number; + + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + DBUG_ON(ch_number < 0 || ch_number >= part->nchannels); + + ch = &part->channels[ch_number]; + + dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n", + (void *) msg, msg_number, ch->partid, ch->number); + + DBUG_ON((((u64) msg - (u64) ch->remote_msgqueue) / ch->msg_size) != + msg_number % ch->remote_nentries); + DBUG_ON(msg->flags & XPC_M_DONE); + + msg->flags |= XPC_M_DONE; + + /* + * The preceding store of msg->flags must occur before the following + * load of ch->local_GP->get. + */ + mb(); + + /* + * See if this message is next in line to be acknowledged as having + * been delivered. + */ + get = ch->local_GP->get; + if (get == msg_number) { + xpc_acknowledge_msgs(ch, get, msg->flags); + } + + /* the call to xpc_msgqueue_ref() was done by xpc_deliver_msg() */ + xpc_msgqueue_deref(ch); +} + diff --git a/arch/ia64/sn/kernel/xpc_main.c b/arch/ia64/sn/kernel/xpc_main.c new file mode 100644 index 000000000000..177ddb748ebe --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_main.c @@ -0,0 +1,1064 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * Cross Partition Communication (XPC) support - standard version. + * + * XPC provides a message passing capability that crosses partition + * boundaries. This module is made up of two parts: + * + * partition This part detects the presence/absence of other + * partitions. It provides a heartbeat and monitors + * the heartbeats of other partitions. + * + * channel This part manages the channels and sends/receives + * messages across them to/from other partitions. + * + * There are a couple of additional functions residing in XP, which + * provide an interface to XPC for its users. + * + * + * Caveats: + * + * . We currently have no way to determine which nasid an IPI came + * from. Thus, xpc_IPI_send() does a remote AMO write followed by + * an IPI. The AMO indicates where data is to be pulled from, so + * after the IPI arrives, the remote partition checks the AMO word. + * The IPI can actually arrive before the AMO however, so other code + * must periodically check for this case. Also, remote AMO operations + * do not reliably time out. Thus we do a remote PIO read solely to + * know whether the remote partition is down and whether we should + * stop sending IPIs to it. This remote PIO read operation is set up + * in a special nofault region so SAL knows to ignore (and cleanup) + * any errors due to the remote AMO write, PIO read, and/or PIO + * write operations. + * + * If/when new hardware solves this IPI problem, we should abandon + * the current approach. + * + */ + + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/syscalls.h> +#include <linux/cache.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <asm/sn/intr.h> +#include <asm/sn/sn_sal.h> +#include <asm/uaccess.h> +#include "xpc.h" + + +/* define two XPC debug device structures to be used with dev_dbg() et al */ + +struct device_driver xpc_dbg_name = { + .name = "xpc" +}; + +struct device xpc_part_dbg_subname = { + .bus_id = {0}, /* set to "part" at xpc_init() time */ + .driver = &xpc_dbg_name +}; + +struct device xpc_chan_dbg_subname = { + .bus_id = {0}, /* set to "chan" at xpc_init() time */ + .driver = &xpc_dbg_name +}; + +struct device *xpc_part = &xpc_part_dbg_subname; +struct device *xpc_chan = &xpc_chan_dbg_subname; + + +/* systune related variables for /proc/sys directories */ + +static int xpc_hb_min = 1; +static int xpc_hb_max = 10; + +static int xpc_hb_check_min = 10; +static int xpc_hb_check_max = 120; + +static ctl_table xpc_sys_xpc_hb_dir[] = { + { + 1, + "hb_interval", + &xpc_hb_interval, + sizeof(int), + 0644, + NULL, + &proc_dointvec_minmax, + &sysctl_intvec, + NULL, + &xpc_hb_min, &xpc_hb_max + }, + { + 2, + "hb_check_interval", + &xpc_hb_check_interval, + sizeof(int), + 0644, + NULL, + &proc_dointvec_minmax, + &sysctl_intvec, + NULL, + &xpc_hb_check_min, &xpc_hb_check_max + }, + {0} +}; +static ctl_table xpc_sys_xpc_dir[] = { + { + 1, + "hb", + NULL, + 0, + 0555, + xpc_sys_xpc_hb_dir + }, + {0} +}; +static ctl_table xpc_sys_dir[] = { + { + 1, + "xpc", + NULL, + 0, + 0555, + xpc_sys_xpc_dir + }, + {0} +}; +static struct ctl_table_header *xpc_sysctl; + + +/* #of IRQs received */ +static atomic_t xpc_act_IRQ_rcvd; + +/* IRQ handler notifies this wait queue on receipt of an IRQ */ +static DECLARE_WAIT_QUEUE_HEAD(xpc_act_IRQ_wq); + +static unsigned long xpc_hb_check_timeout; + +/* xpc_hb_checker thread exited notification */ +static DECLARE_MUTEX_LOCKED(xpc_hb_checker_exited); + +/* xpc_discovery thread exited notification */ +static DECLARE_MUTEX_LOCKED(xpc_discovery_exited); + + +static struct timer_list xpc_hb_timer; + + +static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); + + +/* + * Notify the heartbeat check thread that an IRQ has been received. + */ +static irqreturn_t +xpc_act_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs) +{ + atomic_inc(&xpc_act_IRQ_rcvd); + wake_up_interruptible(&xpc_act_IRQ_wq); + return IRQ_HANDLED; +} + + +/* + * Timer to produce the heartbeat. The timer structures function is + * already set when this is initially called. A tunable is used to + * specify when the next timeout should occur. + */ +static void +xpc_hb_beater(unsigned long dummy) +{ + xpc_vars->heartbeat++; + + if (jiffies >= xpc_hb_check_timeout) { + wake_up_interruptible(&xpc_act_IRQ_wq); + } + + xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); + add_timer(&xpc_hb_timer); +} + + +/* + * This thread is responsible for nearly all of the partition + * activation/deactivation. + */ +static int +xpc_hb_checker(void *ignore) +{ + int last_IRQ_count = 0; + int new_IRQ_count; + int force_IRQ=0; + + + /* this thread was marked active by xpc_hb_init() */ + + daemonize(XPC_HB_CHECK_THREAD_NAME); + + set_cpus_allowed(current, cpumask_of_cpu(XPC_HB_CHECK_CPU)); + + xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); + + while (!(volatile int) xpc_exiting) { + + /* wait for IRQ or timeout */ + (void) wait_event_interruptible(xpc_act_IRQ_wq, + (last_IRQ_count < atomic_read(&xpc_act_IRQ_rcvd) || + jiffies >= xpc_hb_check_timeout || + (volatile int) xpc_exiting)); + + dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " + "been received\n", + (int) (xpc_hb_check_timeout - jiffies), + atomic_read(&xpc_act_IRQ_rcvd) - last_IRQ_count); + + + /* checking of remote heartbeats is skewed by IRQ handling */ + if (jiffies >= xpc_hb_check_timeout) { + dev_dbg(xpc_part, "checking remote heartbeats\n"); + xpc_check_remote_hb(); + + /* + * We need to periodically recheck to ensure no + * IPI/AMO pairs have been missed. That check + * must always reset xpc_hb_check_timeout. + */ + force_IRQ = 1; + } + + + new_IRQ_count = atomic_read(&xpc_act_IRQ_rcvd); + if (last_IRQ_count < new_IRQ_count || force_IRQ != 0) { + force_IRQ = 0; + + dev_dbg(xpc_part, "found an IRQ to process; will be " + "resetting xpc_hb_check_timeout\n"); + + last_IRQ_count += xpc_identify_act_IRQ_sender(); + if (last_IRQ_count < new_IRQ_count) { + /* retry once to help avoid missing AMO */ + (void) xpc_identify_act_IRQ_sender(); + } + last_IRQ_count = new_IRQ_count; + + xpc_hb_check_timeout = jiffies + + (xpc_hb_check_interval * HZ); + } + } + + dev_dbg(xpc_part, "heartbeat checker is exiting\n"); + + + /* mark this thread as inactive */ + up(&xpc_hb_checker_exited); + return 0; +} + + +/* + * This thread will attempt to discover other partitions to activate + * based on info provided by SAL. This new thread is short lived and + * will exit once discovery is complete. + */ +static int +xpc_initiate_discovery(void *ignore) +{ + daemonize(XPC_DISCOVERY_THREAD_NAME); + + xpc_discovery(); + + dev_dbg(xpc_part, "discovery thread is exiting\n"); + + /* mark this thread as inactive */ + up(&xpc_discovery_exited); + return 0; +} + + +/* + * Establish first contact with the remote partititon. This involves pulling + * the XPC per partition variables from the remote partition and waiting for + * the remote partition to pull ours. + */ +static enum xpc_retval +xpc_make_first_contact(struct xpc_partition *part) +{ + enum xpc_retval ret; + + + while ((ret = xpc_pull_remote_vars_part(part)) != xpcSuccess) { + if (ret != xpcRetry) { + XPC_DEACTIVATE_PARTITION(part, ret); + return ret; + } + + dev_dbg(xpc_chan, "waiting to make first contact with " + "partition %d\n", XPC_PARTID(part)); + + /* wait a 1/4 of a second or so */ + set_current_state(TASK_INTERRUPTIBLE); + (void) schedule_timeout(0.25 * HZ); + + if (part->act_state == XPC_P_DEACTIVATING) { + return part->reason; + } + } + + return xpc_mark_partition_active(part); +} + + +/* + * The first kthread assigned to a newly activated partition is the one + * created by XPC HB with which it calls xpc_partition_up(). XPC hangs on to + * that kthread until the partition is brought down, at which time that kthread + * returns back to XPC HB. (The return of that kthread will signify to XPC HB + * that XPC has dismantled all communication infrastructure for the associated + * partition.) This kthread becomes the channel manager for that partition. + * + * Each active partition has a channel manager, who, besides connecting and + * disconnecting channels, will ensure that each of the partition's connected + * channels has the required number of assigned kthreads to get the work done. + */ +static void +xpc_channel_mgr(struct xpc_partition *part) +{ + while (part->act_state != XPC_P_DEACTIVATING || + atomic_read(&part->nchannels_active) > 0) { + + xpc_process_channel_activity(part); + + + /* + * Wait until we've been requested to activate kthreads or + * all of the channel's message queues have been torn down or + * a signal is pending. + * + * The channel_mgr_requests is set to 1 after being awakened, + * This is done to prevent the channel mgr from making one pass + * through the loop for each request, since he will + * be servicing all the requests in one pass. The reason it's + * set to 1 instead of 0 is so that other kthreads will know + * that the channel mgr is running and won't bother trying to + * wake him up. + */ + atomic_dec(&part->channel_mgr_requests); + (void) wait_event_interruptible(part->channel_mgr_wq, + (atomic_read(&part->channel_mgr_requests) > 0 || + (volatile u64) part->local_IPI_amo != 0 || + ((volatile u8) part->act_state == + XPC_P_DEACTIVATING && + atomic_read(&part->nchannels_active) == 0))); + atomic_set(&part->channel_mgr_requests, 1); + + // >>> Does it need to wakeup periodically as well? In case we + // >>> miscalculated the #of kthreads to wakeup or create? + } +} + + +/* + * When XPC HB determines that a partition has come up, it will create a new + * kthread and that kthread will call this function to attempt to set up the + * basic infrastructure used for Cross Partition Communication with the newly + * upped partition. + * + * The kthread that was created by XPC HB and which setup the XPC + * infrastructure will remain assigned to the partition until the partition + * goes down. At which time the kthread will teardown the XPC infrastructure + * and then exit. + * + * XPC HB will put the remote partition's XPC per partition specific variables + * physical address into xpc_partitions[partid].remote_vars_part_pa prior to + * calling xpc_partition_up(). + */ +static void +xpc_partition_up(struct xpc_partition *part) +{ + DBUG_ON(part->channels != NULL); + + dev_dbg(xpc_chan, "activating partition %d\n", XPC_PARTID(part)); + + if (xpc_setup_infrastructure(part) != xpcSuccess) { + return; + } + + /* + * The kthread that XPC HB called us with will become the + * channel manager for this partition. It will not return + * back to XPC HB until the partition's XPC infrastructure + * has been dismantled. + */ + + (void) xpc_part_ref(part); /* this will always succeed */ + + if (xpc_make_first_contact(part) == xpcSuccess) { + xpc_channel_mgr(part); + } + + xpc_part_deref(part); + + xpc_teardown_infrastructure(part); +} + + +static int +xpc_activating(void *__partid) +{ + partid_t partid = (u64) __partid; + struct xpc_partition *part = &xpc_partitions[partid]; + unsigned long irq_flags; + struct sched_param param = { sched_priority: MAX_USER_RT_PRIO - 1 }; + int ret; + + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + + spin_lock_irqsave(&part->act_lock, irq_flags); + + if (part->act_state == XPC_P_DEACTIVATING) { + part->act_state = XPC_P_INACTIVE; + spin_unlock_irqrestore(&part->act_lock, irq_flags); + part->remote_rp_pa = 0; + return 0; + } + + /* indicate the thread is activating */ + DBUG_ON(part->act_state != XPC_P_ACTIVATION_REQ); + part->act_state = XPC_P_ACTIVATING; + + XPC_SET_REASON(part, 0, 0); + spin_unlock_irqrestore(&part->act_lock, irq_flags); + + dev_dbg(xpc_part, "bringing partition %d up\n", partid); + + daemonize("xpc%02d", partid); + + /* + * This thread needs to run at a realtime priority to prevent a + * significant performance degradation. + */ + ret = sched_setscheduler(current, SCHED_FIFO, ¶m); + if (ret != 0) { + dev_warn(xpc_part, "unable to set pid %d to a realtime " + "priority, ret=%d\n", current->pid, ret); + } + + /* allow this thread and its children to run on any CPU */ + set_cpus_allowed(current, CPU_MASK_ALL); + + /* + * Register the remote partition's AMOs with SAL so it can handle + * and cleanup errors within that address range should the remote + * partition go down. We don't unregister this range because it is + * difficult to tell when outstanding writes to the remote partition + * are finished and thus when it is safe to unregister. This should + * not result in wasted space in the SAL xp_addr_region table because + * we should get the same page for remote_amos_page_pa after module + * reloads and system reboots. + */ + if (sn_register_xp_addr_region(part->remote_amos_page_pa, + PAGE_SIZE, 1) < 0) { + dev_warn(xpc_part, "xpc_partition_up(%d) failed to register " + "xp_addr region\n", partid); + + spin_lock_irqsave(&part->act_lock, irq_flags); + part->act_state = XPC_P_INACTIVE; + XPC_SET_REASON(part, xpcPhysAddrRegFailed, __LINE__); + spin_unlock_irqrestore(&part->act_lock, irq_flags); + part->remote_rp_pa = 0; + return 0; + } + + XPC_ALLOW_HB(partid, xpc_vars); + xpc_IPI_send_activated(part); + + + /* + * xpc_partition_up() holds this thread and marks this partition as + * XPC_P_ACTIVE by calling xpc_hb_mark_active(). + */ + (void) xpc_partition_up(part); + + xpc_mark_partition_inactive(part); + + if (part->reason == xpcReactivating) { + /* interrupting ourselves results in activating partition */ + xpc_IPI_send_reactivate(part); + } + + return 0; +} + + +void +xpc_activate_partition(struct xpc_partition *part) +{ + partid_t partid = XPC_PARTID(part); + unsigned long irq_flags; + pid_t pid; + + + spin_lock_irqsave(&part->act_lock, irq_flags); + + pid = kernel_thread(xpc_activating, (void *) ((u64) partid), 0); + + DBUG_ON(part->act_state != XPC_P_INACTIVE); + + if (pid > 0) { + part->act_state = XPC_P_ACTIVATION_REQ; + XPC_SET_REASON(part, xpcCloneKThread, __LINE__); + } else { + XPC_SET_REASON(part, xpcCloneKThreadFailed, __LINE__); + } + + spin_unlock_irqrestore(&part->act_lock, irq_flags); +} + + +/* + * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified + * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more + * than one partition, we use an AMO_t structure per partition to indicate + * whether a partition has sent an IPI or not. >>> If it has, then wake up the + * associated kthread to handle it. + * + * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IPIs sent by XPC + * running on other partitions. + * + * Noteworthy Arguments: + * + * irq - Interrupt ReQuest number. NOT USED. + * + * dev_id - partid of IPI's potential sender. + * + * regs - processor's context before the processor entered + * interrupt code. NOT USED. + */ +irqreturn_t +xpc_notify_IRQ_handler(int irq, void *dev_id, struct pt_regs *regs) +{ + partid_t partid = (partid_t) (u64) dev_id; + struct xpc_partition *part = &xpc_partitions[partid]; + + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + + if (xpc_part_ref(part)) { + xpc_check_for_channel_activity(part); + + xpc_part_deref(part); + } + return IRQ_HANDLED; +} + + +/* + * Check to see if xpc_notify_IRQ_handler() dropped any IPIs on the floor + * because the write to their associated IPI amo completed after the IRQ/IPI + * was received. + */ +void +xpc_dropped_IPI_check(struct xpc_partition *part) +{ + if (xpc_part_ref(part)) { + xpc_check_for_channel_activity(part); + + part->dropped_IPI_timer.expires = jiffies + + XPC_P_DROPPED_IPI_WAIT; + add_timer(&part->dropped_IPI_timer); + xpc_part_deref(part); + } +} + + +void +xpc_activate_kthreads(struct xpc_channel *ch, int needed) +{ + int idle = atomic_read(&ch->kthreads_idle); + int assigned = atomic_read(&ch->kthreads_assigned); + int wakeup; + + + DBUG_ON(needed <= 0); + + if (idle > 0) { + wakeup = (needed > idle) ? idle : needed; + needed -= wakeup; + + dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " + "channel=%d\n", wakeup, ch->partid, ch->number); + + /* only wakeup the requested number of kthreads */ + wake_up_nr(&ch->idle_wq, wakeup); + } + + if (needed <= 0) { + return; + } + + if (needed + assigned > ch->kthreads_assigned_limit) { + needed = ch->kthreads_assigned_limit - assigned; + // >>>should never be less than 0 + if (needed <= 0) { + return; + } + } + + dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", + needed, ch->partid, ch->number); + + xpc_create_kthreads(ch, needed); +} + + +/* + * This function is where XPC's kthreads wait for messages to deliver. + */ +static void +xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) +{ + do { + /* deliver messages to their intended recipients */ + + while ((volatile s64) ch->w_local_GP.get < + (volatile s64) ch->w_remote_GP.put && + !((volatile u32) ch->flags & + XPC_C_DISCONNECTING)) { + xpc_deliver_msg(ch); + } + + if (atomic_inc_return(&ch->kthreads_idle) > + ch->kthreads_idle_limit) { + /* too many idle kthreads on this channel */ + atomic_dec(&ch->kthreads_idle); + break; + } + + dev_dbg(xpc_chan, "idle kthread calling " + "wait_event_interruptible_exclusive()\n"); + + (void) wait_event_interruptible_exclusive(ch->idle_wq, + ((volatile s64) ch->w_local_GP.get < + (volatile s64) ch->w_remote_GP.put || + ((volatile u32) ch->flags & + XPC_C_DISCONNECTING))); + + atomic_dec(&ch->kthreads_idle); + + } while (!((volatile u32) ch->flags & XPC_C_DISCONNECTING)); +} + + +static int +xpc_daemonize_kthread(void *args) +{ + partid_t partid = XPC_UNPACK_ARG1(args); + u16 ch_number = XPC_UNPACK_ARG2(args); + struct xpc_partition *part = &xpc_partitions[partid]; + struct xpc_channel *ch; + int n_needed; + + + daemonize("xpc%02dc%d", partid, ch_number); + + dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", + partid, ch_number); + + ch = &part->channels[ch_number]; + + if (!(ch->flags & XPC_C_DISCONNECTING)) { + DBUG_ON(!(ch->flags & XPC_C_CONNECTED)); + + /* let registerer know that connection has been established */ + + if (atomic_read(&ch->kthreads_assigned) == 1) { + xpc_connected_callout(ch); + + /* + * It is possible that while the callout was being + * made that the remote partition sent some messages. + * If that is the case, we may need to activate + * additional kthreads to help deliver them. We only + * need one less than total #of messages to deliver. + */ + n_needed = ch->w_remote_GP.put - ch->w_local_GP.get - 1; + if (n_needed > 0 && + !(ch->flags & XPC_C_DISCONNECTING)) { + xpc_activate_kthreads(ch, n_needed); + } + } + + xpc_kthread_waitmsgs(part, ch); + } + + if (atomic_dec_return(&ch->kthreads_assigned) == 0 && + ((ch->flags & XPC_C_CONNECTCALLOUT) || + (ch->reason != xpcUnregistering && + ch->reason != xpcOtherUnregistering))) { + xpc_disconnected_callout(ch); + } + + + xpc_msgqueue_deref(ch); + + dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", + partid, ch_number); + + xpc_part_deref(part); + return 0; +} + + +/* + * For each partition that XPC has established communications with, there is + * a minimum of one kernel thread assigned to perform any operation that + * may potentially sleep or block (basically the callouts to the asynchronous + * functions registered via xpc_connect()). + * + * Additional kthreads are created and destroyed by XPC as the workload + * demands. + * + * A kthread is assigned to one of the active channels that exists for a given + * partition. + */ +void +xpc_create_kthreads(struct xpc_channel *ch, int needed) +{ + unsigned long irq_flags; + pid_t pid; + u64 args = XPC_PACK_ARGS(ch->partid, ch->number); + + + while (needed-- > 0) { + pid = kernel_thread(xpc_daemonize_kthread, (void *) args, 0); + if (pid < 0) { + /* the fork failed */ + + if (atomic_read(&ch->kthreads_assigned) < + ch->kthreads_idle_limit) { + /* + * Flag this as an error only if we have an + * insufficient #of kthreads for the channel + * to function. + * + * No xpc_msgqueue_ref() is needed here since + * the channel mgr is doing this. + */ + spin_lock_irqsave(&ch->lock, irq_flags); + XPC_DISCONNECT_CHANNEL(ch, xpcLackOfResources, + &irq_flags); + spin_unlock_irqrestore(&ch->lock, irq_flags); + } + break; + } + + /* + * The following is done on behalf of the newly created + * kthread. That kthread is responsible for doing the + * counterpart to the following before it exits. + */ + (void) xpc_part_ref(&xpc_partitions[ch->partid]); + xpc_msgqueue_ref(ch); + atomic_inc(&ch->kthreads_assigned); + ch->kthreads_created++; // >>> temporary debug only!!! + } +} + + +void +xpc_disconnect_wait(int ch_number) +{ + partid_t partid; + struct xpc_partition *part; + struct xpc_channel *ch; + + + /* now wait for all callouts to the caller's function to cease */ + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + part = &xpc_partitions[partid]; + + if (xpc_part_ref(part)) { + ch = &part->channels[ch_number]; + +// >>> how do we keep from falling into the window between our check and going +// >>> down and coming back up where sema is re-inited? + if (ch->flags & XPC_C_SETUP) { + (void) down(&ch->teardown_sema); + } + + xpc_part_deref(part); + } + } +} + + +static void +xpc_do_exit(void) +{ + partid_t partid; + int active_part_count; + struct xpc_partition *part; + + + /* now it's time to eliminate our heartbeat */ + del_timer_sync(&xpc_hb_timer); + xpc_vars->heartbeating_to_mask = 0; + + /* indicate to others that our reserved page is uninitialized */ + xpc_rsvd_page->vars_pa = 0; + + /* + * Ignore all incoming interrupts. Without interupts the heartbeat + * checker won't activate any new partitions that may come up. + */ + free_irq(SGI_XPC_ACTIVATE, NULL); + + /* + * Cause the heartbeat checker and the discovery threads to exit. + * We don't want them attempting to activate new partitions as we + * try to deactivate the existing ones. + */ + xpc_exiting = 1; + wake_up_interruptible(&xpc_act_IRQ_wq); + + /* wait for the heartbeat checker thread to mark itself inactive */ + down(&xpc_hb_checker_exited); + + /* wait for the discovery thread to mark itself inactive */ + down(&xpc_discovery_exited); + + + set_current_state(TASK_INTERRUPTIBLE); + schedule_timeout(0.3 * HZ); + set_current_state(TASK_RUNNING); + + + /* wait for all partitions to become inactive */ + + do { + active_part_count = 0; + + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + part = &xpc_partitions[partid]; + if (part->act_state != XPC_P_INACTIVE) { + active_part_count++; + + XPC_DEACTIVATE_PARTITION(part, xpcUnloading); + } + } + + if (active_part_count) { + set_current_state(TASK_INTERRUPTIBLE); + schedule_timeout(0.3 * HZ); + set_current_state(TASK_RUNNING); + } + + } while (active_part_count > 0); + + + /* close down protections for IPI operations */ + xpc_restrict_IPI_ops(); + + + /* clear the interface to XPC's functions */ + xpc_clear_interface(); + + if (xpc_sysctl) { + unregister_sysctl_table(xpc_sysctl); + } +} + + +int __init +xpc_init(void) +{ + int ret; + partid_t partid; + struct xpc_partition *part; + pid_t pid; + + + /* + * xpc_remote_copy_buffer is used as a temporary buffer for bte_copy'ng + * both a partition's reserved page and its XPC variables. Its size was + * based on the size of a reserved page. So we need to ensure that the + * XPC variables will fit as well. + */ + if (XPC_VARS_ALIGNED_SIZE > XPC_RSVD_PAGE_ALIGNED_SIZE) { + dev_err(xpc_part, "xpc_remote_copy_buffer is not big enough\n"); + return -EPERM; + } + DBUG_ON((u64) xpc_remote_copy_buffer != + L1_CACHE_ALIGN((u64) xpc_remote_copy_buffer)); + + snprintf(xpc_part->bus_id, BUS_ID_SIZE, "part"); + snprintf(xpc_chan->bus_id, BUS_ID_SIZE, "chan"); + + xpc_sysctl = register_sysctl_table(xpc_sys_dir, 1); + + /* + * The first few fields of each entry of xpc_partitions[] need to + * be initialized now so that calls to xpc_connect() and + * xpc_disconnect() can be made prior to the activation of any remote + * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE + * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING + * PARTITION HAS BEEN ACTIVATED. + */ + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + part = &xpc_partitions[partid]; + + DBUG_ON((u64) part != L1_CACHE_ALIGN((u64) part)); + + part->act_IRQ_rcvd = 0; + spin_lock_init(&part->act_lock); + part->act_state = XPC_P_INACTIVE; + XPC_SET_REASON(part, 0, 0); + part->setup_state = XPC_P_UNSET; + init_waitqueue_head(&part->teardown_wq); + atomic_set(&part->references, 0); + } + + /* + * Open up protections for IPI operations (and AMO operations on + * Shub 1.1 systems). + */ + xpc_allow_IPI_ops(); + + /* + * Interrupts being processed will increment this atomic variable and + * awaken the heartbeat thread which will process the interrupts. + */ + atomic_set(&xpc_act_IRQ_rcvd, 0); + + /* + * This is safe to do before the xpc_hb_checker thread has started + * because the handler releases a wait queue. If an interrupt is + * received before the thread is waiting, it will not go to sleep, + * but rather immediately process the interrupt. + */ + ret = request_irq(SGI_XPC_ACTIVATE, xpc_act_IRQ_handler, 0, + "xpc hb", NULL); + if (ret != 0) { + dev_err(xpc_part, "can't register ACTIVATE IRQ handler, " + "errno=%d\n", -ret); + + xpc_restrict_IPI_ops(); + + if (xpc_sysctl) { + unregister_sysctl_table(xpc_sysctl); + } + return -EBUSY; + } + + /* + * Fill the partition reserved page with the information needed by + * other partitions to discover we are alive and establish initial + * communications. + */ + xpc_rsvd_page = xpc_rsvd_page_init(); + if (xpc_rsvd_page == NULL) { + dev_err(xpc_part, "could not setup our reserved page\n"); + + free_irq(SGI_XPC_ACTIVATE, NULL); + xpc_restrict_IPI_ops(); + + if (xpc_sysctl) { + unregister_sysctl_table(xpc_sysctl); + } + return -EBUSY; + } + + + /* + * Set the beating to other partitions into motion. This is + * the last requirement for other partitions' discovery to + * initiate communications with us. + */ + init_timer(&xpc_hb_timer); + xpc_hb_timer.function = xpc_hb_beater; + xpc_hb_beater(0); + + + /* + * The real work-horse behind xpc. This processes incoming + * interrupts and monitors remote heartbeats. + */ + pid = kernel_thread(xpc_hb_checker, NULL, 0); + if (pid < 0) { + dev_err(xpc_part, "failed while forking hb check thread\n"); + + /* indicate to others that our reserved page is uninitialized */ + xpc_rsvd_page->vars_pa = 0; + + del_timer_sync(&xpc_hb_timer); + free_irq(SGI_XPC_ACTIVATE, NULL); + xpc_restrict_IPI_ops(); + + if (xpc_sysctl) { + unregister_sysctl_table(xpc_sysctl); + } + return -EBUSY; + } + + + /* + * Startup a thread that will attempt to discover other partitions to + * activate based on info provided by SAL. This new thread is short + * lived and will exit once discovery is complete. + */ + pid = kernel_thread(xpc_initiate_discovery, NULL, 0); + if (pid < 0) { + dev_err(xpc_part, "failed while forking discovery thread\n"); + + /* mark this new thread as a non-starter */ + up(&xpc_discovery_exited); + + xpc_do_exit(); + return -EBUSY; + } + + + /* set the interface to point at XPC's functions */ + xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, + xpc_initiate_allocate, xpc_initiate_send, + xpc_initiate_send_notify, xpc_initiate_received, + xpc_initiate_partid_to_nasids); + + return 0; +} +module_init(xpc_init); + + +void __exit +xpc_exit(void) +{ + xpc_do_exit(); +} +module_exit(xpc_exit); + + +MODULE_AUTHOR("Silicon Graphics, Inc."); +MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); +MODULE_LICENSE("GPL"); + +module_param(xpc_hb_interval, int, 0); +MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " + "heartbeat increments."); + +module_param(xpc_hb_check_interval, int, 0); +MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " + "heartbeat checks."); + diff --git a/arch/ia64/sn/kernel/xpc_partition.c b/arch/ia64/sn/kernel/xpc_partition.c new file mode 100644 index 000000000000..2c3c4a8af553 --- /dev/null +++ b/arch/ia64/sn/kernel/xpc_partition.c @@ -0,0 +1,984 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. + */ + + +/* + * Cross Partition Communication (XPC) partition support. + * + * This is the part of XPC that detects the presence/absence of + * other partitions. It provides a heartbeat and monitors the + * heartbeats of other partitions. + * + */ + + +#include <linux/kernel.h> +#include <linux/sysctl.h> +#include <linux/cache.h> +#include <linux/mmzone.h> +#include <linux/nodemask.h> +#include <asm/sn/bte.h> +#include <asm/sn/intr.h> +#include <asm/sn/sn_sal.h> +#include <asm/sn/nodepda.h> +#include <asm/sn/addrs.h> +#include "xpc.h" + + +/* XPC is exiting flag */ +int xpc_exiting; + + +/* SH_IPI_ACCESS shub register value on startup */ +static u64 xpc_sh1_IPI_access; +static u64 xpc_sh2_IPI_access0; +static u64 xpc_sh2_IPI_access1; +static u64 xpc_sh2_IPI_access2; +static u64 xpc_sh2_IPI_access3; + + +/* original protection values for each node */ +u64 xpc_prot_vec[MAX_COMPACT_NODES]; + + +/* this partition's reserved page */ +struct xpc_rsvd_page *xpc_rsvd_page; + +/* this partition's XPC variables (within the reserved page) */ +struct xpc_vars *xpc_vars; +struct xpc_vars_part *xpc_vars_part; + + +/* + * For performance reasons, each entry of xpc_partitions[] is cacheline + * aligned. And xpc_partitions[] is padded with an additional entry at the + * end so that the last legitimate entry doesn't share its cacheline with + * another variable. + */ +struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; + + +/* + * Generic buffer used to store a local copy of the remote partitions + * reserved page or XPC variables. + * + * xpc_discovery runs only once and is a seperate thread that is + * very likely going to be processing in parallel with receiving + * interrupts. + */ +char ____cacheline_aligned + xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE]; + + +/* systune related variables */ +int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; +int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT; + + +/* + * Given a nasid, get the physical address of the partition's reserved page + * for that nasid. This function returns 0 on any error. + */ +static u64 +xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size) +{ + bte_result_t bte_res; + s64 status; + u64 cookie = 0; + u64 rp_pa = nasid; /* seed with nasid */ + u64 len = 0; + + + while (1) { + + status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, + &len); + + dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" + "0x%016lx, address=0x%016lx, len=0x%016lx\n", + status, cookie, rp_pa, len); + + if (status != SALRET_MORE_PASSES) { + break; + } + + if (len > buf_size) { + dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len); + status = SALRET_ERROR; + break; + } + + bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size, + (BTE_NOTIFY | BTE_WACQUIRE), NULL); + if (bte_res != BTE_SUCCESS) { + dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); + status = SALRET_ERROR; + break; + } + } + + if (status != SALRET_OK) { + rp_pa = 0; + } + dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); + return rp_pa; +} + + +/* + * Fill the partition reserved page with the information needed by + * other partitions to discover we are alive and establish initial + * communications. + */ +struct xpc_rsvd_page * +xpc_rsvd_page_init(void) +{ + struct xpc_rsvd_page *rp; + AMO_t *amos_page; + u64 rp_pa, next_cl, nasid_array = 0; + int i, ret; + + + /* get the local reserved page's address */ + + rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0), + (u64) xpc_remote_copy_buffer, + XPC_RSVD_PAGE_ALIGNED_SIZE); + if (rp_pa == 0) { + dev_err(xpc_part, "SAL failed to locate the reserved page\n"); + return NULL; + } + rp = (struct xpc_rsvd_page *) __va(rp_pa); + + if (rp->partid != sn_partition_id) { + dev_err(xpc_part, "the reserved page's partid of %d should be " + "%d\n", rp->partid, sn_partition_id); + return NULL; + } + + rp->version = XPC_RP_VERSION; + + /* + * Place the XPC variables on the cache line following the + * reserved page structure. + */ + next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE; + xpc_vars = (struct xpc_vars *) next_cl; + + /* + * Before clearing xpc_vars, see if a page of AMOs had been previously + * allocated. If not we'll need to allocate one and set permissions + * so that cross-partition AMOs are allowed. + * + * The allocated AMO page needs MCA reporting to remain disabled after + * XPC has unloaded. To make this work, we keep a copy of the pointer + * to this page (i.e., amos_page) in the struct xpc_vars structure, + * which is pointed to by the reserved page, and re-use that saved copy + * on subsequent loads of XPC. This AMO page is never freed, and its + * memory protections are never restricted. + */ + if ((amos_page = xpc_vars->amos_page) == NULL) { + amos_page = (AMO_t *) mspec_kalloc_page(0); + if (amos_page == NULL) { + dev_err(xpc_part, "can't allocate page of AMOs\n"); + return NULL; + } + + /* + * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems + * when xpc_allow_IPI_ops() is called via xpc_hb_init(). + */ + if (!enable_shub_wars_1_1()) { + ret = sn_change_memprotect(ia64_tpa((u64) amos_page), + PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, + &nasid_array); + if (ret != 0) { + dev_err(xpc_part, "can't change memory " + "protections\n"); + mspec_kfree_page((unsigned long) amos_page); + return NULL; + } + } + } else if (!IS_AMO_ADDRESS((u64) amos_page)) { + /* + * EFI's XPBOOT can also set amos_page in the reserved page, + * but it happens to leave it as an uncached physical address + * and we need it to be an uncached virtual, so we'll have to + * convert it. + */ + if (!IS_AMO_PHYS_ADDRESS((u64) amos_page)) { + dev_err(xpc_part, "previously used amos_page address " + "is bad = 0x%p\n", (void *) amos_page); + return NULL; + } + amos_page = (AMO_t *) TO_AMO((u64) amos_page); + } + + memset(xpc_vars, 0, sizeof(struct xpc_vars)); + + /* + * Place the XPC per partition specific variables on the cache line + * following the XPC variables structure. + */ + next_cl += XPC_VARS_ALIGNED_SIZE; + memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) * + XP_MAX_PARTITIONS); + xpc_vars_part = (struct xpc_vars_part *) next_cl; + xpc_vars->vars_part_pa = __pa(next_cl); + + xpc_vars->version = XPC_V_VERSION; + xpc_vars->act_nasid = cpuid_to_nasid(0); + xpc_vars->act_phys_cpuid = cpu_physical_id(0); + xpc_vars->amos_page = amos_page; /* save for next load of XPC */ + + + /* + * Initialize the activation related AMO variables. + */ + xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS); + for (i = 1; i < XP_NASID_MASK_WORDS; i++) { + xpc_IPI_init(i + XP_MAX_PARTITIONS); + } + /* export AMO page's physical address to other partitions */ + xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page); + + /* + * This signifies to the remote partition that our reserved + * page is initialized. + */ + (volatile u64) rp->vars_pa = __pa(xpc_vars); + + return rp; +} + + +/* + * Change protections to allow IPI operations (and AMO operations on + * Shub 1.1 systems). + */ +void +xpc_allow_IPI_ops(void) +{ + int node; + int nasid; + + + // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. + + if (is_shub2()) { + xpc_sh2_IPI_access0 = + (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); + xpc_sh2_IPI_access1 = + (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); + xpc_sh2_IPI_access2 = + (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); + xpc_sh2_IPI_access3 = + (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); + + for_each_online_node(node) { + nasid = cnodeid_to_nasid(node); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), + -1UL); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), + -1UL); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), + -1UL); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), + -1UL); + } + + } else { + xpc_sh1_IPI_access = + (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); + + for_each_online_node(node) { + nasid = cnodeid_to_nasid(node); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), + -1UL); + + /* + * Since the BIST collides with memory operations on + * SHUB 1.1 sn_change_memprotect() cannot be used. + */ + if (enable_shub_wars_1_1()) { + /* open up everything */ + xpc_prot_vec[node] = (u64) HUB_L((u64 *) + GLOBAL_MMR_ADDR(nasid, + SH1_MD_DQLP_MMR_DIR_PRIVEC0)); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, + SH1_MD_DQLP_MMR_DIR_PRIVEC0), + -1UL); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, + SH1_MD_DQRP_MMR_DIR_PRIVEC0), + -1UL); + } + } + } +} + + +/* + * Restrict protections to disallow IPI operations (and AMO operations on + * Shub 1.1 systems). + */ +void +xpc_restrict_IPI_ops(void) +{ + int node; + int nasid; + + + // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. + + if (is_shub2()) { + + for_each_online_node(node) { + nasid = cnodeid_to_nasid(node); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), + xpc_sh2_IPI_access0); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), + xpc_sh2_IPI_access1); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), + xpc_sh2_IPI_access2); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), + xpc_sh2_IPI_access3); + } + + } else { + + for_each_online_node(node) { + nasid = cnodeid_to_nasid(node); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), + xpc_sh1_IPI_access); + + if (enable_shub_wars_1_1()) { + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, + SH1_MD_DQLP_MMR_DIR_PRIVEC0), + xpc_prot_vec[node]); + HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, + SH1_MD_DQRP_MMR_DIR_PRIVEC0), + xpc_prot_vec[node]); + } + } + } +} + + +/* + * At periodic intervals, scan through all active partitions and ensure + * their heartbeat is still active. If not, the partition is deactivated. + */ +void +xpc_check_remote_hb(void) +{ + struct xpc_vars *remote_vars; + struct xpc_partition *part; + partid_t partid; + bte_result_t bres; + + + remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; + + for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { + if (partid == sn_partition_id) { + continue; + } + + part = &xpc_partitions[partid]; + + if (part->act_state == XPC_P_INACTIVE || + part->act_state == XPC_P_DEACTIVATING) { + continue; + } + + /* pull the remote_hb cache line */ + bres = xp_bte_copy(part->remote_vars_pa, + ia64_tpa((u64) remote_vars), + XPC_VARS_ALIGNED_SIZE, + (BTE_NOTIFY | BTE_WACQUIRE), NULL); + if (bres != BTE_SUCCESS) { + XPC_DEACTIVATE_PARTITION(part, + xpc_map_bte_errors(bres)); + continue; + } + + dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" + " = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid, + remote_vars->heartbeat, part->last_heartbeat, + remote_vars->kdb_status, + remote_vars->heartbeating_to_mask); + + if (((remote_vars->heartbeat == part->last_heartbeat) && + (remote_vars->kdb_status == 0)) || + !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { + + XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); + continue; + } + + part->last_heartbeat = remote_vars->heartbeat; + } +} + + +/* + * Get a copy of the remote partition's rsvd page. + * + * remote_rp points to a buffer that is cacheline aligned for BTE copies and + * assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE. + */ +static enum xpc_retval +xpc_get_remote_rp(int nasid, u64 *discovered_nasids, + struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa) +{ + int bres, i; + + + /* get the reserved page's physical address */ + + *remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp, + XPC_RSVD_PAGE_ALIGNED_SIZE); + if (*remote_rsvd_page_pa == 0) { + return xpcNoRsvdPageAddr; + } + + + /* pull over the reserved page structure */ + + bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp), + XPC_RSVD_PAGE_ALIGNED_SIZE, + (BTE_NOTIFY | BTE_WACQUIRE), NULL); + if (bres != BTE_SUCCESS) { + return xpc_map_bte_errors(bres); + } + + + if (discovered_nasids != NULL) { + for (i = 0; i < XP_NASID_MASK_WORDS; i++) { + discovered_nasids[i] |= remote_rp->part_nasids[i]; + } + } + + + /* check that the partid is for another partition */ + + if (remote_rp->partid < 1 || + remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { + return xpcInvalidPartid; + } + + if (remote_rp->partid == sn_partition_id) { + return xpcLocalPartid; + } + + + if (XPC_VERSION_MAJOR(remote_rp->version) != + XPC_VERSION_MAJOR(XPC_RP_VERSION)) { + return xpcBadVersion; + } + + return xpcSuccess; +} + + +/* + * Get a copy of the remote partition's XPC variables. + * + * remote_vars points to a buffer that is cacheline aligned for BTE copies and + * assumed to be of size XPC_VARS_ALIGNED_SIZE. + */ +static enum xpc_retval +xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) +{ + int bres; + + + if (remote_vars_pa == 0) { + return xpcVarsNotSet; + } + + + /* pull over the cross partition variables */ + + bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars), + XPC_VARS_ALIGNED_SIZE, + (BTE_NOTIFY | BTE_WACQUIRE), NULL); + if (bres != BTE_SUCCESS) { + return xpc_map_bte_errors(bres); + } + + if (XPC_VERSION_MAJOR(remote_vars->version) != + XPC_VERSION_MAJOR(XPC_V_VERSION)) { + return xpcBadVersion; + } + + return xpcSuccess; +} + + +/* + * Prior code has determine the nasid which generated an IPI. Inspect + * that nasid to determine if its partition needs to be activated or + * deactivated. + * + * A partition is consider "awaiting activation" if our partition + * flags indicate it is not active and it has a heartbeat. A + * partition is considered "awaiting deactivation" if our partition + * flags indicate it is active but it has no heartbeat or it is not + * sending its heartbeat to us. + * + * To determine the heartbeat, the remote nasid must have a properly + * initialized reserved page. + */ +static void +xpc_identify_act_IRQ_req(int nasid) +{ + struct xpc_rsvd_page *remote_rp; + struct xpc_vars *remote_vars; + u64 remote_rsvd_page_pa; + u64 remote_vars_pa; + partid_t partid; + struct xpc_partition *part; + enum xpc_retval ret; + + + /* pull over the reserved page structure */ + + remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer; + + ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa); + if (ret != xpcSuccess) { + dev_warn(xpc_part, "unable to get reserved page from nasid %d, " + "which sent interrupt, reason=%d\n", nasid, ret); + return; + } + + remote_vars_pa = remote_rp->vars_pa; + partid = remote_rp->partid; + part = &xpc_partitions[partid]; + + + /* pull over the cross partition variables */ + + remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; + + ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); + if (ret != xpcSuccess) { + + dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " + "which sent interrupt, reason=%d\n", nasid, ret); + + XPC_DEACTIVATE_PARTITION(part, ret); + return; + } + + + part->act_IRQ_rcvd++; + + dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " + "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd, + remote_vars->heartbeat, remote_vars->heartbeating_to_mask); + + + if (part->act_state == XPC_P_INACTIVE) { + + part->remote_rp_pa = remote_rsvd_page_pa; + dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", + part->remote_rp_pa); + + part->remote_vars_pa = remote_vars_pa; + dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", + part->remote_vars_pa); + + part->last_heartbeat = remote_vars->heartbeat; + dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", + part->last_heartbeat); + + part->remote_vars_part_pa = remote_vars->vars_part_pa; + dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", + part->remote_vars_part_pa); + + part->remote_act_nasid = remote_vars->act_nasid; + dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", + part->remote_act_nasid); + + part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; + dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", + part->remote_act_phys_cpuid); + + part->remote_amos_page_pa = remote_vars->amos_page_pa; + dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", + part->remote_amos_page_pa); + + xpc_activate_partition(part); + + } else if (part->remote_amos_page_pa != remote_vars->amos_page_pa || + !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { + + part->reactivate_nasid = nasid; + XPC_DEACTIVATE_PARTITION(part, xpcReactivating); + } +} + + +/* + * Loop through the activation AMO variables and process any bits + * which are set. Each bit indicates a nasid sending a partition + * activation or deactivation request. + * + * Return #of IRQs detected. + */ +int +xpc_identify_act_IRQ_sender(void) +{ + int word, bit; + u64 nasid_mask; + u64 nasid; /* remote nasid */ + int n_IRQs_detected = 0; + AMO_t *act_amos; + struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page; + + + act_amos = xpc_vars->act_amos; + + + /* scan through act AMO variable looking for non-zero entries */ + for (word = 0; word < XP_NASID_MASK_WORDS; word++) { + + nasid_mask = xpc_IPI_receive(&act_amos[word]); + if (nasid_mask == 0) { + /* no IRQs from nasids in this variable */ + continue; + } + + dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, + nasid_mask); + + + /* + * If this nasid has been added to the machine since + * our partition was reset, this will retain the + * remote nasid in our reserved pages machine mask. + * This is used in the event of module reload. + */ + rp->mach_nasids[word] |= nasid_mask; + + + /* locate the nasid(s) which sent interrupts */ + + for (bit = 0; bit < (8 * sizeof(u64)); bit++) { + if (nasid_mask & (1UL << bit)) { + n_IRQs_detected++; + nasid = XPC_NASID_FROM_W_B(word, bit); + dev_dbg(xpc_part, "interrupt from nasid %ld\n", + nasid); + xpc_identify_act_IRQ_req(nasid); + } + } + } + return n_IRQs_detected; +} + + +/* + * Mark specified partition as active. + */ +enum xpc_retval +xpc_mark_partition_active(struct xpc_partition *part) +{ + unsigned long irq_flags; + enum xpc_retval ret; + + + dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); + + spin_lock_irqsave(&part->act_lock, irq_flags); + if (part->act_state == XPC_P_ACTIVATING) { + part->act_state = XPC_P_ACTIVE; + ret = xpcSuccess; + } else { + DBUG_ON(part->reason == xpcSuccess); + ret = part->reason; + } + spin_unlock_irqrestore(&part->act_lock, irq_flags); + + return ret; +} + + +/* + * Notify XPC that the partition is down. + */ +void +xpc_deactivate_partition(const int line, struct xpc_partition *part, + enum xpc_retval reason) +{ + unsigned long irq_flags; + partid_t partid = XPC_PARTID(part); + + + spin_lock_irqsave(&part->act_lock, irq_flags); + + if (part->act_state == XPC_P_INACTIVE) { + XPC_SET_REASON(part, reason, line); + spin_unlock_irqrestore(&part->act_lock, irq_flags); + if (reason == xpcReactivating) { + /* we interrupt ourselves to reactivate partition */ + xpc_IPI_send_reactivate(part); + } + return; + } + if (part->act_state == XPC_P_DEACTIVATING) { + if ((part->reason == xpcUnloading && reason != xpcUnloading) || + reason == xpcReactivating) { + XPC_SET_REASON(part, reason, line); + } + spin_unlock_irqrestore(&part->act_lock, irq_flags); + return; + } + + part->act_state = XPC_P_DEACTIVATING; + XPC_SET_REASON(part, reason, line); + + spin_unlock_irqrestore(&part->act_lock, irq_flags); + + XPC_DISALLOW_HB(partid, xpc_vars); + + dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid, + reason); + + xpc_partition_down(part, reason); +} + + +/* + * Mark specified partition as active. + */ +void +xpc_mark_partition_inactive(struct xpc_partition *part) +{ + unsigned long irq_flags; + + + dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", + XPC_PARTID(part)); + + spin_lock_irqsave(&part->act_lock, irq_flags); + part->act_state = XPC_P_INACTIVE; + spin_unlock_irqrestore(&part->act_lock, irq_flags); + part->remote_rp_pa = 0; +} + + +/* + * SAL has provided a partition and machine mask. The partition mask + * contains a bit for each even nasid in our partition. The machine + * mask contains a bit for each even nasid in the entire machine. + * + * Using those two bit arrays, we can determine which nasids are + * known in the machine. Each should also have a reserved page + * initialized if they are available for partitioning. + */ +void +xpc_discovery(void) +{ + void *remote_rp_base; + struct xpc_rsvd_page *remote_rp; + struct xpc_vars *remote_vars; + u64 remote_rsvd_page_pa; + u64 remote_vars_pa; + int region; + int max_regions; + int nasid; + struct xpc_rsvd_page *rp; + partid_t partid; + struct xpc_partition *part; + u64 *discovered_nasids; + enum xpc_retval ret; + + + remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE, + GFP_KERNEL, &remote_rp_base); + if (remote_rp == NULL) { + return; + } + remote_vars = (struct xpc_vars *) remote_rp; + + + discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS, + GFP_KERNEL); + if (discovered_nasids == NULL) { + kfree(remote_rp_base); + return; + } + memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS); + + rp = (struct xpc_rsvd_page *) xpc_rsvd_page; + + /* + * The term 'region' in this context refers to the minimum number of + * nodes that can comprise an access protection grouping. The access + * protection is in regards to memory, IOI and IPI. + */ +//>>> move the next two #defines into either include/asm-ia64/sn/arch.h or +//>>> include/asm-ia64/sn/addrs.h +#define SH1_MAX_REGIONS 64 +#define SH2_MAX_REGIONS 256 + max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS; + + for (region = 0; region < max_regions; region++) { + + if ((volatile int) xpc_exiting) { + break; + } + + dev_dbg(xpc_part, "searching region %d\n", region); + + for (nasid = (region * sn_region_size * 2); + nasid < ((region + 1) * sn_region_size * 2); + nasid += 2) { + + if ((volatile int) xpc_exiting) { + break; + } + + dev_dbg(xpc_part, "checking nasid %d\n", nasid); + + + if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) { + dev_dbg(xpc_part, "PROM indicates Nasid %d is " + "part of the local partition; skipping " + "region\n", nasid); + break; + } + + if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) { + dev_dbg(xpc_part, "PROM indicates Nasid %d was " + "not on Numa-Link network at reset\n", + nasid); + continue; + } + + if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { + dev_dbg(xpc_part, "Nasid %d is part of a " + "partition which was previously " + "discovered\n", nasid); + continue; + } + + + /* pull over the reserved page structure */ + + ret = xpc_get_remote_rp(nasid, discovered_nasids, + remote_rp, &remote_rsvd_page_pa); + if (ret != xpcSuccess) { + dev_dbg(xpc_part, "unable to get reserved page " + "from nasid %d, reason=%d\n", nasid, + ret); + + if (ret == xpcLocalPartid) { + break; + } + continue; + } + + remote_vars_pa = remote_rp->vars_pa; + + partid = remote_rp->partid; + part = &xpc_partitions[partid]; + + + /* pull over the cross partition variables */ + + ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); + if (ret != xpcSuccess) { + dev_dbg(xpc_part, "unable to get XPC variables " + "from nasid %d, reason=%d\n", nasid, + ret); + + XPC_DEACTIVATE_PARTITION(part, ret); + continue; + } + + if (part->act_state != XPC_P_INACTIVE) { + dev_dbg(xpc_part, "partition %d on nasid %d is " + "already activating\n", partid, nasid); + break; + } + + /* + * Register the remote partition's AMOs with SAL so it + * can handle and cleanup errors within that address + * range should the remote partition go down. We don't + * unregister this range because it is difficult to + * tell when outstanding writes to the remote partition + * are finished and thus when it is thus safe to + * unregister. This should not result in wasted space + * in the SAL xp_addr_region table because we should + * get the same page for remote_act_amos_pa after + * module reloads and system reboots. + */ + if (sn_register_xp_addr_region( + remote_vars->amos_page_pa, + PAGE_SIZE, 1) < 0) { + dev_dbg(xpc_part, "partition %d failed to " + "register xp_addr region 0x%016lx\n", + partid, remote_vars->amos_page_pa); + + XPC_SET_REASON(part, xpcPhysAddrRegFailed, + __LINE__); + break; + } + + /* + * The remote nasid is valid and available. + * Send an interrupt to that nasid to notify + * it that we are ready to begin activation. + */ + dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " + "nasid %d, phys_cpuid 0x%x\n", + remote_vars->amos_page_pa, + remote_vars->act_nasid, + remote_vars->act_phys_cpuid); + + xpc_IPI_send_activate(remote_vars); + } + } + + kfree(discovered_nasids); + kfree(remote_rp_base); +} + + +/* + * Given a partid, get the nasids owned by that partition from the + * remote partition's reserved page. + */ +enum xpc_retval +xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) +{ + struct xpc_partition *part; + u64 part_nasid_pa; + int bte_res; + + + part = &xpc_partitions[partid]; + if (part->remote_rp_pa == 0) { + return xpcPartitionDown; + } + + part_nasid_pa = part->remote_rp_pa + + (u64) &((struct xpc_rsvd_page *) 0)->part_nasids; + + bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask), + L1_CACHE_ALIGN(XP_NASID_MASK_BYTES), + (BTE_NOTIFY | BTE_WACQUIRE), NULL); + + return xpc_map_bte_errors(bte_res); +} + diff --git a/arch/ia64/sn/kernel/xpnet.c b/arch/ia64/sn/kernel/xpnet.c new file mode 100644 index 000000000000..78c13d676fa6 --- /dev/null +++ b/arch/ia64/sn/kernel/xpnet.c @@ -0,0 +1,715 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 1999,2001-2005 Silicon Graphics, Inc. All rights reserved. + */ + + +/* + * Cross Partition Network Interface (XPNET) support + * + * XPNET provides a virtual network layered on top of the Cross + * Partition communication layer. + * + * XPNET provides direct point-to-point and broadcast-like support + * for an ethernet-like device. The ethernet broadcast medium is + * replaced with a point-to-point message structure which passes + * pointers to a DMA-capable block that a remote partition should + * retrieve and pass to the upper level networking layer. + * + */ + + +#include <linux/config.h> +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/pci.h> +#include <linux/init.h> +#include <linux/ioport.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/delay.h> +#include <linux/ethtool.h> +#include <linux/mii.h> +#include <linux/smp.h> +#include <linux/string.h> +#include <asm/sn/bte.h> +#include <asm/sn/io.h> +#include <asm/sn/sn_sal.h> +#include <asm/types.h> +#include <asm/atomic.h> +#include <asm/sn/xp.h> + + +/* + * The message payload transferred by XPC. + * + * buf_pa is the physical address where the DMA should pull from. + * + * NOTE: for performance reasons, buf_pa should _ALWAYS_ begin on a + * cacheline boundary. To accomplish this, we record the number of + * bytes from the beginning of the first cacheline to the first useful + * byte of the skb (leadin_ignore) and the number of bytes from the + * last useful byte of the skb to the end of the last cacheline + * (tailout_ignore). + * + * size is the number of bytes to transfer which includes the skb->len + * (useful bytes of the senders skb) plus the leadin and tailout + */ +struct xpnet_message { + u16 version; /* Version for this message */ + u16 embedded_bytes; /* #of bytes embedded in XPC message */ + u32 magic; /* Special number indicating this is xpnet */ + u64 buf_pa; /* phys address of buffer to retrieve */ + u32 size; /* #of bytes in buffer */ + u8 leadin_ignore; /* #of bytes to ignore at the beginning */ + u8 tailout_ignore; /* #of bytes to ignore at the end */ + unsigned char data; /* body of small packets */ +}; + +/* + * Determine the size of our message, the cacheline aligned size, + * and then the number of message will request from XPC. + * + * XPC expects each message to exist in an individual cacheline. + */ +#define XPNET_MSG_SIZE (L1_CACHE_BYTES - XPC_MSG_PAYLOAD_OFFSET) +#define XPNET_MSG_DATA_MAX \ + (XPNET_MSG_SIZE - (u64)(&((struct xpnet_message *)0)->data)) +#define XPNET_MSG_ALIGNED_SIZE (L1_CACHE_ALIGN(XPNET_MSG_SIZE)) +#define XPNET_MSG_NENTRIES (PAGE_SIZE / XPNET_MSG_ALIGNED_SIZE) + + +#define XPNET_MAX_KTHREADS (XPNET_MSG_NENTRIES + 1) +#define XPNET_MAX_IDLE_KTHREADS (XPNET_MSG_NENTRIES + 1) + +/* + * Version number of XPNET implementation. XPNET can always talk to versions + * with same major #, and never talk to versions with a different version. + */ +#define _XPNET_VERSION(_major, _minor) (((_major) << 4) | (_minor)) +#define XPNET_VERSION_MAJOR(_v) ((_v) >> 4) +#define XPNET_VERSION_MINOR(_v) ((_v) & 0xf) + +#define XPNET_VERSION _XPNET_VERSION(1,0) /* version 1.0 */ +#define XPNET_VERSION_EMBED _XPNET_VERSION(1,1) /* version 1.1 */ +#define XPNET_MAGIC 0x88786984 /* "XNET" */ + +#define XPNET_VALID_MSG(_m) \ + ((XPNET_VERSION_MAJOR(_m->version) == XPNET_VERSION_MAJOR(XPNET_VERSION)) \ + && (msg->magic == XPNET_MAGIC)) + +#define XPNET_DEVICE_NAME "xp0" + + +/* + * When messages are queued with xpc_send_notify, a kmalloc'd buffer + * of the following type is passed as a notification cookie. When the + * notification function is called, we use the cookie to decide + * whether all outstanding message sends have completed. The skb can + * then be released. + */ +struct xpnet_pending_msg { + struct list_head free_list; + struct sk_buff *skb; + atomic_t use_count; +}; + +/* driver specific structure pointed to by the device structure */ +struct xpnet_dev_private { + struct net_device_stats stats; +}; + +struct net_device *xpnet_device; + +/* + * When we are notified of other partitions activating, we add them to + * our bitmask of partitions to which we broadcast. + */ +static u64 xpnet_broadcast_partitions; +/* protect above */ +static spinlock_t xpnet_broadcast_lock = SPIN_LOCK_UNLOCKED; + +/* + * Since the Block Transfer Engine (BTE) is being used for the transfer + * and it relies upon cache-line size transfers, we need to reserve at + * least one cache-line for head and tail alignment. The BTE is + * limited to 8MB transfers. + * + * Testing has shown that changing MTU to greater than 64KB has no effect + * on TCP as the two sides negotiate a Max Segment Size that is limited + * to 64K. Other protocols May use packets greater than this, but for + * now, the default is 64KB. + */ +#define XPNET_MAX_MTU (0x800000UL - L1_CACHE_BYTES) +/* 32KB has been determined to be the ideal */ +#define XPNET_DEF_MTU (0x8000UL) + + +/* + * The partition id is encapsulated in the MAC address. The following + * define locates the octet the partid is in. + */ +#define XPNET_PARTID_OCTET 1 +#define XPNET_LICENSE_OCTET 2 + + +/* + * Define the XPNET debug device structure that is to be used with dev_dbg(), + * dev_err(), dev_warn(), and dev_info(). + */ +struct device_driver xpnet_dbg_name = { + .name = "xpnet" +}; + +struct device xpnet_dbg_subname = { + .bus_id = {0}, /* set to "" */ + .driver = &xpnet_dbg_name +}; + +struct device *xpnet = &xpnet_dbg_subname; + +/* + * Packet was recevied by XPC and forwarded to us. + */ +static void +xpnet_receive(partid_t partid, int channel, struct xpnet_message *msg) +{ + struct sk_buff *skb; + bte_result_t bret; + struct xpnet_dev_private *priv = + (struct xpnet_dev_private *) xpnet_device->priv; + + + if (!XPNET_VALID_MSG(msg)) { + /* + * Packet with a different XPC version. Ignore. + */ + xpc_received(partid, channel, (void *) msg); + + priv->stats.rx_errors++; + + return; + } + dev_dbg(xpnet, "received 0x%lx, %d, %d, %d\n", msg->buf_pa, msg->size, + msg->leadin_ignore, msg->tailout_ignore); + + + /* reserve an extra cache line */ + skb = dev_alloc_skb(msg->size + L1_CACHE_BYTES); + if (!skb) { + dev_err(xpnet, "failed on dev_alloc_skb(%d)\n", + msg->size + L1_CACHE_BYTES); + + xpc_received(partid, channel, (void *) msg); + + priv->stats.rx_errors++; + + return; + } + + /* + * The allocated skb has some reserved space. + * In order to use bte_copy, we need to get the + * skb->data pointer moved forward. + */ + skb_reserve(skb, (L1_CACHE_BYTES - ((u64)skb->data & + (L1_CACHE_BYTES - 1)) + + msg->leadin_ignore)); + + /* + * Update the tail pointer to indicate data actually + * transferred. + */ + skb_put(skb, (msg->size - msg->leadin_ignore - msg->tailout_ignore)); + + /* + * Move the data over from the the other side. + */ + if ((XPNET_VERSION_MINOR(msg->version) == 1) && + (msg->embedded_bytes != 0)) { + dev_dbg(xpnet, "copying embedded message. memcpy(0x%p, 0x%p, " + "%lu)\n", skb->data, &msg->data, + (size_t) msg->embedded_bytes); + + memcpy(skb->data, &msg->data, (size_t) msg->embedded_bytes); + } else { + dev_dbg(xpnet, "transferring buffer to the skb->data area;\n\t" + "bte_copy(0x%p, 0x%p, %hu)\n", (void *)msg->buf_pa, + (void *)__pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), + msg->size); + + bret = bte_copy(msg->buf_pa, + __pa((u64)skb->data & ~(L1_CACHE_BYTES - 1)), + msg->size, (BTE_NOTIFY | BTE_WACQUIRE), NULL); + + if (bret != BTE_SUCCESS) { + // >>> Need better way of cleaning skb. Currently skb + // >>> appears in_use and we can't just call + // >>> dev_kfree_skb. + dev_err(xpnet, "bte_copy(0x%p, 0x%p, 0x%hx) returned " + "error=0x%x\n", (void *)msg->buf_pa, + (void *)__pa((u64)skb->data & + ~(L1_CACHE_BYTES - 1)), + msg->size, bret); + + xpc_received(partid, channel, (void *) msg); + + priv->stats.rx_errors++; + + return; + } + } + + dev_dbg(xpnet, "<skb->head=0x%p skb->data=0x%p skb->tail=0x%p " + "skb->end=0x%p skb->len=%d\n", (void *) skb->head, + (void *) skb->data, (void *) skb->tail, (void *) skb->end, + skb->len); + + skb->dev = xpnet_device; + skb->protocol = eth_type_trans(skb, xpnet_device); + skb->ip_summed = CHECKSUM_UNNECESSARY; + + dev_dbg(xpnet, "passing skb to network layer; \n\tskb->head=0x%p " + "skb->data=0x%p skb->tail=0x%p skb->end=0x%p skb->len=%d\n", + (void *) skb->head, (void *) skb->data, (void *) skb->tail, + (void *) skb->end, skb->len); + + + xpnet_device->last_rx = jiffies; + priv->stats.rx_packets++; + priv->stats.rx_bytes += skb->len + ETH_HLEN; + + netif_rx_ni(skb); + xpc_received(partid, channel, (void *) msg); +} + + +/* + * This is the handler which XPC calls during any sort of change in + * state or message reception on a connection. + */ +static void +xpnet_connection_activity(enum xpc_retval reason, partid_t partid, int channel, + void *data, void *key) +{ + long bp; + + + DBUG_ON(partid <= 0 || partid >= XP_MAX_PARTITIONS); + DBUG_ON(channel != XPC_NET_CHANNEL); + + switch(reason) { + case xpcMsgReceived: /* message received */ + DBUG_ON(data == NULL); + + xpnet_receive(partid, channel, (struct xpnet_message *) data); + break; + + case xpcConnected: /* connection completed to a partition */ + spin_lock_bh(&xpnet_broadcast_lock); + xpnet_broadcast_partitions |= 1UL << (partid -1 ); + bp = xpnet_broadcast_partitions; + spin_unlock_bh(&xpnet_broadcast_lock); + + netif_carrier_on(xpnet_device); + + dev_dbg(xpnet, "%s connection created to partition %d; " + "xpnet_broadcast_partitions=0x%lx\n", + xpnet_device->name, partid, bp); + break; + + default: + spin_lock_bh(&xpnet_broadcast_lock); + xpnet_broadcast_partitions &= ~(1UL << (partid -1 )); + bp = xpnet_broadcast_partitions; + spin_unlock_bh(&xpnet_broadcast_lock); + + if (bp == 0) { + netif_carrier_off(xpnet_device); + } + + dev_dbg(xpnet, "%s disconnected from partition %d; " + "xpnet_broadcast_partitions=0x%lx\n", + xpnet_device->name, partid, bp); + break; + + } +} + + +static int +xpnet_dev_open(struct net_device *dev) +{ + enum xpc_retval ret; + + + dev_dbg(xpnet, "calling xpc_connect(%d, 0x%p, NULL, %ld, %ld, %d, " + "%d)\n", XPC_NET_CHANNEL, xpnet_connection_activity, + XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, XPNET_MAX_KTHREADS, + XPNET_MAX_IDLE_KTHREADS); + + ret = xpc_connect(XPC_NET_CHANNEL, xpnet_connection_activity, NULL, + XPNET_MSG_SIZE, XPNET_MSG_NENTRIES, + XPNET_MAX_KTHREADS, XPNET_MAX_IDLE_KTHREADS); + if (ret != xpcSuccess) { + dev_err(xpnet, "ifconfig up of %s failed on XPC connect, " + "ret=%d\n", dev->name, ret); + + return -ENOMEM; + } + + dev_dbg(xpnet, "ifconfig up of %s; XPC connected\n", dev->name); + + return 0; +} + + +static int +xpnet_dev_stop(struct net_device *dev) +{ + xpc_disconnect(XPC_NET_CHANNEL); + + dev_dbg(xpnet, "ifconfig down of %s; XPC disconnected\n", dev->name); + + return 0; +} + + +static int +xpnet_dev_change_mtu(struct net_device *dev, int new_mtu) +{ + /* 68 comes from min TCP+IP+MAC header */ + if ((new_mtu < 68) || (new_mtu > XPNET_MAX_MTU)) { + dev_err(xpnet, "ifconfig %s mtu %d failed; value must be " + "between 68 and %ld\n", dev->name, new_mtu, + XPNET_MAX_MTU); + return -EINVAL; + } + + dev->mtu = new_mtu; + dev_dbg(xpnet, "ifconfig %s mtu set to %d\n", dev->name, new_mtu); + return 0; +} + + +/* + * Required for the net_device structure. + */ +static int +xpnet_dev_set_config(struct net_device *dev, struct ifmap *new_map) +{ + return 0; +} + + +/* + * Return statistics to the caller. + */ +static struct net_device_stats * +xpnet_dev_get_stats(struct net_device *dev) +{ + struct xpnet_dev_private *priv; + + + priv = (struct xpnet_dev_private *) dev->priv; + + return &priv->stats; +} + + +/* + * Notification that the other end has received the message and + * DMA'd the skb information. At this point, they are done with + * our side. When all recipients are done processing, we + * release the skb and then release our pending message structure. + */ +static void +xpnet_send_completed(enum xpc_retval reason, partid_t partid, int channel, + void *__qm) +{ + struct xpnet_pending_msg *queued_msg = + (struct xpnet_pending_msg *) __qm; + + + DBUG_ON(queued_msg == NULL); + + dev_dbg(xpnet, "message to %d notified with reason %d\n", + partid, reason); + + if (atomic_dec_return(&queued_msg->use_count) == 0) { + dev_dbg(xpnet, "all acks for skb->head=-x%p\n", + (void *) queued_msg->skb->head); + + dev_kfree_skb_any(queued_msg->skb); + kfree(queued_msg); + } +} + + +/* + * Network layer has formatted a packet (skb) and is ready to place it + * "on the wire". Prepare and send an xpnet_message to all partitions + * which have connected with us and are targets of this packet. + * + * MAC-NOTE: For the XPNET driver, the MAC address contains the + * destination partition_id. If the destination partition id word + * is 0xff, this packet is to broadcast to all partitions. + */ +static int +xpnet_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) +{ + struct xpnet_pending_msg *queued_msg; + enum xpc_retval ret; + struct xpnet_message *msg; + u64 start_addr, end_addr; + long dp; + u8 second_mac_octet; + partid_t dest_partid; + struct xpnet_dev_private *priv; + u16 embedded_bytes; + + + priv = (struct xpnet_dev_private *) dev->priv; + + + dev_dbg(xpnet, ">skb->head=0x%p skb->data=0x%p skb->tail=0x%p " + "skb->end=0x%p skb->len=%d\n", (void *) skb->head, + (void *) skb->data, (void *) skb->tail, (void *) skb->end, + skb->len); + + + /* + * The xpnet_pending_msg tracks how many outstanding + * xpc_send_notifies are relying on this skb. When none + * remain, release the skb. + */ + queued_msg = kmalloc(sizeof(struct xpnet_pending_msg), GFP_ATOMIC); + if (queued_msg == NULL) { + dev_warn(xpnet, "failed to kmalloc %ld bytes; dropping " + "packet\n", sizeof(struct xpnet_pending_msg)); + + priv->stats.tx_errors++; + + return -ENOMEM; + } + + + /* get the beginning of the first cacheline and end of last */ + start_addr = ((u64) skb->data & ~(L1_CACHE_BYTES - 1)); + end_addr = L1_CACHE_ALIGN((u64) skb->tail); + + /* calculate how many bytes to embed in the XPC message */ + embedded_bytes = 0; + if (unlikely(skb->len <= XPNET_MSG_DATA_MAX)) { + /* skb->data does fit so embed */ + embedded_bytes = skb->len; + } + + + /* + * Since the send occurs asynchronously, we set the count to one + * and begin sending. Any sends that happen to complete before + * we are done sending will not free the skb. We will be left + * with that task during exit. This also handles the case of + * a packet destined for a partition which is no longer up. + */ + atomic_set(&queued_msg->use_count, 1); + queued_msg->skb = skb; + + + second_mac_octet = skb->data[XPNET_PARTID_OCTET]; + if (second_mac_octet == 0xff) { + /* we are being asked to broadcast to all partitions */ + dp = xpnet_broadcast_partitions; + } else if (second_mac_octet != 0) { + dp = xpnet_broadcast_partitions & + (1UL << (second_mac_octet - 1)); + } else { + /* 0 is an invalid partid. Ignore */ + dp = 0; + } + dev_dbg(xpnet, "destination Partitions mask (dp) = 0x%lx\n", dp); + + /* + * If we wanted to allow promiscous mode to work like an + * unswitched network, this would be a good point to OR in a + * mask of partitions which should be receiving all packets. + */ + + /* + * Main send loop. + */ + for (dest_partid = 1; dp && dest_partid < XP_MAX_PARTITIONS; + dest_partid++) { + + + if (!(dp & (1UL << (dest_partid - 1)))) { + /* not destined for this partition */ + continue; + } + + /* remove this partition from the destinations mask */ + dp &= ~(1UL << (dest_partid - 1)); + + + /* found a partition to send to */ + + ret = xpc_allocate(dest_partid, XPC_NET_CHANNEL, + XPC_NOWAIT, (void **)&msg); + if (unlikely(ret != xpcSuccess)) { + continue; + } + + msg->embedded_bytes = embedded_bytes; + if (unlikely(embedded_bytes != 0)) { + msg->version = XPNET_VERSION_EMBED; + dev_dbg(xpnet, "calling memcpy(0x%p, 0x%p, 0x%lx)\n", + &msg->data, skb->data, (size_t) embedded_bytes); + memcpy(&msg->data, skb->data, (size_t) embedded_bytes); + } else { + msg->version = XPNET_VERSION; + } + msg->magic = XPNET_MAGIC; + msg->size = end_addr - start_addr; + msg->leadin_ignore = (u64) skb->data - start_addr; + msg->tailout_ignore = end_addr - (u64) skb->tail; + msg->buf_pa = __pa(start_addr); + + dev_dbg(xpnet, "sending XPC message to %d:%d\nmsg->buf_pa=" + "0x%lx, msg->size=%u, msg->leadin_ignore=%u, " + "msg->tailout_ignore=%u\n", dest_partid, + XPC_NET_CHANNEL, msg->buf_pa, msg->size, + msg->leadin_ignore, msg->tailout_ignore); + + + atomic_inc(&queued_msg->use_count); + + ret = xpc_send_notify(dest_partid, XPC_NET_CHANNEL, msg, + xpnet_send_completed, queued_msg); + if (unlikely(ret != xpcSuccess)) { + atomic_dec(&queued_msg->use_count); + continue; + } + + } + + if (atomic_dec_return(&queued_msg->use_count) == 0) { + dev_dbg(xpnet, "no partitions to receive packet destined for " + "%d\n", dest_partid); + + + dev_kfree_skb(skb); + kfree(queued_msg); + } + + priv->stats.tx_packets++; + priv->stats.tx_bytes += skb->len; + + return 0; +} + + +/* + * Deal with transmit timeouts coming from the network layer. + */ +static void +xpnet_dev_tx_timeout (struct net_device *dev) +{ + struct xpnet_dev_private *priv; + + + priv = (struct xpnet_dev_private *) dev->priv; + + priv->stats.tx_errors++; + return; +} + + +static int __init +xpnet_init(void) +{ + int i; + u32 license_num; + int result = -ENOMEM; + + + dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); + + /* + * use ether_setup() to init the majority of our device + * structure and then override the necessary pieces. + */ + xpnet_device = alloc_netdev(sizeof(struct xpnet_dev_private), + XPNET_DEVICE_NAME, ether_setup); + if (xpnet_device == NULL) { + return -ENOMEM; + } + + netif_carrier_off(xpnet_device); + + xpnet_device->mtu = XPNET_DEF_MTU; + xpnet_device->change_mtu = xpnet_dev_change_mtu; + xpnet_device->open = xpnet_dev_open; + xpnet_device->get_stats = xpnet_dev_get_stats; + xpnet_device->stop = xpnet_dev_stop; + xpnet_device->hard_start_xmit = xpnet_dev_hard_start_xmit; + xpnet_device->tx_timeout = xpnet_dev_tx_timeout; + xpnet_device->set_config = xpnet_dev_set_config; + + /* + * Multicast assumes the LSB of the first octet is set for multicast + * MAC addresses. We chose the first octet of the MAC to be unlikely + * to collide with any vendor's officially issued MAC. + */ + xpnet_device->dev_addr[0] = 0xfe; + xpnet_device->dev_addr[XPNET_PARTID_OCTET] = sn_partition_id; + license_num = sn_partition_serial_number_val(); + for (i = 3; i >= 0; i--) { + xpnet_device->dev_addr[XPNET_LICENSE_OCTET + i] = + license_num & 0xff; + license_num = license_num >> 8; + } + + /* + * ether_setup() sets this to a multicast device. We are + * really not supporting multicast at this time. + */ + xpnet_device->flags &= ~IFF_MULTICAST; + + /* + * No need to checksum as it is a DMA transfer. The BTE will + * report an error if the data is not retrievable and the + * packet will be dropped. + */ + xpnet_device->features = NETIF_F_NO_CSUM; + + result = register_netdev(xpnet_device); + if (result != 0) { + free_netdev(xpnet_device); + } + + return result; +} +module_init(xpnet_init); + + +static void __exit +xpnet_exit(void) +{ + dev_info(xpnet, "unregistering network device %s\n", + xpnet_device[0].name); + + unregister_netdev(xpnet_device); + + free_netdev(xpnet_device); +} +module_exit(xpnet_exit); + + +MODULE_AUTHOR("Silicon Graphics, Inc."); +MODULE_DESCRIPTION("Cross Partition Network adapter (XPNET)"); +MODULE_LICENSE("GPL"); + diff --git a/arch/ia64/sn/pci/pcibr/pcibr_dma.c b/arch/ia64/sn/pci/pcibr/pcibr_dma.c index c90685985d81..64af2b2c1787 100644 --- a/arch/ia64/sn/pci/pcibr/pcibr_dma.c +++ b/arch/ia64/sn/pci/pcibr/pcibr_dma.c @@ -301,7 +301,7 @@ void sn_dma_flush(uint64_t addr) spin_lock_irqsave(&((struct sn_flush_device_list *)p)-> sfdl_flush_lock, flags); - p->sfdl_flush_value = 0; + *p->sfdl_flush_addr = 0; /* force an interrupt. */ *(volatile uint32_t *)(p->sfdl_force_int_addr) = 1; diff --git a/arch/ia64/sn/pci/tioca_provider.c b/arch/ia64/sn/pci/tioca_provider.c index 54a0dd447e76..8dae9eb45456 100644 --- a/arch/ia64/sn/pci/tioca_provider.c +++ b/arch/ia64/sn/pci/tioca_provider.c @@ -431,7 +431,7 @@ tioca_dma_mapped(struct pci_dev *pdev, uint64_t paddr, size_t req_size) ca_dmamap->cad_dma_addr = bus_addr; ca_dmamap->cad_gart_size = entries; ca_dmamap->cad_gart_entry = entry; - list_add(&ca_dmamap->cad_list, &tioca_kern->ca_list); + list_add(&ca_dmamap->cad_list, &tioca_kern->ca_dmamaps); if (xio_addr % ps) { tioca_kern->ca_pcigart[entry] = tioca_paddr_to_gart(xio_addr); diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig index 2d5a19f6378d..5ed6515ae01f 100644 --- a/drivers/char/Kconfig +++ b/drivers/char/Kconfig @@ -408,7 +408,7 @@ config SGI_TIOCX config SGI_MBCS tristate "SGI FPGA Core Services driver support" - depends on (IA64_SGI_SN2 || IA64_GENERIC) + depends on SGI_TIOCX help If you have an SGI Altix with an attached SABrick say Y or M here, otherwise say N. diff --git a/include/asm-ia64/sn/addrs.h b/include/asm-ia64/sn/addrs.h index 960d626ee589..1bfdfb4d7b01 100644 --- a/include/asm-ia64/sn/addrs.h +++ b/include/asm-ia64/sn/addrs.h @@ -136,6 +136,7 @@ */ #define CAC_BASE (CACHED | AS_CAC_SPACE) #define AMO_BASE (UNCACHED | AS_AMO_SPACE) +#define AMO_PHYS_BASE (UNCACHED_PHYS | AS_AMO_SPACE) #define GET_BASE (CACHED | AS_GET_SPACE) /* @@ -161,6 +162,13 @@ /* + * Macros to test for address type. + */ +#define IS_AMO_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_BASE) +#define IS_AMO_PHYS_ADDRESS(x) (((u64)(x) & (REGION_BITS | AS_MASK)) == AMO_PHYS_BASE) + + +/* * The following definitions pertain to the IO special address * space. They define the location of the big and little windows * of any given node. diff --git a/include/asm-ia64/sn/arch.h b/include/asm-ia64/sn/arch.h index 7c349f07916a..635fdce854a8 100644 --- a/include/asm-ia64/sn/arch.h +++ b/include/asm-ia64/sn/arch.h @@ -5,7 +5,7 @@ * * SGI specific setup. * - * Copyright (C) 1995-1997,1999,2001-2004 Silicon Graphics, Inc. All rights reserved. + * Copyright (C) 1995-1997,1999,2001-2005 Silicon Graphics, Inc. All rights reserved. * Copyright (C) 1999 Ralf Baechle (ralf@gnu.org) */ #ifndef _ASM_IA64_SN_ARCH_H @@ -47,6 +47,21 @@ DECLARE_PER_CPU(struct sn_hub_info_s, __sn_hub_info); #define MAX_COMPACT_NODES 2048 #define CPUS_PER_NODE 4 + +/* + * Compact node ID to nasid mappings kept in the per-cpu data areas of each + * cpu. + */ +DECLARE_PER_CPU(short, __sn_cnodeid_to_nasid[MAX_NUMNODES]); +#define sn_cnodeid_to_nasid (&__get_cpu_var(__sn_cnodeid_to_nasid[0])) + + + +extern u8 sn_partition_id; +extern u8 sn_system_size; +extern u8 sn_sharing_domain_size; +extern u8 sn_region_size; + extern void sn_flush_all_caches(long addr, long bytes); #endif /* _ASM_IA64_SN_ARCH_H */ diff --git a/include/asm-ia64/sn/fetchop.h b/include/asm-ia64/sn/fetchop.h deleted file mode 100644 index 5f4ad8f4b5d2..000000000000 --- a/include/asm-ia64/sn/fetchop.h +++ /dev/null @@ -1,85 +0,0 @@ -/* - * - * This file is subject to the terms and conditions of the GNU General Public - * License. See the file "COPYING" in the main directory of this archive - * for more details. - * - * Copyright (c) 2001-2004 Silicon Graphics, Inc. All rights reserved. - */ - -#ifndef _ASM_IA64_SN_FETCHOP_H -#define _ASM_IA64_SN_FETCHOP_H - -#include <linux/config.h> - -#define FETCHOP_BASENAME "sgi_fetchop" -#define FETCHOP_FULLNAME "/dev/sgi_fetchop" - - - -#define FETCHOP_VAR_SIZE 64 /* 64 byte per fetchop variable */ - -#define FETCHOP_LOAD 0 -#define FETCHOP_INCREMENT 8 -#define FETCHOP_DECREMENT 16 -#define FETCHOP_CLEAR 24 - -#define FETCHOP_STORE 0 -#define FETCHOP_AND 24 -#define FETCHOP_OR 32 - -#define FETCHOP_CLEAR_CACHE 56 - -#define FETCHOP_LOAD_OP(addr, op) ( \ - *(volatile long *)((char*) (addr) + (op))) - -#define FETCHOP_STORE_OP(addr, op, x) ( \ - *(volatile long *)((char*) (addr) + (op)) = (long) (x)) - -#ifdef __KERNEL__ - -/* - * Convert a region 6 (kaddr) address to the address of the fetchop variable - */ -#define FETCHOP_KADDR_TO_MSPEC_ADDR(kaddr) TO_MSPEC(kaddr) - - -/* - * Each Atomic Memory Operation (AMO formerly known as fetchop) - * variable is 64 bytes long. The first 8 bytes are used. The - * remaining 56 bytes are unaddressable due to the operation taking - * that portion of the address. - * - * NOTE: The AMO_t _MUST_ be placed in either the first or second half - * of the cache line. The cache line _MUST NOT_ be used for anything - * other than additional AMO_t entries. This is because there are two - * addresses which reference the same physical cache line. One will - * be a cached entry with the memory type bits all set. This address - * may be loaded into processor cache. The AMO_t will be referenced - * uncached via the memory special memory type. If any portion of the - * cached cache-line is modified, when that line is flushed, it will - * overwrite the uncached value in physical memory and lead to - * inconsistency. - */ -typedef struct { - u64 variable; - u64 unused[7]; -} AMO_t; - - -/* - * The following APIs are externalized to the kernel to allocate/free pages of - * fetchop variables. - * fetchop_kalloc_page - Allocate/initialize 1 fetchop page on the - * specified cnode. - * fetchop_kfree_page - Free a previously allocated fetchop page - */ - -unsigned long fetchop_kalloc_page(int nid); -void fetchop_kfree_page(unsigned long maddr); - - -#endif /* __KERNEL__ */ - -#endif /* _ASM_IA64_SN_FETCHOP_H */ - diff --git a/include/asm-ia64/sn/l1.h b/include/asm-ia64/sn/l1.h index d5dbd55e44b5..08050d37b662 100644 --- a/include/asm-ia64/sn/l1.h +++ b/include/asm-ia64/sn/l1.h @@ -29,8 +29,9 @@ #define L1_BRICKTYPE_CHI_CG 0x76 /* v */ #define L1_BRICKTYPE_X 0x78 /* x */ #define L1_BRICKTYPE_X2 0x79 /* y */ -#define L1_BRICKTYPE_SA 0x5e /* ^ */ /* TIO bringup brick */ +#define L1_BRICKTYPE_SA 0x5e /* ^ */ #define L1_BRICKTYPE_PA 0x6a /* j */ #define L1_BRICKTYPE_IA 0x6b /* k */ +#define L1_BRICKTYPE_ATHENA 0x2b /* + */ #endif /* _ASM_IA64_SN_L1_H */ diff --git a/include/asm-ia64/sn/nodepda.h b/include/asm-ia64/sn/nodepda.h index 13cc1002b294..7138b1eafd6b 100644 --- a/include/asm-ia64/sn/nodepda.h +++ b/include/asm-ia64/sn/nodepda.h @@ -13,7 +13,6 @@ #include <asm/irq.h> #include <asm/sn/arch.h> #include <asm/sn/intr.h> -#include <asm/sn/pda.h> #include <asm/sn/bte.h> /* @@ -67,20 +66,18 @@ typedef struct nodepda_s nodepda_t; * The next set of definitions provides this. * Routines are expected to use * - * nodepda -> to access node PDA for the node on which code is running - * subnodepda -> to access subnode PDA for the subnode on which code is running - * - * NODEPDA(cnode) -> to access node PDA for cnodeid - * SUBNODEPDA(cnode,sn) -> to access subnode PDA for cnodeid/subnode + * sn_nodepda - to access node PDA for the node on which code is running + * NODEPDA(cnodeid) - to access node PDA for cnodeid */ -#define nodepda pda->p_nodepda /* Ptr to this node's PDA */ -#define NODEPDA(cnode) (nodepda->pernode_pdaindr[cnode]) +DECLARE_PER_CPU(struct nodepda_s *, __sn_nodepda); +#define sn_nodepda (__get_cpu_var(__sn_nodepda)) +#define NODEPDA(cnodeid) (sn_nodepda->pernode_pdaindr[cnodeid]) /* * Check if given a compact node id the corresponding node has all the * cpus disabled. */ -#define is_headless_node(cnode) (nr_cpus_node(cnode) == 0) +#define is_headless_node(cnodeid) (nr_cpus_node(cnodeid) == 0) #endif /* _ASM_IA64_SN_NODEPDA_H */ diff --git a/include/asm-ia64/sn/pda.h b/include/asm-ia64/sn/pda.h index cd19f17bf91a..ea5590c76ca4 100644 --- a/include/asm-ia64/sn/pda.h +++ b/include/asm-ia64/sn/pda.h @@ -24,14 +24,6 @@ typedef struct pda_s { - /* Having a pointer in the begining of PDA tends to increase - * the chance of having this pointer in cache. (Yes something - * else gets pushed out). Doing this reduces the number of memory - * access to all nodepda variables to be one - */ - struct nodepda_s *p_nodepda; /* Pointer to Per node PDA */ - struct subnodepda_s *p_subnodepda; /* Pointer to CPU subnode PDA */ - /* * Support for SN LEDs */ @@ -49,7 +41,6 @@ typedef struct pda_s { unsigned long sn_soft_irr[4]; unsigned long sn_in_service_ivecs[4]; - short cnodeid_to_nasid_table[MAX_NUMNODES]; int sn_lb_int_war_ticks; int sn_last_irq; int sn_first_irq; diff --git a/include/asm-ia64/sn/shub_mmr.h b/include/asm-ia64/sn/shub_mmr.h index 2f885088e095..323fa0cd8d83 100644 --- a/include/asm-ia64/sn/shub_mmr.h +++ b/include/asm-ia64/sn/shub_mmr.h @@ -385,6 +385,17 @@ #define SH_EVENT_OCCURRED_RTC3_INT_MASK 0x0000000004000000 /* ==================================================================== */ +/* Register "SH_IPI_ACCESS" */ +/* CPU interrupt Access Permission Bits */ +/* ==================================================================== */ + +#define SH1_IPI_ACCESS 0x0000000110060480 +#define SH2_IPI_ACCESS0 0x0000000010060c00 +#define SH2_IPI_ACCESS1 0x0000000010060c80 +#define SH2_IPI_ACCESS2 0x0000000010060d00 +#define SH2_IPI_ACCESS3 0x0000000010060d80 + +/* ==================================================================== */ /* Register "SH_INT_CMPB" */ /* RTC Compare Value for Processor B */ /* ==================================================================== */ @@ -429,6 +440,19 @@ #define SH_INT_CMPD_REAL_TIME_CMPD_SHFT 0 #define SH_INT_CMPD_REAL_TIME_CMPD_MASK 0x007fffffffffffff +/* ==================================================================== */ +/* Register "SH_MD_DQLP_MMR_DIR_PRIVEC0" */ +/* privilege vector for acc=0 */ +/* ==================================================================== */ + +#define SH1_MD_DQLP_MMR_DIR_PRIVEC0 0x0000000100030300 + +/* ==================================================================== */ +/* Register "SH_MD_DQRP_MMR_DIR_PRIVEC0" */ +/* privilege vector for acc=0 */ +/* ==================================================================== */ + +#define SH1_MD_DQRP_MMR_DIR_PRIVEC0 0x0000000100050300 /* ==================================================================== */ /* Some MMRs are functionally identical (or close enough) on both SHUB1 */ diff --git a/include/asm-ia64/sn/shubio.h b/include/asm-ia64/sn/shubio.h index fbd880e6bb96..831b72111fdc 100644 --- a/include/asm-ia64/sn/shubio.h +++ b/include/asm-ia64/sn/shubio.h @@ -3,292 +3,287 @@ * License. See the file "COPYING" in the main directory of this archive * for more details. * - * Copyright (C) 1992 - 1997, 2000-2004 Silicon Graphics, Inc. All rights reserved. + * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_IA64_SN_SHUBIO_H #define _ASM_IA64_SN_SHUBIO_H -#define HUB_WIDGET_ID_MAX 0xf -#define IIO_NUM_ITTES 7 -#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) - -#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ - /* This register is also accessible from - * Crosstalk at address 0x0. */ -#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ -#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ -#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ -#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ -#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ -#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ -#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ -#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ -#define IIO_ILLR 0x00400130 /* IO LLP Log Register */ -#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ - -#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ -#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ - -#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ -#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ - -#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ -#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ -#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ -#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ -#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ -#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ -#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ - -#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ -#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ -#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ -#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ -#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ -#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ -#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ -#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ -#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ - -#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ -#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ -#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ -#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ -#define IIO_IBCR 0x00400200 /* IO BTE Control Register */ - -#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ -#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ - -#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ - -#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ -#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ - - -#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ -#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ - -#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ -#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ -#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ -#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ -#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ - -#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ - -#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ -#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ -#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ -#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ -#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ -#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ -#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ -#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ - -#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ -#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ -#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ -#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ -#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ -#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ -#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ -#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ - -#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ -#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ -#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ -#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ -#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ -#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ -#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ -#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ - -#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ -#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ -#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ -#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ -#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ - -#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ -#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ -#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ -#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ -#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ - -#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ -#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ -#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ -#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ -#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ - -#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ -#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ -#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ -#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ -#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ - -#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ -#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ -#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ -#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ -#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ - -#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ -#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ -#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ -#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ -#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ - -#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ -#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ -#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ -#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ -#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ - -#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ -#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ -#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ -#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ -#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ - -#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ -#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ -#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ -#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ -#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ - -#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ -#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ -#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ -#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ -#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ - -#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ -#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ -#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ -#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ -#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ - -#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ -#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ -#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ -#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ -#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ - -#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ -#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ -#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ -#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ -#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ - -#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ -#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ -#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ -#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ -#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ - -#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ -#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ -#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ -#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ -#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ - -#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ -#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ -#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ - -#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ - -#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ -#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ -#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ -#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ -#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ -#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ -#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ -#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ -#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ -#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ -#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ -#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ - -#define IIO_IPCR 0x00430000 /* IO Performance Control */ -#define IIO_IPPR 0x00430008 /* IO Performance Profiling */ - - -/************************************************************************ - * * +#define HUB_WIDGET_ID_MAX 0xf +#define IIO_NUM_ITTES 7 +#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) + +#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */ + /* This register is also accessible from + * Crosstalk at address 0x0. */ +#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */ +#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */ +#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */ +#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */ +#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */ +#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */ +#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */ +#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */ +#define IIO_ILLR 0x00400130 /* IO LLP Log Register */ +#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */ + +#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */ +#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */ + +#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */ +#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */ + +#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */ +#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */ +#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */ +#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */ +#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */ +#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */ +#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */ + +#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */ +#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */ +#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */ +#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */ +#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */ +#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */ +#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */ +#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */ +#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */ + +#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */ +#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */ +#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */ +#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */ +#define IIO_IBCR 0x00400200 /* IO BTE Control Register */ + +#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */ +#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */ + +#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */ + +#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */ +#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */ + +#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */ +#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */ + +#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */ +#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */ +#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */ +#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */ +#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */ + +#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */ + +#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */ +#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */ +#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */ +#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */ +#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */ +#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */ +#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */ +#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */ + +#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */ +#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */ +#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */ +#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */ +#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */ +#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */ +#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */ +#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */ + +#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */ +#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */ +#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */ +#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */ +#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */ +#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */ +#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */ +#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */ + +#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */ +#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */ +#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */ +#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */ +#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */ + +#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */ +#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */ +#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */ +#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */ +#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */ + +#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */ +#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */ +#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */ +#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */ +#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */ + +#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */ +#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */ +#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */ +#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */ +#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */ + +#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */ +#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */ +#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */ +#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */ +#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */ + +#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */ +#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */ +#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */ +#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */ +#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */ + +#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */ +#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */ +#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */ +#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */ +#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */ + +#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */ +#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */ +#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */ +#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */ +#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */ + +#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */ +#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */ +#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */ +#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */ +#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */ + +#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */ +#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */ +#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */ +#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */ +#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */ + +#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */ +#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */ +#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */ +#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */ +#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */ + +#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */ +#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */ +#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */ +#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */ +#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */ + +#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */ +#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */ +#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */ +#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */ +#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */ + +#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */ +#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */ +#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */ +#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */ +#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */ + +#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */ +#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */ +#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */ +#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */ +#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */ + +#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */ +#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */ +#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */ + +#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */ + +#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */ +#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */ +#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */ +#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */ +#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */ +#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */ +#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */ +#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */ +#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */ +#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */ +#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */ +#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */ + +#define IIO_IPCR 0x00430000 /* IO Performance Control */ +#define IIO_IPPR 0x00430008 /* IO Performance Profiling */ + +/************************************************************************ + * * * Description: This register echoes some information from the * * LB_REV_ID register. It is available through Crosstalk as described * * above. The REV_NUM and MFG_NUM fields receive their values from * * the REVISION and MANUFACTURER fields in the LB_REV_ID register. * * The PART_NUM field's value is the Crosstalk device ID number that * * Steve Miller assigned to the SHub chip. * - * * + * * ************************************************************************/ typedef union ii_wid_u { - uint64_t ii_wid_regval; - struct { - uint64_t w_rsvd_1 : 1; - uint64_t w_mfg_num : 11; - uint64_t w_part_num : 16; - uint64_t w_rev_num : 4; - uint64_t w_rsvd : 32; + uint64_t ii_wid_regval; + struct { + uint64_t w_rsvd_1:1; + uint64_t w_mfg_num:11; + uint64_t w_part_num:16; + uint64_t w_rev_num:4; + uint64_t w_rsvd:32; } ii_wid_fld_s; } ii_wid_u_t; - /************************************************************************ - * * + * * * The fields in this register are set upon detection of an error * * and cleared by various mechanisms, as explained in the * * description. * - * * + * * ************************************************************************/ typedef union ii_wstat_u { - uint64_t ii_wstat_regval; - struct { - uint64_t w_pending : 4; - uint64_t w_xt_crd_to : 1; - uint64_t w_xt_tail_to : 1; - uint64_t w_rsvd_3 : 3; - uint64_t w_tx_mx_rty : 1; - uint64_t w_rsvd_2 : 6; - uint64_t w_llp_tx_cnt : 8; - uint64_t w_rsvd_1 : 8; - uint64_t w_crazy : 1; - uint64_t w_rsvd : 31; + uint64_t ii_wstat_regval; + struct { + uint64_t w_pending:4; + uint64_t w_xt_crd_to:1; + uint64_t w_xt_tail_to:1; + uint64_t w_rsvd_3:3; + uint64_t w_tx_mx_rty:1; + uint64_t w_rsvd_2:6; + uint64_t w_llp_tx_cnt:8; + uint64_t w_rsvd_1:8; + uint64_t w_crazy:1; + uint64_t w_rsvd:31; } ii_wstat_fld_s; } ii_wstat_u_t; - /************************************************************************ - * * + * * * Description: This is a read-write enabled register. It controls * * various aspects of the Crosstalk flow control. * - * * + * * ************************************************************************/ typedef union ii_wcr_u { - uint64_t ii_wcr_regval; - struct { - uint64_t w_wid : 4; - uint64_t w_tag : 1; - uint64_t w_rsvd_1 : 8; - uint64_t w_dst_crd : 3; - uint64_t w_f_bad_pkt : 1; - uint64_t w_dir_con : 1; - uint64_t w_e_thresh : 5; - uint64_t w_rsvd : 41; + uint64_t ii_wcr_regval; + struct { + uint64_t w_wid:4; + uint64_t w_tag:1; + uint64_t w_rsvd_1:8; + uint64_t w_dst_crd:3; + uint64_t w_f_bad_pkt:1; + uint64_t w_dir_con:1; + uint64_t w_e_thresh:5; + uint64_t w_rsvd:41; } ii_wcr_fld_s; } ii_wcr_u_t; - /************************************************************************ - * * + * * * Description: This register's value is a bit vector that guards * * access to local registers within the II as well as to external * * Crosstalk widgets. Each bit in the register corresponds to a * @@ -311,21 +306,18 @@ typedef union ii_wcr_u { * region ID bits are enabled in this same register. It can also be * * accessed through the IAlias space by the local processors. * * The reset value of this register allows access by all nodes. * - * * + * * ************************************************************************/ typedef union ii_ilapr_u { - uint64_t ii_ilapr_regval; - struct { - uint64_t i_region : 64; + uint64_t ii_ilapr_regval; + struct { + uint64_t i_region:64; } ii_ilapr_fld_s; } ii_ilapr_u_t; - - - /************************************************************************ - * * + * * * Description: A write to this register of the 64-bit value * * "SGIrules" in ASCII, will cause the bit in the ILAPR register * * corresponding to the region of the requestor to be set (allow * @@ -334,59 +326,54 @@ typedef union ii_ilapr_u { * This register can also be accessed through the IAlias space. * * However, this access will not change the access permissions in the * * ILAPR. * - * * + * * ************************************************************************/ typedef union ii_ilapo_u { - uint64_t ii_ilapo_regval; - struct { - uint64_t i_io_ovrride : 64; + uint64_t ii_ilapo_regval; + struct { + uint64_t i_io_ovrride:64; } ii_ilapo_fld_s; } ii_ilapo_u_t; - - /************************************************************************ - * * + * * * This register qualifies all the PIO and Graphics writes launched * * from the SHUB towards a widget. * - * * + * * ************************************************************************/ typedef union ii_iowa_u { - uint64_t ii_iowa_regval; - struct { - uint64_t i_w0_oac : 1; - uint64_t i_rsvd_1 : 7; - uint64_t i_wx_oac : 8; - uint64_t i_rsvd : 48; + uint64_t ii_iowa_regval; + struct { + uint64_t i_w0_oac:1; + uint64_t i_rsvd_1:7; + uint64_t i_wx_oac:8; + uint64_t i_rsvd:48; } ii_iowa_fld_s; } ii_iowa_u_t; - /************************************************************************ - * * + * * * Description: This register qualifies all the requests launched * * from a widget towards the Shub. This register is intended to be * * used by software in case of misbehaving widgets. * - * * - * * + * * + * * ************************************************************************/ typedef union ii_iiwa_u { - uint64_t ii_iiwa_regval; - struct { - uint64_t i_w0_iac : 1; - uint64_t i_rsvd_1 : 7; - uint64_t i_wx_iac : 8; - uint64_t i_rsvd : 48; + uint64_t ii_iiwa_regval; + struct { + uint64_t i_w0_iac:1; + uint64_t i_rsvd_1:7; + uint64_t i_wx_iac:8; + uint64_t i_rsvd:48; } ii_iiwa_fld_s; } ii_iiwa_u_t; - - /************************************************************************ - * * + * * * Description: This register qualifies all the operations launched * * from a widget towards the SHub. It allows individual access * * control for up to 8 devices per widget. A device refers to * @@ -401,72 +388,69 @@ typedef union ii_iiwa_u { * The bits in this field are set by writing a 1 to them. Incoming * * replies from Crosstalk are not subject to this access control * * mechanism. * - * * + * * ************************************************************************/ typedef union ii_iidem_u { - uint64_t ii_iidem_regval; - struct { - uint64_t i_w8_dxs : 8; - uint64_t i_w9_dxs : 8; - uint64_t i_wa_dxs : 8; - uint64_t i_wb_dxs : 8; - uint64_t i_wc_dxs : 8; - uint64_t i_wd_dxs : 8; - uint64_t i_we_dxs : 8; - uint64_t i_wf_dxs : 8; + uint64_t ii_iidem_regval; + struct { + uint64_t i_w8_dxs:8; + uint64_t i_w9_dxs:8; + uint64_t i_wa_dxs:8; + uint64_t i_wb_dxs:8; + uint64_t i_wc_dxs:8; + uint64_t i_wd_dxs:8; + uint64_t i_we_dxs:8; + uint64_t i_wf_dxs:8; } ii_iidem_fld_s; } ii_iidem_u_t; - /************************************************************************ - * * + * * * This register contains the various programmable fields necessary * * for controlling and observing the LLP signals. * - * * + * * ************************************************************************/ typedef union ii_ilcsr_u { - uint64_t ii_ilcsr_regval; - struct { - uint64_t i_nullto : 6; - uint64_t i_rsvd_4 : 2; - uint64_t i_wrmrst : 1; - uint64_t i_rsvd_3 : 1; - uint64_t i_llp_en : 1; - uint64_t i_bm8 : 1; - uint64_t i_llp_stat : 2; - uint64_t i_remote_power : 1; - uint64_t i_rsvd_2 : 1; - uint64_t i_maxrtry : 10; - uint64_t i_d_avail_sel : 2; - uint64_t i_rsvd_1 : 4; - uint64_t i_maxbrst : 10; - uint64_t i_rsvd : 22; + uint64_t ii_ilcsr_regval; + struct { + uint64_t i_nullto:6; + uint64_t i_rsvd_4:2; + uint64_t i_wrmrst:1; + uint64_t i_rsvd_3:1; + uint64_t i_llp_en:1; + uint64_t i_bm8:1; + uint64_t i_llp_stat:2; + uint64_t i_remote_power:1; + uint64_t i_rsvd_2:1; + uint64_t i_maxrtry:10; + uint64_t i_d_avail_sel:2; + uint64_t i_rsvd_1:4; + uint64_t i_maxbrst:10; + uint64_t i_rsvd:22; } ii_ilcsr_fld_s; } ii_ilcsr_u_t; - /************************************************************************ - * * + * * * This is simply a status registers that monitors the LLP error * - * rate. * - * * + * rate. * + * * ************************************************************************/ typedef union ii_illr_u { - uint64_t ii_illr_regval; - struct { - uint64_t i_sn_cnt : 16; - uint64_t i_cb_cnt : 16; - uint64_t i_rsvd : 32; + uint64_t ii_illr_regval; + struct { + uint64_t i_sn_cnt:16; + uint64_t i_cb_cnt:16; + uint64_t i_rsvd:32; } ii_illr_fld_s; } ii_illr_u_t; - /************************************************************************ - * * + * * * Description: All II-detected non-BTE error interrupts are * * specified via this register. * * NOTE: The PI interrupt register address is hardcoded in the II. If * @@ -476,107 +460,100 @@ typedef union ii_illr_u { * PI_ID==1, then the II sends the interrupt request to address * * offset 0x01A0_0090 within the local register address space of PI1 * * on the node specified by the NODE field. * - * * + * * ************************************************************************/ typedef union ii_iidsr_u { - uint64_t ii_iidsr_regval; - struct { - uint64_t i_level : 8; - uint64_t i_pi_id : 1; - uint64_t i_node : 11; - uint64_t i_rsvd_3 : 4; - uint64_t i_enable : 1; - uint64_t i_rsvd_2 : 3; - uint64_t i_int_sent : 2; - uint64_t i_rsvd_1 : 2; - uint64_t i_pi0_forward_int : 1; - uint64_t i_pi1_forward_int : 1; - uint64_t i_rsvd : 30; + uint64_t ii_iidsr_regval; + struct { + uint64_t i_level:8; + uint64_t i_pi_id:1; + uint64_t i_node:11; + uint64_t i_rsvd_3:4; + uint64_t i_enable:1; + uint64_t i_rsvd_2:3; + uint64_t i_int_sent:2; + uint64_t i_rsvd_1:2; + uint64_t i_pi0_forward_int:1; + uint64_t i_pi1_forward_int:1; + uint64_t i_rsvd:30; } ii_iidsr_fld_s; } ii_iidsr_u_t; - - /************************************************************************ - * * + * * * There are two instances of this register. This register is used * * for matching up the incoming responses from the graphics widget to * * the processor that initiated the graphics operation. The * * write-responses are converted to graphics credits and returned to * * the processor so that the processor interface can manage the flow * * control. * - * * + * * ************************************************************************/ typedef union ii_igfx0_u { - uint64_t ii_igfx0_regval; - struct { - uint64_t i_w_num : 4; - uint64_t i_pi_id : 1; - uint64_t i_n_num : 12; - uint64_t i_p_num : 1; - uint64_t i_rsvd : 46; + uint64_t ii_igfx0_regval; + struct { + uint64_t i_w_num:4; + uint64_t i_pi_id:1; + uint64_t i_n_num:12; + uint64_t i_p_num:1; + uint64_t i_rsvd:46; } ii_igfx0_fld_s; } ii_igfx0_u_t; - /************************************************************************ - * * + * * * There are two instances of this register. This register is used * * for matching up the incoming responses from the graphics widget to * * the processor that initiated the graphics operation. The * * write-responses are converted to graphics credits and returned to * * the processor so that the processor interface can manage the flow * * control. * - * * + * * ************************************************************************/ typedef union ii_igfx1_u { - uint64_t ii_igfx1_regval; - struct { - uint64_t i_w_num : 4; - uint64_t i_pi_id : 1; - uint64_t i_n_num : 12; - uint64_t i_p_num : 1; - uint64_t i_rsvd : 46; + uint64_t ii_igfx1_regval; + struct { + uint64_t i_w_num:4; + uint64_t i_pi_id:1; + uint64_t i_n_num:12; + uint64_t i_p_num:1; + uint64_t i_rsvd:46; } ii_igfx1_fld_s; } ii_igfx1_u_t; - /************************************************************************ - * * + * * * There are two instances of this registers. These registers are * * used as scratch registers for software use. * - * * + * * ************************************************************************/ typedef union ii_iscr0_u { - uint64_t ii_iscr0_regval; - struct { - uint64_t i_scratch : 64; + uint64_t ii_iscr0_regval; + struct { + uint64_t i_scratch:64; } ii_iscr0_fld_s; } ii_iscr0_u_t; - - /************************************************************************ - * * + * * * There are two instances of this registers. These registers are * * used as scratch registers for software use. * - * * + * * ************************************************************************/ typedef union ii_iscr1_u { - uint64_t ii_iscr1_regval; - struct { - uint64_t i_scratch : 64; + uint64_t ii_iscr1_regval; + struct { + uint64_t i_scratch:64; } ii_iscr1_fld_s; } ii_iscr1_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * @@ -599,23 +576,22 @@ typedef union ii_iscr1_u { * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte1_u { - uint64_t ii_itte1_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte1_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte1_fld_s; } ii_itte1_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * @@ -638,23 +614,22 @@ typedef union ii_itte1_u { * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte2_u { - uint64_t ii_itte2_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte2_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte2_fld_s; } ii_itte2_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * @@ -677,23 +652,22 @@ typedef union ii_itte2_u { * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte3_u { - uint64_t ii_itte3_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte3_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte3_fld_s; } ii_itte3_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a SHub Big Window to a 48-bit * * address on Crosstalk. * @@ -716,23 +690,22 @@ typedef union ii_itte3_u { * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte4_u { - uint64_t ii_itte4_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte4_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte4_fld_s; } ii_itte4_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a SHub Big Window to a 48-bit * * address on Crosstalk. * @@ -755,23 +728,22 @@ typedef union ii_itte4_u { * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte5_u { - uint64_t ii_itte5_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte5_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte5_fld_s; } ii_itte5_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * @@ -794,23 +766,22 @@ typedef union ii_itte5_u { * Crosstalk space addressable by the Shub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte6_u { - uint64_t ii_itte6_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte6_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte6_fld_s; } ii_itte6_u_t; - /************************************************************************ - * * + * * * Description: There are seven instances of translation table entry * * registers. Each register maps a Shub Big Window to a 48-bit * * address on Crosstalk. * @@ -833,23 +804,22 @@ typedef union ii_itte6_u { * Crosstalk space addressable by the SHub is thus the lower * * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> * * of this space can be accessed. * - * * + * * ************************************************************************/ typedef union ii_itte7_u { - uint64_t ii_itte7_regval; - struct { - uint64_t i_offset : 5; - uint64_t i_rsvd_1 : 3; - uint64_t i_w_num : 4; - uint64_t i_iosp : 1; - uint64_t i_rsvd : 51; + uint64_t ii_itte7_regval; + struct { + uint64_t i_offset:5; + uint64_t i_rsvd_1:3; + uint64_t i_w_num:4; + uint64_t i_iosp:1; + uint64_t i_rsvd:51; } ii_itte7_fld_s; } ii_itte7_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -868,33 +838,32 @@ typedef union ii_itte7_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprb0_u { - uint64_t ii_iprb0_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprb0_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprb0_fld_s; } ii_iprb0_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -913,33 +882,32 @@ typedef union ii_iprb0_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprb8_u { - uint64_t ii_iprb8_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprb8_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprb8_fld_s; } ii_iprb8_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -958,33 +926,32 @@ typedef union ii_iprb8_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprb9_u { - uint64_t ii_iprb9_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprb9_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprb9_fld_s; } ii_iprb9_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1003,33 +970,32 @@ typedef union ii_iprb9_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * * - * * + * * + * * ************************************************************************/ typedef union ii_iprba_u { - uint64_t ii_iprba_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprba_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprba_fld_s; } ii_iprba_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1048,33 +1014,32 @@ typedef union ii_iprba_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprbb_u { - uint64_t ii_iprbb_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprbb_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprbb_fld_s; } ii_iprbb_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1093,33 +1058,32 @@ typedef union ii_iprbb_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprbc_u { - uint64_t ii_iprbc_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprbc_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprbc_fld_s; } ii_iprbc_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1138,33 +1102,32 @@ typedef union ii_iprbc_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprbd_u { - uint64_t ii_iprbd_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprbd_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprbd_fld_s; } ii_iprbd_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of SHub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1183,33 +1146,32 @@ typedef union ii_iprbd_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprbe_u { - uint64_t ii_iprbe_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; + uint64_t ii_iprbe_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; } ii_iprbe_fld_s; } ii_iprbe_u_t; - /************************************************************************ - * * + * * * Description: There are 9 instances of this register, one per * * actual widget in this implementation of Shub and Crossbow. * * Note: Crossbow only has ports for Widgets 8 through F, widget 0 * @@ -1228,33 +1190,32 @@ typedef union ii_iprbe_u { * register; the write will correct the C field and capture its new * * value in the internal register. Even if IECLR[E_PRB_x] is set, the * * SPUR_WR bit will persist if IPRBx hasn't yet been written. * - * . * - * * + * . * + * * ************************************************************************/ typedef union ii_iprbf_u { - uint64_t ii_iprbf_regval; - struct { - uint64_t i_c : 8; - uint64_t i_na : 14; - uint64_t i_rsvd_2 : 2; - uint64_t i_nb : 14; - uint64_t i_rsvd_1 : 2; - uint64_t i_m : 2; - uint64_t i_f : 1; - uint64_t i_of_cnt : 5; - uint64_t i_error : 1; - uint64_t i_rd_to : 1; - uint64_t i_spur_wr : 1; - uint64_t i_spur_rd : 1; - uint64_t i_rsvd : 11; - uint64_t i_mult_err : 1; - } ii_iprbe_fld_s; + uint64_t ii_iprbf_regval; + struct { + uint64_t i_c:8; + uint64_t i_na:14; + uint64_t i_rsvd_2:2; + uint64_t i_nb:14; + uint64_t i_rsvd_1:2; + uint64_t i_m:2; + uint64_t i_f:1; + uint64_t i_of_cnt:5; + uint64_t i_error:1; + uint64_t i_rd_to:1; + uint64_t i_spur_wr:1; + uint64_t i_spur_rd:1; + uint64_t i_rsvd:11; + uint64_t i_mult_err:1; + } ii_iprbe_fld_s; } ii_iprbf_u_t; - /************************************************************************ - * * + * * * This register specifies the timeout value to use for monitoring * * Crosstalk credits which are used outbound to Crosstalk. An * * internal counter called the Crosstalk Credit Timeout Counter * @@ -1267,20 +1228,19 @@ typedef union ii_iprbf_u { * Crosstalk Credit Timeout has occurred. The internal counter is not * * readable from software, and stops counting at its maximum value, * * so it cannot cause more than one interrupt. * - * * + * * ************************************************************************/ typedef union ii_ixcc_u { - uint64_t ii_ixcc_regval; - struct { - uint64_t i_time_out : 26; - uint64_t i_rsvd : 38; + uint64_t ii_ixcc_regval; + struct { + uint64_t i_time_out:26; + uint64_t i_rsvd:38; } ii_ixcc_fld_s; } ii_ixcc_u_t; - /************************************************************************ - * * + * * * Description: This register qualifies all the PIO and DMA * * operations launched from widget 0 towards the SHub. In * * addition, it also qualifies accesses by the BTE streams. * @@ -1292,27 +1252,25 @@ typedef union ii_ixcc_u { * the Wx_IAC field. The bits in this field are set by writing a 1 to * * them. Incoming replies from Crosstalk are not subject to this * * access control mechanism. * - * * + * * ************************************************************************/ typedef union ii_imem_u { - uint64_t ii_imem_regval; - struct { - uint64_t i_w0_esd : 1; - uint64_t i_rsvd_3 : 3; - uint64_t i_b0_esd : 1; - uint64_t i_rsvd_2 : 3; - uint64_t i_b1_esd : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_clr_precise : 1; - uint64_t i_rsvd : 51; + uint64_t ii_imem_regval; + struct { + uint64_t i_w0_esd:1; + uint64_t i_rsvd_3:3; + uint64_t i_b0_esd:1; + uint64_t i_rsvd_2:3; + uint64_t i_b1_esd:1; + uint64_t i_rsvd_1:3; + uint64_t i_clr_precise:1; + uint64_t i_rsvd:51; } ii_imem_fld_s; } ii_imem_u_t; - - /************************************************************************ - * * + * * * Description: This register specifies the timeout value to use for * * monitoring Crosstalk tail flits coming into the Shub in the * * TAIL_TO field. An internal counter associated with this register * @@ -1332,90 +1290,87 @@ typedef union ii_imem_u { * the value in the RRSP_TO field, a Read Response Timeout has * * occurred, and error handling occurs as described in the Error * * Handling section of this document. * - * * + * * ************************************************************************/ typedef union ii_ixtt_u { - uint64_t ii_ixtt_regval; - struct { - uint64_t i_tail_to : 26; - uint64_t i_rsvd_1 : 6; - uint64_t i_rrsp_ps : 23; - uint64_t i_rrsp_to : 5; - uint64_t i_rsvd : 4; + uint64_t ii_ixtt_regval; + struct { + uint64_t i_tail_to:26; + uint64_t i_rsvd_1:6; + uint64_t i_rrsp_ps:23; + uint64_t i_rrsp_to:5; + uint64_t i_rsvd:4; } ii_ixtt_fld_s; } ii_ixtt_u_t; - /************************************************************************ - * * + * * * Writing a 1 to the fields of this register clears the appropriate * * error bits in other areas of SHub. Note that when the * * E_PRB_x bits are used to clear error bits in PRB registers, * * SPUR_RD and SPUR_WR may persist, because they require additional * * action to clear them. See the IPRBx and IXSS Register * * specifications. * - * * + * * ************************************************************************/ typedef union ii_ieclr_u { - uint64_t ii_ieclr_regval; - struct { - uint64_t i_e_prb_0 : 1; - uint64_t i_rsvd : 7; - uint64_t i_e_prb_8 : 1; - uint64_t i_e_prb_9 : 1; - uint64_t i_e_prb_a : 1; - uint64_t i_e_prb_b : 1; - uint64_t i_e_prb_c : 1; - uint64_t i_e_prb_d : 1; - uint64_t i_e_prb_e : 1; - uint64_t i_e_prb_f : 1; - uint64_t i_e_crazy : 1; - uint64_t i_e_bte_0 : 1; - uint64_t i_e_bte_1 : 1; - uint64_t i_reserved_1 : 10; - uint64_t i_spur_rd_hdr : 1; - uint64_t i_cam_intr_to : 1; - uint64_t i_cam_overflow : 1; - uint64_t i_cam_read_miss : 1; - uint64_t i_ioq_rep_underflow : 1; - uint64_t i_ioq_req_underflow : 1; - uint64_t i_ioq_rep_overflow : 1; - uint64_t i_ioq_req_overflow : 1; - uint64_t i_iiq_rep_overflow : 1; - uint64_t i_iiq_req_overflow : 1; - uint64_t i_ii_xn_rep_cred_overflow : 1; - uint64_t i_ii_xn_req_cred_overflow : 1; - uint64_t i_ii_xn_invalid_cmd : 1; - uint64_t i_xn_ii_invalid_cmd : 1; - uint64_t i_reserved_2 : 21; + uint64_t ii_ieclr_regval; + struct { + uint64_t i_e_prb_0:1; + uint64_t i_rsvd:7; + uint64_t i_e_prb_8:1; + uint64_t i_e_prb_9:1; + uint64_t i_e_prb_a:1; + uint64_t i_e_prb_b:1; + uint64_t i_e_prb_c:1; + uint64_t i_e_prb_d:1; + uint64_t i_e_prb_e:1; + uint64_t i_e_prb_f:1; + uint64_t i_e_crazy:1; + uint64_t i_e_bte_0:1; + uint64_t i_e_bte_1:1; + uint64_t i_reserved_1:10; + uint64_t i_spur_rd_hdr:1; + uint64_t i_cam_intr_to:1; + uint64_t i_cam_overflow:1; + uint64_t i_cam_read_miss:1; + uint64_t i_ioq_rep_underflow:1; + uint64_t i_ioq_req_underflow:1; + uint64_t i_ioq_rep_overflow:1; + uint64_t i_ioq_req_overflow:1; + uint64_t i_iiq_rep_overflow:1; + uint64_t i_iiq_req_overflow:1; + uint64_t i_ii_xn_rep_cred_overflow:1; + uint64_t i_ii_xn_req_cred_overflow:1; + uint64_t i_ii_xn_invalid_cmd:1; + uint64_t i_xn_ii_invalid_cmd:1; + uint64_t i_reserved_2:21; } ii_ieclr_fld_s; } ii_ieclr_u_t; - /************************************************************************ - * * + * * * This register controls both BTEs. SOFT_RESET is intended for * * recovery after an error. COUNT controls the total number of CRBs * * that both BTEs (combined) can use, which affects total BTE * * bandwidth. * - * * + * * ************************************************************************/ typedef union ii_ibcr_u { - uint64_t ii_ibcr_regval; - struct { - uint64_t i_count : 4; - uint64_t i_rsvd_1 : 4; - uint64_t i_soft_reset : 1; - uint64_t i_rsvd : 55; + uint64_t ii_ibcr_regval; + struct { + uint64_t i_count:4; + uint64_t i_rsvd_1:4; + uint64_t i_soft_reset:1; + uint64_t i_rsvd:55; } ii_ibcr_fld_s; } ii_ibcr_u_t; - /************************************************************************ - * * + * * * This register contains the header of a spurious read response * * received from Crosstalk. A spurious read response is defined as a * * read response received by II from a widget for which (1) the SIDN * @@ -1440,49 +1395,47 @@ typedef union ii_ibcr_u { * will be set. Any SPUR_RD bits in any other PRB registers indicate * * spurious messages from other widets which were detected after the * * header was captured.. * - * * + * * ************************************************************************/ typedef union ii_ixsm_u { - uint64_t ii_ixsm_regval; - struct { - uint64_t i_byte_en : 32; - uint64_t i_reserved : 1; - uint64_t i_tag : 3; - uint64_t i_alt_pactyp : 4; - uint64_t i_bo : 1; - uint64_t i_error : 1; - uint64_t i_vbpm : 1; - uint64_t i_gbr : 1; - uint64_t i_ds : 2; - uint64_t i_ct : 1; - uint64_t i_tnum : 5; - uint64_t i_pactyp : 4; - uint64_t i_sidn : 4; - uint64_t i_didn : 4; + uint64_t ii_ixsm_regval; + struct { + uint64_t i_byte_en:32; + uint64_t i_reserved:1; + uint64_t i_tag:3; + uint64_t i_alt_pactyp:4; + uint64_t i_bo:1; + uint64_t i_error:1; + uint64_t i_vbpm:1; + uint64_t i_gbr:1; + uint64_t i_ds:2; + uint64_t i_ct:1; + uint64_t i_tnum:5; + uint64_t i_pactyp:4; + uint64_t i_sidn:4; + uint64_t i_didn:4; } ii_ixsm_fld_s; } ii_ixsm_u_t; - /************************************************************************ - * * + * * * This register contains the sideband bits of a spurious read * * response received from Crosstalk. * - * * + * * ************************************************************************/ typedef union ii_ixss_u { - uint64_t ii_ixss_regval; - struct { - uint64_t i_sideband : 8; - uint64_t i_rsvd : 55; - uint64_t i_valid : 1; + uint64_t ii_ixss_regval; + struct { + uint64_t i_sideband:8; + uint64_t i_rsvd:55; + uint64_t i_valid:1; } ii_ixss_fld_s; } ii_ixss_u_t; - /************************************************************************ - * * + * * * This register enables software to access the II LLP's test port. * * Refer to the LLP 2.5 documentation for an explanation of the test * * port. Software can write to this register to program the values * @@ -1490,27 +1443,26 @@ typedef union ii_ixss_u { * TestMask and TestSeed). Similarly, software can read from this * * register to obtain the values of the test port's status outputs * * (TestCBerr, TestValid and TestData). * - * * + * * ************************************************************************/ typedef union ii_ilct_u { - uint64_t ii_ilct_regval; - struct { - uint64_t i_test_seed : 20; - uint64_t i_test_mask : 8; - uint64_t i_test_data : 20; - uint64_t i_test_valid : 1; - uint64_t i_test_cberr : 1; - uint64_t i_test_flit : 3; - uint64_t i_test_clear : 1; - uint64_t i_test_err_capture : 1; - uint64_t i_rsvd : 9; + uint64_t ii_ilct_regval; + struct { + uint64_t i_test_seed:20; + uint64_t i_test_mask:8; + uint64_t i_test_data:20; + uint64_t i_test_valid:1; + uint64_t i_test_cberr:1; + uint64_t i_test_flit:3; + uint64_t i_test_clear:1; + uint64_t i_test_err_capture:1; + uint64_t i_rsvd:9; } ii_ilct_fld_s; } ii_ilct_u_t; - /************************************************************************ - * * + * * * If the II detects an illegal incoming Duplonet packet (request or * * reply) when VALID==0 in the IIEPH1 register, then it saves the * * contents of the packet's header flit in the IIEPH1 and IIEPH2 * @@ -1526,575 +1478,549 @@ typedef union ii_ilct_u { * packet when VALID==1 in the IIEPH1 register, then it merely sets * * the OVERRUN bit to indicate that a subsequent error has happened, * * and does nothing further. * - * * + * * ************************************************************************/ typedef union ii_iieph1_u { - uint64_t ii_iieph1_regval; - struct { - uint64_t i_command : 7; - uint64_t i_rsvd_5 : 1; - uint64_t i_suppl : 14; - uint64_t i_rsvd_4 : 1; - uint64_t i_source : 14; - uint64_t i_rsvd_3 : 1; - uint64_t i_err_type : 4; - uint64_t i_rsvd_2 : 4; - uint64_t i_overrun : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_valid : 1; - uint64_t i_rsvd : 13; + uint64_t ii_iieph1_regval; + struct { + uint64_t i_command:7; + uint64_t i_rsvd_5:1; + uint64_t i_suppl:14; + uint64_t i_rsvd_4:1; + uint64_t i_source:14; + uint64_t i_rsvd_3:1; + uint64_t i_err_type:4; + uint64_t i_rsvd_2:4; + uint64_t i_overrun:1; + uint64_t i_rsvd_1:3; + uint64_t i_valid:1; + uint64_t i_rsvd:13; } ii_iieph1_fld_s; } ii_iieph1_u_t; - /************************************************************************ - * * + * * * This register holds the Address field from the header flit of an * * incoming erroneous Duplonet packet, along with the tail bit which * * accompanied this header flit. This register is essentially an * * extension of IIEPH1. Two registers were necessary because the 64 * * bits available in only a single register were insufficient to * * capture the entire header flit of an erroneous packet. * - * * + * * ************************************************************************/ typedef union ii_iieph2_u { - uint64_t ii_iieph2_regval; - struct { - uint64_t i_rsvd_0 : 3; - uint64_t i_address : 47; - uint64_t i_rsvd_1 : 10; - uint64_t i_tail : 1; - uint64_t i_rsvd : 3; + uint64_t ii_iieph2_regval; + struct { + uint64_t i_rsvd_0:3; + uint64_t i_address:47; + uint64_t i_rsvd_1:10; + uint64_t i_tail:1; + uint64_t i_rsvd:3; } ii_iieph2_fld_s; } ii_iieph2_u_t; - /******************************/ - - /************************************************************************ - * * + * * * This register's value is a bit vector that guards access from SXBs * * to local registers within the II as well as to external Crosstalk * * widgets * - * * + * * ************************************************************************/ typedef union ii_islapr_u { - uint64_t ii_islapr_regval; - struct { - uint64_t i_region : 64; + uint64_t ii_islapr_regval; + struct { + uint64_t i_region:64; } ii_islapr_fld_s; } ii_islapr_u_t; - /************************************************************************ - * * + * * * A write to this register of the 56-bit value "Pup+Bun" will cause * * the bit in the ISLAPR register corresponding to the region of the * * requestor to be set (access allowed). ( - * * + * * ************************************************************************/ typedef union ii_islapo_u { - uint64_t ii_islapo_regval; - struct { - uint64_t i_io_sbx_ovrride : 56; - uint64_t i_rsvd : 8; + uint64_t ii_islapo_regval; + struct { + uint64_t i_io_sbx_ovrride:56; + uint64_t i_rsvd:8; } ii_islapo_fld_s; } ii_islapo_u_t; /************************************************************************ - * * + * * * Determines how long the wrapper will wait aftr an interrupt is * * initially issued from the II before it times out the outstanding * * interrupt and drops it from the interrupt queue. * - * * + * * ************************************************************************/ typedef union ii_iwi_u { - uint64_t ii_iwi_regval; - struct { - uint64_t i_prescale : 24; - uint64_t i_rsvd : 8; - uint64_t i_timeout : 8; - uint64_t i_rsvd1 : 8; - uint64_t i_intrpt_retry_period : 8; - uint64_t i_rsvd2 : 8; + uint64_t ii_iwi_regval; + struct { + uint64_t i_prescale:24; + uint64_t i_rsvd:8; + uint64_t i_timeout:8; + uint64_t i_rsvd1:8; + uint64_t i_intrpt_retry_period:8; + uint64_t i_rsvd2:8; } ii_iwi_fld_s; } ii_iwi_u_t; /************************************************************************ - * * + * * * Log errors which have occurred in the II wrapper. The errors are * * cleared by writing to the IECLR register. * - * * + * * ************************************************************************/ typedef union ii_iwel_u { - uint64_t ii_iwel_regval; - struct { - uint64_t i_intr_timed_out : 1; - uint64_t i_rsvd : 7; - uint64_t i_cam_overflow : 1; - uint64_t i_cam_read_miss : 1; - uint64_t i_rsvd1 : 2; - uint64_t i_ioq_rep_underflow : 1; - uint64_t i_ioq_req_underflow : 1; - uint64_t i_ioq_rep_overflow : 1; - uint64_t i_ioq_req_overflow : 1; - uint64_t i_iiq_rep_overflow : 1; - uint64_t i_iiq_req_overflow : 1; - uint64_t i_rsvd2 : 6; - uint64_t i_ii_xn_rep_cred_over_under: 1; - uint64_t i_ii_xn_req_cred_over_under: 1; - uint64_t i_rsvd3 : 6; - uint64_t i_ii_xn_invalid_cmd : 1; - uint64_t i_xn_ii_invalid_cmd : 1; - uint64_t i_rsvd4 : 30; + uint64_t ii_iwel_regval; + struct { + uint64_t i_intr_timed_out:1; + uint64_t i_rsvd:7; + uint64_t i_cam_overflow:1; + uint64_t i_cam_read_miss:1; + uint64_t i_rsvd1:2; + uint64_t i_ioq_rep_underflow:1; + uint64_t i_ioq_req_underflow:1; + uint64_t i_ioq_rep_overflow:1; + uint64_t i_ioq_req_overflow:1; + uint64_t i_iiq_rep_overflow:1; + uint64_t i_iiq_req_overflow:1; + uint64_t i_rsvd2:6; + uint64_t i_ii_xn_rep_cred_over_under:1; + uint64_t i_ii_xn_req_cred_over_under:1; + uint64_t i_rsvd3:6; + uint64_t i_ii_xn_invalid_cmd:1; + uint64_t i_xn_ii_invalid_cmd:1; + uint64_t i_rsvd4:30; } ii_iwel_fld_s; } ii_iwel_u_t; /************************************************************************ - * * + * * * Controls the II wrapper. * - * * + * * ************************************************************************/ typedef union ii_iwc_u { - uint64_t ii_iwc_regval; - struct { - uint64_t i_dma_byte_swap : 1; - uint64_t i_rsvd : 3; - uint64_t i_cam_read_lines_reset : 1; - uint64_t i_rsvd1 : 3; - uint64_t i_ii_xn_cred_over_under_log: 1; - uint64_t i_rsvd2 : 19; - uint64_t i_xn_rep_iq_depth : 5; - uint64_t i_rsvd3 : 3; - uint64_t i_xn_req_iq_depth : 5; - uint64_t i_rsvd4 : 3; - uint64_t i_iiq_depth : 6; - uint64_t i_rsvd5 : 12; - uint64_t i_force_rep_cred : 1; - uint64_t i_force_req_cred : 1; + uint64_t ii_iwc_regval; + struct { + uint64_t i_dma_byte_swap:1; + uint64_t i_rsvd:3; + uint64_t i_cam_read_lines_reset:1; + uint64_t i_rsvd1:3; + uint64_t i_ii_xn_cred_over_under_log:1; + uint64_t i_rsvd2:19; + uint64_t i_xn_rep_iq_depth:5; + uint64_t i_rsvd3:3; + uint64_t i_xn_req_iq_depth:5; + uint64_t i_rsvd4:3; + uint64_t i_iiq_depth:6; + uint64_t i_rsvd5:12; + uint64_t i_force_rep_cred:1; + uint64_t i_force_req_cred:1; } ii_iwc_fld_s; } ii_iwc_u_t; /************************************************************************ - * * + * * * Status in the II wrapper. * - * * + * * ************************************************************************/ typedef union ii_iws_u { - uint64_t ii_iws_regval; - struct { - uint64_t i_xn_rep_iq_credits : 5; - uint64_t i_rsvd : 3; - uint64_t i_xn_req_iq_credits : 5; - uint64_t i_rsvd1 : 51; + uint64_t ii_iws_regval; + struct { + uint64_t i_xn_rep_iq_credits:5; + uint64_t i_rsvd:3; + uint64_t i_xn_req_iq_credits:5; + uint64_t i_rsvd1:51; } ii_iws_fld_s; } ii_iws_u_t; /************************************************************************ - * * + * * * Masks errors in the IWEL register. * - * * + * * ************************************************************************/ typedef union ii_iweim_u { - uint64_t ii_iweim_regval; - struct { - uint64_t i_intr_timed_out : 1; - uint64_t i_rsvd : 7; - uint64_t i_cam_overflow : 1; - uint64_t i_cam_read_miss : 1; - uint64_t i_rsvd1 : 2; - uint64_t i_ioq_rep_underflow : 1; - uint64_t i_ioq_req_underflow : 1; - uint64_t i_ioq_rep_overflow : 1; - uint64_t i_ioq_req_overflow : 1; - uint64_t i_iiq_rep_overflow : 1; - uint64_t i_iiq_req_overflow : 1; - uint64_t i_rsvd2 : 6; - uint64_t i_ii_xn_rep_cred_overflow : 1; - uint64_t i_ii_xn_req_cred_overflow : 1; - uint64_t i_rsvd3 : 6; - uint64_t i_ii_xn_invalid_cmd : 1; - uint64_t i_xn_ii_invalid_cmd : 1; - uint64_t i_rsvd4 : 30; + uint64_t ii_iweim_regval; + struct { + uint64_t i_intr_timed_out:1; + uint64_t i_rsvd:7; + uint64_t i_cam_overflow:1; + uint64_t i_cam_read_miss:1; + uint64_t i_rsvd1:2; + uint64_t i_ioq_rep_underflow:1; + uint64_t i_ioq_req_underflow:1; + uint64_t i_ioq_rep_overflow:1; + uint64_t i_ioq_req_overflow:1; + uint64_t i_iiq_rep_overflow:1; + uint64_t i_iiq_req_overflow:1; + uint64_t i_rsvd2:6; + uint64_t i_ii_xn_rep_cred_overflow:1; + uint64_t i_ii_xn_req_cred_overflow:1; + uint64_t i_rsvd3:6; + uint64_t i_ii_xn_invalid_cmd:1; + uint64_t i_xn_ii_invalid_cmd:1; + uint64_t i_rsvd4:30; } ii_iweim_fld_s; } ii_iweim_u_t; - /************************************************************************ - * * + * * * A write to this register causes a particular field in the * * corresponding widget's PRB entry to be adjusted up or down by 1. * * This counter should be used when recovering from error and reset * * conditions. Note that software would be capable of causing * * inadvertent overflow or underflow of these counters. * - * * + * * ************************************************************************/ typedef union ii_ipca_u { - uint64_t ii_ipca_regval; - struct { - uint64_t i_wid : 4; - uint64_t i_adjust : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_field : 2; - uint64_t i_rsvd : 54; + uint64_t ii_ipca_regval; + struct { + uint64_t i_wid:4; + uint64_t i_adjust:1; + uint64_t i_rsvd_1:3; + uint64_t i_field:2; + uint64_t i_rsvd:54; } ii_ipca_fld_s; } ii_ipca_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ - typedef union ii_iprte0a_u { - uint64_t ii_iprte0a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte0a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte0a_fld_s; } ii_iprte0a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte1a_u { - uint64_t ii_iprte1a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte1a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte1a_fld_s; } ii_iprte1a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte2a_u { - uint64_t ii_iprte2a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte2a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte2a_fld_s; } ii_iprte2a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte3a_u { - uint64_t ii_iprte3a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte3a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte3a_fld_s; } ii_iprte3a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte4a_u { - uint64_t ii_iprte4a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte4a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte4a_fld_s; } ii_iprte4a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte5a_u { - uint64_t ii_iprte5a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte5a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte5a_fld_s; } ii_iprte5a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte6a_u { - uint64_t ii_iprte6a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t ii_iprte6a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } ii_iprte6a_fld_s; } ii_iprte6a_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte7a_u { - uint64_t ii_iprte7a_regval; - struct { - uint64_t i_rsvd_1 : 54; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; - } ii_iprtea7_fld_s; + uint64_t ii_iprte7a_regval; + struct { + uint64_t i_rsvd_1:54; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; + } ii_iprtea7_fld_s; } ii_iprte7a_u_t; - - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ - typedef union ii_iprte0b_u { - uint64_t ii_iprte0b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte0b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte0b_fld_s; } ii_iprte0b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte1b_u { - uint64_t ii_iprte1b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte1b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte1b_fld_s; } ii_iprte1b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte2b_u { - uint64_t ii_iprte2b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte2b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte2b_fld_s; } ii_iprte2b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte3b_u { - uint64_t ii_iprte3b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte3b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte3b_fld_s; } ii_iprte3b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte4b_u { - uint64_t ii_iprte4b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte4b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte4b_fld_s; } ii_iprte4b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte5b_u { - uint64_t ii_iprte5b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte5b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte5b_fld_s; } ii_iprte5b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte6b_u { - uint64_t ii_iprte6b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; + uint64_t ii_iprte6b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; } ii_iprte6b_fld_s; } ii_iprte6b_u_t; - /************************************************************************ - * * + * * * There are 8 instances of this register. This register contains * * the information that the II has to remember once it has launched a * * PIO Read operation. The contents are used to form the correct * * Router Network packet and direct the Crosstalk reply to the * * appropriate processor. * - * * + * * ************************************************************************/ typedef union ii_iprte7b_u { - uint64_t ii_iprte7b_regval; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_address : 47; - uint64_t i_init : 3; - uint64_t i_source : 11; - } ii_iprte7b_fld_s; + uint64_t ii_iprte7b_regval; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_address:47; + uint64_t i_init:3; + uint64_t i_source:11; + } ii_iprte7b_fld_s; } ii_iprte7b_u_t; - /************************************************************************ - * * + * * * Description: SHub II contains a feature which did not exist in * * the Hub which automatically cleans up after a Read Response * * timeout, including deallocation of the IPRTE and recovery of IBuf * @@ -2108,23 +2034,22 @@ typedef union ii_iprte7b_u { * Note that this register does not affect the contents of the IPRTE * * registers. The Valid bits in those registers have to be * * specifically turned off by software. * - * * + * * ************************************************************************/ typedef union ii_ipdr_u { - uint64_t ii_ipdr_regval; - struct { - uint64_t i_te : 3; - uint64_t i_rsvd_1 : 1; - uint64_t i_pnd : 1; - uint64_t i_init_rpcnt : 1; - uint64_t i_rsvd : 58; + uint64_t ii_ipdr_regval; + struct { + uint64_t i_te:3; + uint64_t i_rsvd_1:1; + uint64_t i_pnd:1; + uint64_t i_init_rpcnt:1; + uint64_t i_rsvd:58; } ii_ipdr_fld_s; } ii_ipdr_u_t; - /************************************************************************ - * * + * * * A write to this register causes a CRB entry to be returned to the * * queue of free CRBs. The entry should have previously been cleared * * (mark bit) via backdoor access to the pertinent CRB entry. This * @@ -2137,21 +2062,20 @@ typedef union ii_ipdr_u { * software clears the mark bit, and finally 4) software writes to * * the ICDR register to return the CRB entry to the list of free CRB * * entries. * - * * + * * ************************************************************************/ typedef union ii_icdr_u { - uint64_t ii_icdr_regval; - struct { - uint64_t i_crb_num : 4; - uint64_t i_pnd : 1; - uint64_t i_rsvd : 59; + uint64_t ii_icdr_regval; + struct { + uint64_t i_crb_num:4; + uint64_t i_pnd:1; + uint64_t i_rsvd:59; } ii_icdr_fld_s; } ii_icdr_u_t; - /************************************************************************ - * * + * * * This register provides debug access to two FIFOs inside of II. * * Both IOQ_MAX* fields of this register contain the instantaneous * * depth (in units of the number of available entries) of the * @@ -2164,130 +2088,124 @@ typedef union ii_icdr_u { * this register is written. If there are any active entries in any * * of these FIFOs when this register is written, the results are * * undefined. * - * * + * * ************************************************************************/ typedef union ii_ifdr_u { - uint64_t ii_ifdr_regval; - struct { - uint64_t i_ioq_max_rq : 7; - uint64_t i_set_ioq_rq : 1; - uint64_t i_ioq_max_rp : 7; - uint64_t i_set_ioq_rp : 1; - uint64_t i_rsvd : 48; + uint64_t ii_ifdr_regval; + struct { + uint64_t i_ioq_max_rq:7; + uint64_t i_set_ioq_rq:1; + uint64_t i_ioq_max_rp:7; + uint64_t i_set_ioq_rp:1; + uint64_t i_rsvd:48; } ii_ifdr_fld_s; } ii_ifdr_u_t; - /************************************************************************ - * * + * * * This register allows the II to become sluggish in removing * * messages from its inbound queue (IIQ). This will cause messages to * * back up in either virtual channel. Disabling the "molasses" mode * * subsequently allows the II to be tested under stress. In the * * sluggish ("Molasses") mode, the localized effects of congestion * * can be observed. * - * * + * * ************************************************************************/ typedef union ii_iiap_u { - uint64_t ii_iiap_regval; - struct { - uint64_t i_rq_mls : 6; - uint64_t i_rsvd_1 : 2; - uint64_t i_rp_mls : 6; - uint64_t i_rsvd : 50; - } ii_iiap_fld_s; + uint64_t ii_iiap_regval; + struct { + uint64_t i_rq_mls:6; + uint64_t i_rsvd_1:2; + uint64_t i_rp_mls:6; + uint64_t i_rsvd:50; + } ii_iiap_fld_s; } ii_iiap_u_t; - /************************************************************************ - * * + * * * This register allows several parameters of CRB operation to be * * set. Note that writing to this register can have catastrophic side * * effects, if the CRB is not quiescent, i.e. if the CRB is * * processing protocol messages when the write occurs. * - * * + * * ************************************************************************/ typedef union ii_icmr_u { - uint64_t ii_icmr_regval; - struct { - uint64_t i_sp_msg : 1; - uint64_t i_rd_hdr : 1; - uint64_t i_rsvd_4 : 2; - uint64_t i_c_cnt : 4; - uint64_t i_rsvd_3 : 4; - uint64_t i_clr_rqpd : 1; - uint64_t i_clr_rppd : 1; - uint64_t i_rsvd_2 : 2; - uint64_t i_fc_cnt : 4; - uint64_t i_crb_vld : 15; - uint64_t i_crb_mark : 15; - uint64_t i_rsvd_1 : 2; - uint64_t i_precise : 1; - uint64_t i_rsvd : 11; + uint64_t ii_icmr_regval; + struct { + uint64_t i_sp_msg:1; + uint64_t i_rd_hdr:1; + uint64_t i_rsvd_4:2; + uint64_t i_c_cnt:4; + uint64_t i_rsvd_3:4; + uint64_t i_clr_rqpd:1; + uint64_t i_clr_rppd:1; + uint64_t i_rsvd_2:2; + uint64_t i_fc_cnt:4; + uint64_t i_crb_vld:15; + uint64_t i_crb_mark:15; + uint64_t i_rsvd_1:2; + uint64_t i_precise:1; + uint64_t i_rsvd:11; } ii_icmr_fld_s; } ii_icmr_u_t; - /************************************************************************ - * * + * * * This register allows control of the table portion of the CRB * * logic via software. Control operations from this register have * * priority over all incoming Crosstalk or BTE requests. * - * * + * * ************************************************************************/ typedef union ii_iccr_u { - uint64_t ii_iccr_regval; - struct { - uint64_t i_crb_num : 4; - uint64_t i_rsvd_1 : 4; - uint64_t i_cmd : 8; - uint64_t i_pending : 1; - uint64_t i_rsvd : 47; + uint64_t ii_iccr_regval; + struct { + uint64_t i_crb_num:4; + uint64_t i_rsvd_1:4; + uint64_t i_cmd:8; + uint64_t i_pending:1; + uint64_t i_rsvd:47; } ii_iccr_fld_s; } ii_iccr_u_t; - /************************************************************************ - * * + * * * This register allows the maximum timeout value to be programmed. * - * * + * * ************************************************************************/ typedef union ii_icto_u { - uint64_t ii_icto_regval; - struct { - uint64_t i_timeout : 8; - uint64_t i_rsvd : 56; + uint64_t ii_icto_regval; + struct { + uint64_t i_timeout:8; + uint64_t i_rsvd:56; } ii_icto_fld_s; } ii_icto_u_t; - /************************************************************************ - * * + * * * This register allows the timeout prescalar to be programmed. An * * internal counter is associated with this register. When the * * internal counter reaches the value of the PRESCALE field, the * * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] * * field). The internal counter resets to zero, and then continues * * counting. * - * * + * * ************************************************************************/ typedef union ii_ictp_u { - uint64_t ii_ictp_regval; - struct { - uint64_t i_prescale : 24; - uint64_t i_rsvd : 40; + uint64_t ii_ictp_regval; + struct { + uint64_t i_prescale:24; + uint64_t i_rsvd:40; } ii_ictp_fld_s; } ii_ictp_u_t; - /************************************************************************ - * * + * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * @@ -2306,243 +2224,234 @@ typedef union ii_ictp_u { * recovering any potential error state from before the reset). * * The following four tables summarize the format for the four * * registers that are used for each ICRB# Entry. * - * * + * * ************************************************************************/ typedef union ii_icrb0_a_u { - uint64_t ii_icrb0_a_regval; - struct { - uint64_t ia_iow : 1; - uint64_t ia_vld : 1; - uint64_t ia_addr : 47; - uint64_t ia_tnum : 5; - uint64_t ia_sidn : 4; - uint64_t ia_rsvd : 6; + uint64_t ii_icrb0_a_regval; + struct { + uint64_t ia_iow:1; + uint64_t ia_vld:1; + uint64_t ia_addr:47; + uint64_t ia_tnum:5; + uint64_t ia_sidn:4; + uint64_t ia_rsvd:6; } ii_icrb0_a_fld_s; } ii_icrb0_a_u_t; - /************************************************************************ - * * + * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * - * * + * * ************************************************************************/ typedef union ii_icrb0_b_u { - uint64_t ii_icrb0_b_regval; - struct { - uint64_t ib_xt_err : 1; - uint64_t ib_mark : 1; - uint64_t ib_ln_uce : 1; - uint64_t ib_errcode : 3; - uint64_t ib_error : 1; - uint64_t ib_stall__bte_1 : 1; - uint64_t ib_stall__bte_0 : 1; - uint64_t ib_stall__intr : 1; - uint64_t ib_stall_ib : 1; - uint64_t ib_intvn : 1; - uint64_t ib_wb : 1; - uint64_t ib_hold : 1; - uint64_t ib_ack : 1; - uint64_t ib_resp : 1; - uint64_t ib_ack_cnt : 11; - uint64_t ib_rsvd : 7; - uint64_t ib_exc : 5; - uint64_t ib_init : 3; - uint64_t ib_imsg : 8; - uint64_t ib_imsgtype : 2; - uint64_t ib_use_old : 1; - uint64_t ib_rsvd_1 : 11; + uint64_t ii_icrb0_b_regval; + struct { + uint64_t ib_xt_err:1; + uint64_t ib_mark:1; + uint64_t ib_ln_uce:1; + uint64_t ib_errcode:3; + uint64_t ib_error:1; + uint64_t ib_stall__bte_1:1; + uint64_t ib_stall__bte_0:1; + uint64_t ib_stall__intr:1; + uint64_t ib_stall_ib:1; + uint64_t ib_intvn:1; + uint64_t ib_wb:1; + uint64_t ib_hold:1; + uint64_t ib_ack:1; + uint64_t ib_resp:1; + uint64_t ib_ack_cnt:11; + uint64_t ib_rsvd:7; + uint64_t ib_exc:5; + uint64_t ib_init:3; + uint64_t ib_imsg:8; + uint64_t ib_imsgtype:2; + uint64_t ib_use_old:1; + uint64_t ib_rsvd_1:11; } ii_icrb0_b_fld_s; } ii_icrb0_b_u_t; - /************************************************************************ - * * + * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * - * * + * * ************************************************************************/ typedef union ii_icrb0_c_u { - uint64_t ii_icrb0_c_regval; - struct { - uint64_t ic_source : 15; - uint64_t ic_size : 2; - uint64_t ic_ct : 1; - uint64_t ic_bte_num : 1; - uint64_t ic_gbr : 1; - uint64_t ic_resprqd : 1; - uint64_t ic_bo : 1; - uint64_t ic_suppl : 15; - uint64_t ic_rsvd : 27; + uint64_t ii_icrb0_c_regval; + struct { + uint64_t ic_source:15; + uint64_t ic_size:2; + uint64_t ic_ct:1; + uint64_t ic_bte_num:1; + uint64_t ic_gbr:1; + uint64_t ic_resprqd:1; + uint64_t ic_bo:1; + uint64_t ic_suppl:15; + uint64_t ic_rsvd:27; } ii_icrb0_c_fld_s; } ii_icrb0_c_u_t; - /************************************************************************ - * * + * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * - * * + * * ************************************************************************/ typedef union ii_icrb0_d_u { - uint64_t ii_icrb0_d_regval; - struct { - uint64_t id_pa_be : 43; - uint64_t id_bte_op : 1; - uint64_t id_pr_psc : 4; - uint64_t id_pr_cnt : 4; - uint64_t id_sleep : 1; - uint64_t id_rsvd : 11; + uint64_t ii_icrb0_d_regval; + struct { + uint64_t id_pa_be:43; + uint64_t id_bte_op:1; + uint64_t id_pr_psc:4; + uint64_t id_pr_cnt:4; + uint64_t id_sleep:1; + uint64_t id_rsvd:11; } ii_icrb0_d_fld_s; } ii_icrb0_d_u_t; - /************************************************************************ - * * + * * * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are * * used for Crosstalk operations (both cacheline and partial * * operations) or BTE/IO. Because the CRB entries are very wide, five * * registers (_A to _E) are required to read and write each entry. * - * * + * * ************************************************************************/ typedef union ii_icrb0_e_u { - uint64_t ii_icrb0_e_regval; - struct { - uint64_t ie_timeout : 8; - uint64_t ie_context : 15; - uint64_t ie_rsvd : 1; - uint64_t ie_tvld : 1; - uint64_t ie_cvld : 1; - uint64_t ie_rsvd_0 : 38; + uint64_t ii_icrb0_e_regval; + struct { + uint64_t ie_timeout:8; + uint64_t ie_context:15; + uint64_t ie_rsvd:1; + uint64_t ie_tvld:1; + uint64_t ie_cvld:1; + uint64_t ie_rsvd_0:38; } ii_icrb0_e_fld_s; } ii_icrb0_e_u_t; - /************************************************************************ - * * + * * * This register contains the lower 64 bits of the header of the * * spurious message captured by II. Valid when the SP_MSG bit in ICMR * * register is set. * - * * + * * ************************************************************************/ typedef union ii_icsml_u { - uint64_t ii_icsml_regval; - struct { - uint64_t i_tt_addr : 47; - uint64_t i_newsuppl_ex : 14; - uint64_t i_reserved : 2; - uint64_t i_overflow : 1; + uint64_t ii_icsml_regval; + struct { + uint64_t i_tt_addr:47; + uint64_t i_newsuppl_ex:14; + uint64_t i_reserved:2; + uint64_t i_overflow:1; } ii_icsml_fld_s; } ii_icsml_u_t; - /************************************************************************ - * * + * * * This register contains the middle 64 bits of the header of the * * spurious message captured by II. Valid when the SP_MSG bit in ICMR * * register is set. * - * * + * * ************************************************************************/ typedef union ii_icsmm_u { - uint64_t ii_icsmm_regval; - struct { - uint64_t i_tt_ack_cnt : 11; - uint64_t i_reserved : 53; + uint64_t ii_icsmm_regval; + struct { + uint64_t i_tt_ack_cnt:11; + uint64_t i_reserved:53; } ii_icsmm_fld_s; } ii_icsmm_u_t; - /************************************************************************ - * * + * * * This register contains the microscopic state, all the inputs to * * the protocol table, captured with the spurious message. Valid when * * the SP_MSG bit in the ICMR register is set. * - * * + * * ************************************************************************/ typedef union ii_icsmh_u { - uint64_t ii_icsmh_regval; - struct { - uint64_t i_tt_vld : 1; - uint64_t i_xerr : 1; - uint64_t i_ft_cwact_o : 1; - uint64_t i_ft_wact_o : 1; - uint64_t i_ft_active_o : 1; - uint64_t i_sync : 1; - uint64_t i_mnusg : 1; - uint64_t i_mnusz : 1; - uint64_t i_plusz : 1; - uint64_t i_plusg : 1; - uint64_t i_tt_exc : 5; - uint64_t i_tt_wb : 1; - uint64_t i_tt_hold : 1; - uint64_t i_tt_ack : 1; - uint64_t i_tt_resp : 1; - uint64_t i_tt_intvn : 1; - uint64_t i_g_stall_bte1 : 1; - uint64_t i_g_stall_bte0 : 1; - uint64_t i_g_stall_il : 1; - uint64_t i_g_stall_ib : 1; - uint64_t i_tt_imsg : 8; - uint64_t i_tt_imsgtype : 2; - uint64_t i_tt_use_old : 1; - uint64_t i_tt_respreqd : 1; - uint64_t i_tt_bte_num : 1; - uint64_t i_cbn : 1; - uint64_t i_match : 1; - uint64_t i_rpcnt_lt_34 : 1; - uint64_t i_rpcnt_ge_34 : 1; - uint64_t i_rpcnt_lt_18 : 1; - uint64_t i_rpcnt_ge_18 : 1; - uint64_t i_rpcnt_lt_2 : 1; - uint64_t i_rpcnt_ge_2 : 1; - uint64_t i_rqcnt_lt_18 : 1; - uint64_t i_rqcnt_ge_18 : 1; - uint64_t i_rqcnt_lt_2 : 1; - uint64_t i_rqcnt_ge_2 : 1; - uint64_t i_tt_device : 7; - uint64_t i_tt_init : 3; - uint64_t i_reserved : 5; + uint64_t ii_icsmh_regval; + struct { + uint64_t i_tt_vld:1; + uint64_t i_xerr:1; + uint64_t i_ft_cwact_o:1; + uint64_t i_ft_wact_o:1; + uint64_t i_ft_active_o:1; + uint64_t i_sync:1; + uint64_t i_mnusg:1; + uint64_t i_mnusz:1; + uint64_t i_plusz:1; + uint64_t i_plusg:1; + uint64_t i_tt_exc:5; + uint64_t i_tt_wb:1; + uint64_t i_tt_hold:1; + uint64_t i_tt_ack:1; + uint64_t i_tt_resp:1; + uint64_t i_tt_intvn:1; + uint64_t i_g_stall_bte1:1; + uint64_t i_g_stall_bte0:1; + uint64_t i_g_stall_il:1; + uint64_t i_g_stall_ib:1; + uint64_t i_tt_imsg:8; + uint64_t i_tt_imsgtype:2; + uint64_t i_tt_use_old:1; + uint64_t i_tt_respreqd:1; + uint64_t i_tt_bte_num:1; + uint64_t i_cbn:1; + uint64_t i_match:1; + uint64_t i_rpcnt_lt_34:1; + uint64_t i_rpcnt_ge_34:1; + uint64_t i_rpcnt_lt_18:1; + uint64_t i_rpcnt_ge_18:1; + uint64_t i_rpcnt_lt_2:1; + uint64_t i_rpcnt_ge_2:1; + uint64_t i_rqcnt_lt_18:1; + uint64_t i_rqcnt_ge_18:1; + uint64_t i_rqcnt_lt_2:1; + uint64_t i_rqcnt_ge_2:1; + uint64_t i_tt_device:7; + uint64_t i_tt_init:3; + uint64_t i_reserved:5; } ii_icsmh_fld_s; } ii_icsmh_u_t; - /************************************************************************ - * * + * * * The Shub DEBUG unit provides a 3-bit selection signal to the * * II core and a 3-bit selection signal to the fsbclk domain in the II * * wrapper. * - * * + * * ************************************************************************/ typedef union ii_idbss_u { - uint64_t ii_idbss_regval; - struct { - uint64_t i_iioclk_core_submenu : 3; - uint64_t i_rsvd : 5; - uint64_t i_fsbclk_wrapper_submenu : 3; - uint64_t i_rsvd_1 : 5; - uint64_t i_iioclk_menu : 5; - uint64_t i_rsvd_2 : 43; + uint64_t ii_idbss_regval; + struct { + uint64_t i_iioclk_core_submenu:3; + uint64_t i_rsvd:5; + uint64_t i_fsbclk_wrapper_submenu:3; + uint64_t i_rsvd_1:5; + uint64_t i_iioclk_menu:5; + uint64_t i_rsvd_2:43; } ii_idbss_fld_s; } ii_idbss_u_t; - /************************************************************************ - * * + * * * Description: This register is used to set up the length for a * * transfer and then to monitor the progress of that transfer. This * * register needs to be initialized before a transfer is started. A * @@ -2553,63 +2462,60 @@ typedef union ii_idbss_u { * transfer completes, hardware will clear the Busy bit. The length * * field will also contain the number of cache lines left to be * * transferred. * - * * + * * ************************************************************************/ typedef union ii_ibls0_u { - uint64_t ii_ibls0_regval; - struct { - uint64_t i_length : 16; - uint64_t i_error : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_busy : 1; - uint64_t i_rsvd : 43; + uint64_t ii_ibls0_regval; + struct { + uint64_t i_length:16; + uint64_t i_error:1; + uint64_t i_rsvd_1:3; + uint64_t i_busy:1; + uint64_t i_rsvd:43; } ii_ibls0_fld_s; } ii_ibls0_u_t; - /************************************************************************ - * * + * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * - * * + * * ************************************************************************/ typedef union ii_ibsa0_u { - uint64_t ii_ibsa0_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 42; - uint64_t i_rsvd : 15; + uint64_t ii_ibsa0_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:42; + uint64_t i_rsvd:15; } ii_ibsa0_fld_s; } ii_ibsa0_u_t; - /************************************************************************ - * * + * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * - * * + * * ************************************************************************/ typedef union ii_ibda0_u { - uint64_t ii_ibda0_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 42; - uint64_t i_rsvd : 15; + uint64_t ii_ibda0_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:42; + uint64_t i_rsvd:15; } ii_ibda0_fld_s; } ii_ibda0_u_t; - /************************************************************************ - * * + * * * Writing to this register sets up the attributes of the transfer * * and initiates the transfer operation. Reading this register has * * the side effect of terminating any transfer in progress. Note: * @@ -2617,61 +2523,58 @@ typedef union ii_ibda0_u { * other BTE. If a BTE stream has to be stopped (due to error * * handling for example), both BTE streams should be stopped and * * their transfers discarded. * - * * + * * ************************************************************************/ typedef union ii_ibct0_u { - uint64_t ii_ibct0_regval; - struct { - uint64_t i_zerofill : 1; - uint64_t i_rsvd_2 : 3; - uint64_t i_notify : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_poison : 1; - uint64_t i_rsvd : 55; + uint64_t ii_ibct0_regval; + struct { + uint64_t i_zerofill:1; + uint64_t i_rsvd_2:3; + uint64_t i_notify:1; + uint64_t i_rsvd_1:3; + uint64_t i_poison:1; + uint64_t i_rsvd:55; } ii_ibct0_fld_s; } ii_ibct0_u_t; - /************************************************************************ - * * + * * * This register contains the address to which the WINV is sent. * * This address has to be cache line aligned. * - * * + * * ************************************************************************/ typedef union ii_ibna0_u { - uint64_t ii_ibna0_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 42; - uint64_t i_rsvd : 15; + uint64_t ii_ibna0_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:42; + uint64_t i_rsvd:15; } ii_ibna0_fld_s; } ii_ibna0_u_t; - /************************************************************************ - * * + * * * This register contains the programmable level as well as the node * * ID and PI unit of the processor to which the interrupt will be * - * sent. * - * * + * sent. * + * * ************************************************************************/ typedef union ii_ibia0_u { - uint64_t ii_ibia0_regval; - struct { - uint64_t i_rsvd_2 : 1; - uint64_t i_node_id : 11; - uint64_t i_rsvd_1 : 4; - uint64_t i_level : 7; - uint64_t i_rsvd : 41; + uint64_t ii_ibia0_regval; + struct { + uint64_t i_rsvd_2:1; + uint64_t i_node_id:11; + uint64_t i_rsvd_1:4; + uint64_t i_level:7; + uint64_t i_rsvd:41; } ii_ibia0_fld_s; } ii_ibia0_u_t; - /************************************************************************ - * * + * * * Description: This register is used to set up the length for a * * transfer and then to monitor the progress of that transfer. This * * register needs to be initialized before a transfer is started. A * @@ -2682,63 +2585,60 @@ typedef union ii_ibia0_u { * transfer completes, hardware will clear the Busy bit. The length * * field will also contain the number of cache lines left to be * * transferred. * - * * + * * ************************************************************************/ typedef union ii_ibls1_u { - uint64_t ii_ibls1_regval; - struct { - uint64_t i_length : 16; - uint64_t i_error : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_busy : 1; - uint64_t i_rsvd : 43; + uint64_t ii_ibls1_regval; + struct { + uint64_t i_length:16; + uint64_t i_error:1; + uint64_t i_rsvd_1:3; + uint64_t i_busy:1; + uint64_t i_rsvd:43; } ii_ibls1_fld_s; } ii_ibls1_u_t; - /************************************************************************ - * * + * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * - * * + * * ************************************************************************/ typedef union ii_ibsa1_u { - uint64_t ii_ibsa1_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 33; - uint64_t i_rsvd : 24; + uint64_t ii_ibsa1_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:33; + uint64_t i_rsvd:24; } ii_ibsa1_fld_s; } ii_ibsa1_u_t; - /************************************************************************ - * * + * * * This register should be loaded before a transfer is started. The * * address to be loaded in bits 39:0 is the 40-bit TRex+ physical * * address as described in Section 1.3, Figure2 and Figure3. Since * * the bottom 7 bits of the address are always taken to be zero, BTE * * transfers are always cacheline-aligned. * - * * + * * ************************************************************************/ typedef union ii_ibda1_u { - uint64_t ii_ibda1_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 33; - uint64_t i_rsvd : 24; + uint64_t ii_ibda1_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:33; + uint64_t i_rsvd:24; } ii_ibda1_fld_s; } ii_ibda1_u_t; - /************************************************************************ - * * + * * * Writing to this register sets up the attributes of the transfer * * and initiates the transfer operation. Reading this register has * * the side effect of terminating any transfer in progress. Note: * @@ -2746,61 +2646,58 @@ typedef union ii_ibda1_u { * other BTE. If a BTE stream has to be stopped (due to error * * handling for example), both BTE streams should be stopped and * * their transfers discarded. * - * * + * * ************************************************************************/ typedef union ii_ibct1_u { - uint64_t ii_ibct1_regval; - struct { - uint64_t i_zerofill : 1; - uint64_t i_rsvd_2 : 3; - uint64_t i_notify : 1; - uint64_t i_rsvd_1 : 3; - uint64_t i_poison : 1; - uint64_t i_rsvd : 55; + uint64_t ii_ibct1_regval; + struct { + uint64_t i_zerofill:1; + uint64_t i_rsvd_2:3; + uint64_t i_notify:1; + uint64_t i_rsvd_1:3; + uint64_t i_poison:1; + uint64_t i_rsvd:55; } ii_ibct1_fld_s; } ii_ibct1_u_t; - /************************************************************************ - * * + * * * This register contains the address to which the WINV is sent. * * This address has to be cache line aligned. * - * * + * * ************************************************************************/ typedef union ii_ibna1_u { - uint64_t ii_ibna1_regval; - struct { - uint64_t i_rsvd_1 : 7; - uint64_t i_addr : 33; - uint64_t i_rsvd : 24; + uint64_t ii_ibna1_regval; + struct { + uint64_t i_rsvd_1:7; + uint64_t i_addr:33; + uint64_t i_rsvd:24; } ii_ibna1_fld_s; } ii_ibna1_u_t; - /************************************************************************ - * * + * * * This register contains the programmable level as well as the node * * ID and PI unit of the processor to which the interrupt will be * - * sent. * - * * + * sent. * + * * ************************************************************************/ typedef union ii_ibia1_u { - uint64_t ii_ibia1_regval; - struct { - uint64_t i_pi_id : 1; - uint64_t i_node_id : 8; - uint64_t i_rsvd_1 : 7; - uint64_t i_level : 7; - uint64_t i_rsvd : 41; + uint64_t ii_ibia1_regval; + struct { + uint64_t i_pi_id:1; + uint64_t i_node_id:8; + uint64_t i_rsvd_1:7; + uint64_t i_level:7; + uint64_t i_rsvd:41; } ii_ibia1_fld_s; } ii_ibia1_u_t; - /************************************************************************ - * * + * * * This register defines the resources that feed information into * * the two performance counters located in the IO Performance * * Profiling Register. There are 17 different quantities that can be * @@ -2811,133 +2708,129 @@ typedef union ii_ibia1_u { * other is available from the other performance counter. Hence, the * * II supports all 17*16=272 possible combinations of quantities to * * measure. * - * * + * * ************************************************************************/ typedef union ii_ipcr_u { - uint64_t ii_ipcr_regval; - struct { - uint64_t i_ippr0_c : 4; - uint64_t i_ippr1_c : 4; - uint64_t i_icct : 8; - uint64_t i_rsvd : 48; + uint64_t ii_ipcr_regval; + struct { + uint64_t i_ippr0_c:4; + uint64_t i_ippr1_c:4; + uint64_t i_icct:8; + uint64_t i_rsvd:48; } ii_ipcr_fld_s; } ii_ipcr_u_t; - /************************************************************************ - * * - * * - * * + * * + * * + * * ************************************************************************/ typedef union ii_ippr_u { - uint64_t ii_ippr_regval; - struct { - uint64_t i_ippr0 : 32; - uint64_t i_ippr1 : 32; + uint64_t ii_ippr_regval; + struct { + uint64_t i_ippr0:32; + uint64_t i_ippr1:32; } ii_ippr_fld_s; } ii_ippr_u_t; - - -/************************************************************************** - * * - * The following defines which were not formed into structures are * - * probably indentical to another register, and the name of the * - * register is provided against each of these registers. This * - * information needs to be checked carefully * - * * - * IIO_ICRB1_A IIO_ICRB0_A * - * IIO_ICRB1_B IIO_ICRB0_B * - * IIO_ICRB1_C IIO_ICRB0_C * - * IIO_ICRB1_D IIO_ICRB0_D * - * IIO_ICRB1_E IIO_ICRB0_E * - * IIO_ICRB2_A IIO_ICRB0_A * - * IIO_ICRB2_B IIO_ICRB0_B * - * IIO_ICRB2_C IIO_ICRB0_C * - * IIO_ICRB2_D IIO_ICRB0_D * - * IIO_ICRB2_E IIO_ICRB0_E * - * IIO_ICRB3_A IIO_ICRB0_A * - * IIO_ICRB3_B IIO_ICRB0_B * - * IIO_ICRB3_C IIO_ICRB0_C * - * IIO_ICRB3_D IIO_ICRB0_D * - * IIO_ICRB3_E IIO_ICRB0_E * - * IIO_ICRB4_A IIO_ICRB0_A * - * IIO_ICRB4_B IIO_ICRB0_B * - * IIO_ICRB4_C IIO_ICRB0_C * - * IIO_ICRB4_D IIO_ICRB0_D * - * IIO_ICRB4_E IIO_ICRB0_E * - * IIO_ICRB5_A IIO_ICRB0_A * - * IIO_ICRB5_B IIO_ICRB0_B * - * IIO_ICRB5_C IIO_ICRB0_C * - * IIO_ICRB5_D IIO_ICRB0_D * - * IIO_ICRB5_E IIO_ICRB0_E * - * IIO_ICRB6_A IIO_ICRB0_A * - * IIO_ICRB6_B IIO_ICRB0_B * - * IIO_ICRB6_C IIO_ICRB0_C * - * IIO_ICRB6_D IIO_ICRB0_D * - * IIO_ICRB6_E IIO_ICRB0_E * - * IIO_ICRB7_A IIO_ICRB0_A * - * IIO_ICRB7_B IIO_ICRB0_B * - * IIO_ICRB7_C IIO_ICRB0_C * - * IIO_ICRB7_D IIO_ICRB0_D * - * IIO_ICRB7_E IIO_ICRB0_E * - * IIO_ICRB8_A IIO_ICRB0_A * - * IIO_ICRB8_B IIO_ICRB0_B * - * IIO_ICRB8_C IIO_ICRB0_C * - * IIO_ICRB8_D IIO_ICRB0_D * - * IIO_ICRB8_E IIO_ICRB0_E * - * IIO_ICRB9_A IIO_ICRB0_A * - * IIO_ICRB9_B IIO_ICRB0_B * - * IIO_ICRB9_C IIO_ICRB0_C * - * IIO_ICRB9_D IIO_ICRB0_D * - * IIO_ICRB9_E IIO_ICRB0_E * - * IIO_ICRBA_A IIO_ICRB0_A * - * IIO_ICRBA_B IIO_ICRB0_B * - * IIO_ICRBA_C IIO_ICRB0_C * - * IIO_ICRBA_D IIO_ICRB0_D * - * IIO_ICRBA_E IIO_ICRB0_E * - * IIO_ICRBB_A IIO_ICRB0_A * - * IIO_ICRBB_B IIO_ICRB0_B * - * IIO_ICRBB_C IIO_ICRB0_C * - * IIO_ICRBB_D IIO_ICRB0_D * - * IIO_ICRBB_E IIO_ICRB0_E * - * IIO_ICRBC_A IIO_ICRB0_A * - * IIO_ICRBC_B IIO_ICRB0_B * - * IIO_ICRBC_C IIO_ICRB0_C * - * IIO_ICRBC_D IIO_ICRB0_D * - * IIO_ICRBC_E IIO_ICRB0_E * - * IIO_ICRBD_A IIO_ICRB0_A * - * IIO_ICRBD_B IIO_ICRB0_B * - * IIO_ICRBD_C IIO_ICRB0_C * - * IIO_ICRBD_D IIO_ICRB0_D * - * IIO_ICRBD_E IIO_ICRB0_E * - * IIO_ICRBE_A IIO_ICRB0_A * - * IIO_ICRBE_B IIO_ICRB0_B * - * IIO_ICRBE_C IIO_ICRB0_C * - * IIO_ICRBE_D IIO_ICRB0_D * - * IIO_ICRBE_E IIO_ICRB0_E * - * * - **************************************************************************/ - +/************************************************************************ + * * + * The following defines which were not formed into structures are * + * probably indentical to another register, and the name of the * + * register is provided against each of these registers. This * + * information needs to be checked carefully * + * * + * IIO_ICRB1_A IIO_ICRB0_A * + * IIO_ICRB1_B IIO_ICRB0_B * + * IIO_ICRB1_C IIO_ICRB0_C * + * IIO_ICRB1_D IIO_ICRB0_D * + * IIO_ICRB1_E IIO_ICRB0_E * + * IIO_ICRB2_A IIO_ICRB0_A * + * IIO_ICRB2_B IIO_ICRB0_B * + * IIO_ICRB2_C IIO_ICRB0_C * + * IIO_ICRB2_D IIO_ICRB0_D * + * IIO_ICRB2_E IIO_ICRB0_E * + * IIO_ICRB3_A IIO_ICRB0_A * + * IIO_ICRB3_B IIO_ICRB0_B * + * IIO_ICRB3_C IIO_ICRB0_C * + * IIO_ICRB3_D IIO_ICRB0_D * + * IIO_ICRB3_E IIO_ICRB0_E * + * IIO_ICRB4_A IIO_ICRB0_A * + * IIO_ICRB4_B IIO_ICRB0_B * + * IIO_ICRB4_C IIO_ICRB0_C * + * IIO_ICRB4_D IIO_ICRB0_D * + * IIO_ICRB4_E IIO_ICRB0_E * + * IIO_ICRB5_A IIO_ICRB0_A * + * IIO_ICRB5_B IIO_ICRB0_B * + * IIO_ICRB5_C IIO_ICRB0_C * + * IIO_ICRB5_D IIO_ICRB0_D * + * IIO_ICRB5_E IIO_ICRB0_E * + * IIO_ICRB6_A IIO_ICRB0_A * + * IIO_ICRB6_B IIO_ICRB0_B * + * IIO_ICRB6_C IIO_ICRB0_C * + * IIO_ICRB6_D IIO_ICRB0_D * + * IIO_ICRB6_E IIO_ICRB0_E * + * IIO_ICRB7_A IIO_ICRB0_A * + * IIO_ICRB7_B IIO_ICRB0_B * + * IIO_ICRB7_C IIO_ICRB0_C * + * IIO_ICRB7_D IIO_ICRB0_D * + * IIO_ICRB7_E IIO_ICRB0_E * + * IIO_ICRB8_A IIO_ICRB0_A * + * IIO_ICRB8_B IIO_ICRB0_B * + * IIO_ICRB8_C IIO_ICRB0_C * + * IIO_ICRB8_D IIO_ICRB0_D * + * IIO_ICRB8_E IIO_ICRB0_E * + * IIO_ICRB9_A IIO_ICRB0_A * + * IIO_ICRB9_B IIO_ICRB0_B * + * IIO_ICRB9_C IIO_ICRB0_C * + * IIO_ICRB9_D IIO_ICRB0_D * + * IIO_ICRB9_E IIO_ICRB0_E * + * IIO_ICRBA_A IIO_ICRB0_A * + * IIO_ICRBA_B IIO_ICRB0_B * + * IIO_ICRBA_C IIO_ICRB0_C * + * IIO_ICRBA_D IIO_ICRB0_D * + * IIO_ICRBA_E IIO_ICRB0_E * + * IIO_ICRBB_A IIO_ICRB0_A * + * IIO_ICRBB_B IIO_ICRB0_B * + * IIO_ICRBB_C IIO_ICRB0_C * + * IIO_ICRBB_D IIO_ICRB0_D * + * IIO_ICRBB_E IIO_ICRB0_E * + * IIO_ICRBC_A IIO_ICRB0_A * + * IIO_ICRBC_B IIO_ICRB0_B * + * IIO_ICRBC_C IIO_ICRB0_C * + * IIO_ICRBC_D IIO_ICRB0_D * + * IIO_ICRBC_E IIO_ICRB0_E * + * IIO_ICRBD_A IIO_ICRB0_A * + * IIO_ICRBD_B IIO_ICRB0_B * + * IIO_ICRBD_C IIO_ICRB0_C * + * IIO_ICRBD_D IIO_ICRB0_D * + * IIO_ICRBD_E IIO_ICRB0_E * + * IIO_ICRBE_A IIO_ICRB0_A * + * IIO_ICRBE_B IIO_ICRB0_B * + * IIO_ICRBE_C IIO_ICRB0_C * + * IIO_ICRBE_D IIO_ICRB0_D * + * IIO_ICRBE_E IIO_ICRB0_E * + * * + ************************************************************************/ /* * Slightly friendlier names for some common registers. */ -#define IIO_WIDGET IIO_WID /* Widget identification */ -#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ -#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ -#define IIO_PROTECT IIO_ILAPR /* IO interface protection */ -#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ -#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ -#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ -#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ -#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ -#define IIO_LLP_LOG IIO_ILLR /* LLP log */ -#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout*/ -#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ -#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ +#define IIO_WIDGET IIO_WID /* Widget identification */ +#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */ +#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */ +#define IIO_PROTECT IIO_ILAPR /* IO interface protection */ +#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */ +#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */ +#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */ +#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */ +#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */ +#define IIO_LLP_LOG IIO_ILLR /* LLP log */ +#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */ +#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */ +#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */ #define IIO_IGFX_0 IIO_IGFX0 #define IIO_IGFX_1 IIO_IGFX1 #define IIO_IBCT_0 IIO_IBCT0 @@ -2957,12 +2850,12 @@ typedef union ii_ippr_u { #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x))) #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x))) #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */ -#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ -#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ +#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */ +#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */ -#define IIO_NUM_IPRBS (9) +#define IIO_NUM_IPRBS 9 -#define IIO_LLP_CSR_IS_UP 0x00002000 +#define IIO_LLP_CSR_IS_UP 0x00002000 #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000 #define IIO_LLP_CSR_LLP_STAT_SHFT 12 @@ -2970,30 +2863,29 @@ typedef union ii_ippr_u { #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */ /* key to IIO_PROTECT_OVRRD */ -#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ +#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */ /* BTE register names */ -#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ -#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ -#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ -#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ -#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ -#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ -#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ -#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ +#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */ +#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */ +#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */ +#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */ +#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */ +#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */ +#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */ +#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */ /* BTE register offsets from base */ #define BTEOFF_STAT 0 -#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) -#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) -#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) -#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) -#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) - +#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0) +#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0) +#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0) +#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0) +#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0) /* names used in shub diags */ -#define IIO_BASE_BTE0 IIO_IBLS_0 -#define IIO_BASE_BTE1 IIO_IBLS_1 +#define IIO_BASE_BTE0 IIO_IBLS_0 +#define IIO_BASE_BTE1 IIO_IBLS_1 /* * Macro which takes the widget number, and returns the @@ -3001,10 +2893,9 @@ typedef union ii_ippr_u { * value _x is expected to be a widget number in the range * 0, 8 - 0xF */ -#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ - (_x) : \ - (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) - +#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \ + (_x) : \ + (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) ) /* GFX Flow Control Node/Widget Register */ #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */ @@ -3025,7 +2916,6 @@ typedef union ii_ippr_u { (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \ (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT)) - /* Scratch registers (all bits available) */ #define IIO_SCRATCH_REG0 IIO_ISCR0 #define IIO_SCRATCH_REG1 IIO_ISCR1 @@ -3046,21 +2936,21 @@ typedef union ii_ippr_u { #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL /* IO Translation Table Entries */ -#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ - /* Hw manuals number them 1..7! */ +#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */ + /* Hw manuals number them 1..7! */ /* * IIO_IMEM Register fields. */ -#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ -#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ -#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ +#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */ +#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */ +#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */ /* * As a permanent workaround for a bug in the PI side of the shub, we've * redefined big window 7 as small window 0. XXX does this still apply for SN1?? */ -#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) +#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1) /* * Use the top big window as a surrogate for the first small window @@ -3071,11 +2961,11 @@ typedef union ii_ippr_u { /* * CRB manipulation macros - * The CRB macros are slightly complicated, since there are up to - * four registers associated with each CRB entry. + * The CRB macros are slightly complicated, since there are up to + * four registers associated with each CRB entry. */ -#define IIO_NUM_CRBS 15 /* Number of CRBs */ -#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ +#define IIO_NUM_CRBS 15 /* Number of CRBs */ +#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */ #define IIO_ICRB_OFFSET 8 #define IIO_ICRB_0 IIO_ICRB0_A #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */ @@ -3083,43 +2973,43 @@ typedef union ii_ippr_u { #define IIO_FIRST_PC_ENTRY 12 */ -#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) -#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) -#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) -#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) -#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) +#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x)))) +#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET)) +#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET)) +#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET)) +#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET)) #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7) /* * values for "ecode" field */ -#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ -#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ -#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access - * e.g. WINV to a Read only line. */ -#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ -#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ -#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ -#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ -#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ +#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */ +#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */ +#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access + * e.g. WINV to a Read only line. */ +#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */ +#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */ +#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */ +#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */ +#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */ /* * Values for field imsgtype */ -#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ -#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ -#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ -#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ +#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */ +#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */ +#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */ +#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */ /* * values for field initiator. */ -#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ -#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ -#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ -#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ -#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ +#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */ +#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */ +#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */ +#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */ +#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */ /* * Number of credits Hub widget has while sending req/response to @@ -3127,8 +3017,8 @@ typedef union ii_ippr_u { * Value of 3 is required by Xbow 1.1 * We may be able to increase this to 4 with Xbow 1.2. */ -#define HUBII_XBOW_CREDIT 3 -#define HUBII_XBOW_REV2_CREDIT 4 +#define HUBII_XBOW_CREDIT 3 +#define HUBII_XBOW_REV2_CREDIT 4 /* * Number of credits that xtalk devices should use when communicating @@ -3159,28 +3049,28 @@ typedef union ii_ippr_u { */ #define IIO_ICMR_CRB_VLD_SHFT 20 -#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) +#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT) #define IIO_ICMR_FC_CNT_SHFT 16 -#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) +#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT) #define IIO_ICMR_C_CNT_SHFT 4 -#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) +#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT) -#define IIO_ICMR_PRECISE (1UL << 52) -#define IIO_ICMR_CLR_RPPD (1UL << 13) -#define IIO_ICMR_CLR_RQPD (1UL << 12) +#define IIO_ICMR_PRECISE (1UL << 52) +#define IIO_ICMR_CLR_RPPD (1UL << 13) +#define IIO_ICMR_CLR_RQPD (1UL << 12) /* * IIO PIO Deallocation register field masks : (IIO_IPDR) XXX present but not needed in bedrock? See the manual. */ -#define IIO_IPDR_PND (1 << 4) +#define IIO_IPDR_PND (1 << 4) /* * IIO CRB deallocation register field masks: (IIO_ICDR) */ -#define IIO_ICDR_PND (1 << 4) +#define IIO_ICDR_PND (1 << 4) /* * IO BTE Length/Status (IIO_IBLS) register bit field definitions @@ -3223,35 +3113,35 @@ typedef union ii_ippr_u { /* * IO Error Clear register bit field definitions */ -#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ -#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ -#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ -#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ -#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ -#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ -#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ -#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ -#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ -#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ -#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ -#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ -#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ -#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ -#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ +#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */ +#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */ +#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */ +#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */ +#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */ +#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */ +#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */ +#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */ +#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */ +#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */ +#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */ +#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */ +#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */ +#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */ +#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */ /* * IIO CRB control register Fields: IIO_ICCR */ -#define IIO_ICCR_PENDING (0x10000) -#define IIO_ICCR_CMD_MASK (0xFF) -#define IIO_ICCR_CMD_SHFT (7) -#define IIO_ICCR_CMD_NOP (0x0) /* No Op */ -#define IIO_ICCR_CMD_WAKE (0x100) /* Reactivate CRB entry and process */ -#define IIO_ICCR_CMD_TIMEOUT (0x200) /* Make CRB timeout & mark invalid */ -#define IIO_ICCR_CMD_EJECT (0x400) /* Contents of entry written to memory +#define IIO_ICCR_PENDING 0x10000 +#define IIO_ICCR_CMD_MASK 0xFF +#define IIO_ICCR_CMD_SHFT 7 +#define IIO_ICCR_CMD_NOP 0x0 /* No Op */ +#define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */ +#define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */ +#define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory * via a WB */ -#define IIO_ICCR_CMD_FLUSH (0x800) +#define IIO_ICCR_CMD_FLUSH 0x800 /* * @@ -3283,8 +3173,8 @@ typedef union ii_ippr_u { * Easy access macros for CRBs, all 5 registers (A-E) */ typedef ii_icrb0_a_u_t icrba_t; -#define a_sidn ii_icrb0_a_fld_s.ia_sidn -#define a_tnum ii_icrb0_a_fld_s.ia_tnum +#define a_sidn ii_icrb0_a_fld_s.ia_sidn +#define a_tnum ii_icrb0_a_fld_s.ia_tnum #define a_addr ii_icrb0_a_fld_s.ia_addr #define a_valid ii_icrb0_a_fld_s.ia_vld #define a_iow ii_icrb0_a_fld_s.ia_iow @@ -3324,14 +3214,13 @@ typedef ii_icrb0_c_u_t icrbc_t; #define c_source ii_icrb0_c_fld_s.ic_source #define c_regvalue ii_icrb0_c_regval - typedef ii_icrb0_d_u_t icrbd_t; #define d_sleep ii_icrb0_d_fld_s.id_sleep #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc #define d_bteop ii_icrb0_d_fld_s.id_bte_op -#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ -#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names*/ +#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */ +#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */ #define d_regvalue ii_icrb0_d_regval typedef ii_icrb0_e_u_t icrbe_t; @@ -3341,7 +3230,6 @@ typedef ii_icrb0_e_u_t icrbe_t; #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout #define e_regvalue ii_icrb0_e_regval - /* Number of widgets supported by shub */ #define HUB_NUM_WIDGET 9 #define HUB_WIDGET_ID_MIN 0x8 @@ -3367,27 +3255,27 @@ typedef ii_icrb0_e_u_t icrbe_t; #define LNK_STAT_WORKING 0x2 /* LLP is working */ -#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ -#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ -#define IIO_WSTAT_TXRETRY_MASK (0x7F) /* should be 0xFF?? */ -#define IIO_WSTAT_TXRETRY_SHFT (16) -#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ - IIO_WSTAT_TXRETRY_MASK) +#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */ +#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */ +#define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */ +#define IIO_WSTAT_TXRETRY_SHFT 16 +#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \ + IIO_WSTAT_TXRETRY_MASK) /* Number of II perf. counters we can multiplex at once */ #define IO_PERF_SETS 32 /* Bit for the widget in inbound access register */ -#define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) +#define IIO_IIWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) /* Bit for the widget in outbound access register */ -#define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) +#define IIO_IOWA_WIDGET(_w) ((uint64_t)(1ULL << _w)) /* NOTE: The following define assumes that we are going to get * widget numbers from 8 thru F and the device numbers within * widget from 0 thru 7. */ -#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) +#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((uint64_t)(1ULL << (8 * ((w) - 8) + (d)))) /* IO Interrupt Destination Register */ #define IIO_IIDSR_SENT_SHIFT 28 @@ -3402,11 +3290,11 @@ typedef ii_icrb0_e_u_t icrbe_t; #define IIO_IIDSR_LVL_MASK 0x000000ff /* Xtalk timeout threshhold register (IIO_IXTT) */ -#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ +#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */ #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT) -#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ +#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */ #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT) -#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ +#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */ #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT) /* @@ -3414,17 +3302,17 @@ typedef ii_icrb0_e_u_t icrbe_t; */ typedef union hubii_wcr_u { - uint64_t wcr_reg_value; - struct { - uint64_t wcr_widget_id: 4, /* LLP crossbar credit */ - wcr_tag_mode: 1, /* Tag mode */ - wcr_rsvd1: 8, /* Reserved */ - wcr_xbar_crd: 3, /* LLP crossbar credit */ - wcr_f_bad_pkt: 1, /* Force bad llp pkt enable */ - wcr_dir_con: 1, /* widget direct connect */ - wcr_e_thresh: 5, /* elasticity threshold */ - wcr_rsvd: 41; /* unused */ - } wcr_fields_s; + uint64_t wcr_reg_value; + struct { + uint64_t wcr_widget_id:4, /* LLP crossbar credit */ + wcr_tag_mode:1, /* Tag mode */ + wcr_rsvd1:8, /* Reserved */ + wcr_xbar_crd:3, /* LLP crossbar credit */ + wcr_f_bad_pkt:1, /* Force bad llp pkt enable */ + wcr_dir_con:1, /* widget direct connect */ + wcr_e_thresh:5, /* elasticity threshold */ + wcr_rsvd:41; /* unused */ + } wcr_fields_s; } hubii_wcr_t; #define iwcr_dir_con wcr_fields_s.wcr_dir_con @@ -3436,41 +3324,35 @@ performance registers */ performed */ typedef union io_perf_sel { - uint64_t perf_sel_reg; - struct { - uint64_t perf_ippr0 : 4, - perf_ippr1 : 4, - perf_icct : 8, - perf_rsvd : 48; - } perf_sel_bits; + uint64_t perf_sel_reg; + struct { + uint64_t perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48; + } perf_sel_bits; } io_perf_sel_t; /* io_perf_cnt is to extract the count from the shub registers. Due to hardware problems there is only one counter, not two. */ typedef union io_perf_cnt { - uint64_t perf_cnt; - struct { - uint64_t perf_cnt : 20, - perf_rsvd2 : 12, - perf_rsvd1 : 32; - } perf_cnt_bits; + uint64_t perf_cnt; + struct { + uint64_t perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32; + } perf_cnt_bits; } io_perf_cnt_t; typedef union iprte_a { - uint64_t entry; - struct { - uint64_t i_rsvd_1 : 3; - uint64_t i_addr : 38; - uint64_t i_init : 3; - uint64_t i_source : 8; - uint64_t i_rsvd : 2; - uint64_t i_widget : 4; - uint64_t i_to_cnt : 5; - uint64_t i_vld : 1; + uint64_t entry; + struct { + uint64_t i_rsvd_1:3; + uint64_t i_addr:38; + uint64_t i_init:3; + uint64_t i_source:8; + uint64_t i_rsvd:2; + uint64_t i_widget:4; + uint64_t i_to_cnt:5; + uint64_t i_vld:1; } iprte_fields; } iprte_a_t; -#endif /* _ASM_IA64_SN_SHUBIO_H */ - +#endif /* _ASM_IA64_SN_SHUBIO_H */ diff --git a/include/asm-ia64/sn/sn_cpuid.h b/include/asm-ia64/sn/sn_cpuid.h index 685435af170d..20b300187669 100644 --- a/include/asm-ia64/sn/sn_cpuid.h +++ b/include/asm-ia64/sn/sn_cpuid.h @@ -4,7 +4,7 @@ * License. See the file "COPYING" in the main directory of this archive * for more details. * - * Copyright (C) 2000-2004 Silicon Graphics, Inc. All rights reserved. + * Copyright (C) 2000-2005 Silicon Graphics, Inc. All rights reserved. */ @@ -92,24 +92,24 @@ * NOTE: on non-MP systems, only cpuid 0 exists */ -extern short physical_node_map[]; /* indexed by nasid to get cnode */ +extern short physical_node_map[]; /* indexed by nasid to get cnode */ /* * Macros for retrieving info about current cpu */ -#define get_nasid() (nodepda->phys_cpuid[smp_processor_id()].nasid) -#define get_subnode() (nodepda->phys_cpuid[smp_processor_id()].subnode) -#define get_slice() (nodepda->phys_cpuid[smp_processor_id()].slice) -#define get_cnode() (nodepda->phys_cpuid[smp_processor_id()].cnode) -#define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) +#define get_nasid() (sn_nodepda->phys_cpuid[smp_processor_id()].nasid) +#define get_subnode() (sn_nodepda->phys_cpuid[smp_processor_id()].subnode) +#define get_slice() (sn_nodepda->phys_cpuid[smp_processor_id()].slice) +#define get_cnode() (sn_nodepda->phys_cpuid[smp_processor_id()].cnode) +#define get_sapicid() ((ia64_getreg(_IA64_REG_CR_LID) >> 16) & 0xffff) /* * Macros for retrieving info about an arbitrary cpu * cpuid - logical cpu id */ -#define cpuid_to_nasid(cpuid) (nodepda->phys_cpuid[cpuid].nasid) -#define cpuid_to_subnode(cpuid) (nodepda->phys_cpuid[cpuid].subnode) -#define cpuid_to_slice(cpuid) (nodepda->phys_cpuid[cpuid].slice) +#define cpuid_to_nasid(cpuid) (sn_nodepda->phys_cpuid[cpuid].nasid) +#define cpuid_to_subnode(cpuid) (sn_nodepda->phys_cpuid[cpuid].subnode) +#define cpuid_to_slice(cpuid) (sn_nodepda->phys_cpuid[cpuid].slice) #define cpuid_to_cnodeid(cpuid) (physical_node_map[cpuid_to_nasid(cpuid)]) @@ -123,11 +123,8 @@ extern int nasid_slice_to_cpuid(int, int); /* * cnodeid_to_nasid - convert a cnodeid to a NASID - * Macro relies on pg_data for a node being on the node itself. - * Just extract the NASID from the pointer. - * */ -#define cnodeid_to_nasid(cnodeid) pda->cnodeid_to_nasid_table[cnodeid] +#define cnodeid_to_nasid(cnodeid) (sn_cnodeid_to_nasid[cnodeid]) /* * nasid_to_cnodeid - convert a NASID to a cnodeid diff --git a/include/asm-ia64/sn/sn_fru.h b/include/asm-ia64/sn/sn_fru.h deleted file mode 100644 index 8c21ac3f0156..000000000000 --- a/include/asm-ia64/sn/sn_fru.h +++ /dev/null @@ -1,44 +0,0 @@ -/* - * This file is subject to the terms and conditions of the GNU General Public - * License. See the file "COPYING" in the main directory of this archive - * for more details. - * - * Copyright (C) 1992-1997,1999-2004 Silicon Graphics, Inc. All rights reserved. - */ -#ifndef _ASM_IA64_SN_SN_FRU_H -#define _ASM_IA64_SN_SN_FRU_H - -#define MAX_DIMMS 8 /* max # of dimm banks */ -#define MAX_PCIDEV 8 /* max # of pci devices on a pci bus */ - -typedef unsigned char confidence_t; - -typedef struct kf_mem_s { - confidence_t km_confidence; /* confidence level that the memory is bad - * is this necessary ? - */ - confidence_t km_dimm[MAX_DIMMS]; - /* confidence level that dimm[i] is bad - *I think this is the right number - */ - -} kf_mem_t; - -typedef struct kf_cpu_s { - confidence_t kc_confidence; /* confidence level that cpu is bad */ - confidence_t kc_icache; /* confidence level that instr. cache is bad */ - confidence_t kc_dcache; /* confidence level that data cache is bad */ - confidence_t kc_scache; /* confidence level that sec. cache is bad */ - confidence_t kc_sysbus; /* confidence level that sysad/cmd/state bus is bad */ -} kf_cpu_t; - - -typedef struct kf_pci_bus_s { - confidence_t kpb_belief; /* confidence level that the pci bus is bad */ - confidence_t kpb_pcidev_belief[MAX_PCIDEV]; - /* confidence level that the pci dev is bad */ -} kf_pci_bus_t; - - -#endif /* _ASM_IA64_SN_SN_FRU_H */ - diff --git a/include/asm-ia64/sn/sn_sal.h b/include/asm-ia64/sn/sn_sal.h index f914f6da077c..56d74ca76b5d 100644 --- a/include/asm-ia64/sn/sn_sal.h +++ b/include/asm-ia64/sn/sn_sal.h @@ -557,7 +557,8 @@ static inline u64 ia64_sn_partition_serial_get(void) { struct ia64_sal_retval ret_stuff; - SAL_CALL(ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, 0, 0, 0, 0, 0, 0); + ia64_sal_oemcall_reentrant(&ret_stuff, SN_SAL_PARTITION_SERIAL_GET, 0, + 0, 0, 0, 0, 0, 0); if (ret_stuff.status != 0) return 0; return ret_stuff.v0; @@ -565,11 +566,10 @@ ia64_sn_partition_serial_get(void) static inline u64 sn_partition_serial_number_val(void) { - if (sn_partition_serial_number) { - return(sn_partition_serial_number); - } else { - return(sn_partition_serial_number = ia64_sn_partition_serial_get()); + if (unlikely(sn_partition_serial_number == 0)) { + sn_partition_serial_number = ia64_sn_partition_serial_get(); } + return sn_partition_serial_number; } /* @@ -580,8 +580,8 @@ static inline partid_t ia64_sn_sysctl_partition_get(nasid_t nasid) { struct ia64_sal_retval ret_stuff; - SAL_CALL(ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, - 0, 0, 0, 0, 0, 0); + ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_SYSCTL_PARTITION_GET, nasid, + 0, 0, 0, 0, 0, 0); if (ret_stuff.status != 0) return INVALID_PARTID; return ((partid_t)ret_stuff.v0); @@ -595,11 +595,38 @@ extern partid_t sn_partid; static inline partid_t sn_local_partid(void) { - if (sn_partid < 0) { - return (sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id()))); - } else { - return sn_partid; + if (unlikely(sn_partid < 0)) { + sn_partid = ia64_sn_sysctl_partition_get(cpuid_to_nasid(smp_processor_id())); } + return sn_partid; +} + +/* + * Returns the physical address of the partition's reserved page through + * an iterative number of calls. + * + * On first call, 'cookie' and 'len' should be set to 0, and 'addr' + * set to the nasid of the partition whose reserved page's address is + * being sought. + * On subsequent calls, pass the values, that were passed back on the + * previous call. + * + * While the return status equals SALRET_MORE_PASSES, keep calling + * this function after first copying 'len' bytes starting at 'addr' + * into 'buf'. Once the return status equals SALRET_OK, 'addr' will + * be the physical address of the partition's reserved page. If the + * return status equals neither of these, an error as occurred. + */ +static inline s64 +sn_partition_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len) +{ + struct ia64_sal_retval rv; + ia64_sal_oemcall_reentrant(&rv, SN_SAL_GET_PARTITION_ADDR, *cookie, + *addr, buf, *len, 0, 0, 0); + *cookie = rv.v0; + *addr = rv.v1; + *len = rv.v2; + return rv.status; } /* @@ -621,8 +648,8 @@ static inline int sn_register_xp_addr_region(u64 paddr, u64 len, int operation) { struct ia64_sal_retval ret_stuff; - SAL_CALL(ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, (u64)operation, - 0, 0, 0, 0); + ia64_sal_oemcall(&ret_stuff, SN_SAL_XP_ADDR_REGION, paddr, len, + (u64)operation, 0, 0, 0, 0); return ret_stuff.status; } @@ -646,8 +673,8 @@ sn_register_nofault_code(u64 start_addr, u64 end_addr, u64 return_addr, } else { call = SN_SAL_NO_FAULT_ZONE_PHYSICAL; } - SAL_CALL(ret_stuff, call, start_addr, end_addr, return_addr, (u64)1, - 0, 0, 0); + ia64_sal_oemcall(&ret_stuff, call, start_addr, end_addr, return_addr, + (u64)1, 0, 0, 0); return ret_stuff.status; } @@ -668,8 +695,8 @@ static inline int sn_change_coherence(u64 *new_domain, u64 *old_domain) { struct ia64_sal_retval ret_stuff; - SAL_CALL(ret_stuff, SN_SAL_COHERENCE, new_domain, old_domain, 0, 0, - 0, 0, 0); + ia64_sal_oemcall(&ret_stuff, SN_SAL_COHERENCE, (u64)new_domain, + (u64)old_domain, 0, 0, 0, 0, 0); return ret_stuff.status; } @@ -688,8 +715,8 @@ sn_change_memprotect(u64 paddr, u64 len, u64 perms, u64 *nasid_array) cnodeid = nasid_to_cnodeid(get_node_number(paddr)); // spin_lock(&NODEPDA(cnodeid)->bist_lock); local_irq_save(irq_flags); - SAL_CALL_NOLOCK(ret_stuff, SN_SAL_MEMPROTECT, paddr, len, nasid_array, - perms, 0, 0, 0); + ia64_sal_oemcall_nolock(&ret_stuff, SN_SAL_MEMPROTECT, paddr, len, + (u64)nasid_array, perms, 0, 0, 0); local_irq_restore(irq_flags); // spin_unlock(&NODEPDA(cnodeid)->bist_lock); return ret_stuff.status; diff --git a/include/asm-ia64/sn/sndrv.h b/include/asm-ia64/sn/sndrv.h deleted file mode 100644 index aa00d42cde32..000000000000 --- a/include/asm-ia64/sn/sndrv.h +++ /dev/null @@ -1,47 +0,0 @@ -/* - * This file is subject to the terms and conditions of the GNU General Public - * License. See the file "COPYING" in the main directory of this archive - * for more details. - * - * Copyright (c) 2002-2004 Silicon Graphics, Inc. All Rights Reserved. - */ - -#ifndef _ASM_IA64_SN_SNDRV_H -#define _ASM_IA64_SN_SNDRV_H - -/* ioctl commands */ -#define SNDRV_GET_ROUTERINFO 1 -#define SNDRV_GET_INFOSIZE 2 -#define SNDRV_GET_HUBINFO 3 -#define SNDRV_GET_FLASHLOGSIZE 4 -#define SNDRV_SET_FLASHSYNC 5 -#define SNDRV_GET_FLASHLOGDATA 6 -#define SNDRV_GET_FLASHLOGALL 7 - -#define SNDRV_SET_HISTOGRAM_TYPE 14 - -#define SNDRV_ELSC_COMMAND 19 -#define SNDRV_CLEAR_LOG 20 -#define SNDRV_INIT_LOG 21 -#define SNDRV_GET_PIMM_PSC 22 -#define SNDRV_SET_PARTITION 23 -#define SNDRV_GET_PARTITION 24 - -/* see synergy_perf_ioctl() */ -#define SNDRV_GET_SYNERGY_VERSION 30 -#define SNDRV_GET_SYNERGY_STATUS 31 -#define SNDRV_GET_SYNERGYINFO 32 -#define SNDRV_SYNERGY_APPEND 33 -#define SNDRV_SYNERGY_ENABLE 34 -#define SNDRV_SYNERGY_FREQ 35 - -/* Devices */ -#define SNDRV_UKNOWN_DEVICE -1 -#define SNDRV_ROUTER_DEVICE 1 -#define SNDRV_HUB_DEVICE 2 -#define SNDRV_ELSC_NVRAM_DEVICE 3 -#define SNDRV_ELSC_CONTROLLER_DEVICE 4 -#define SNDRV_SYSCTL_SUBCH 5 -#define SNDRV_SYNERGY_DEVICE 6 - -#endif /* _ASM_IA64_SN_SNDRV_H */ diff --git a/include/asm-ia64/sn/xp.h b/include/asm-ia64/sn/xp.h new file mode 100644 index 000000000000..9902185c0288 --- /dev/null +++ b/include/asm-ia64/sn/xp.h @@ -0,0 +1,436 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2004-2005 Silicon Graphics, Inc. All rights reserved. + */ + + +/* + * External Cross Partition (XP) structures and defines. + */ + + +#ifndef _ASM_IA64_SN_XP_H +#define _ASM_IA64_SN_XP_H + + +#include <linux/version.h> +#include <linux/cache.h> +#include <linux/hardirq.h> +#include <asm/sn/types.h> +#include <asm/sn/bte.h> + + +#ifdef USE_DBUG_ON +#define DBUG_ON(condition) BUG_ON(condition) +#else +#define DBUG_ON(condition) +#endif + + +/* + * Define the maximum number of logically defined partitions the system + * can support. It is constrained by the maximum number of hardware + * partitionable regions. The term 'region' in this context refers to the + * minimum number of nodes that can comprise an access protection grouping. + * The access protection is in regards to memory, IPI and IOI. + * + * The maximum number of hardware partitionable regions is equal to the + * maximum number of nodes in the entire system divided by the minimum number + * of nodes that comprise an access protection grouping. + */ +#define XP_MAX_PARTITIONS 64 + + +/* + * Define the number of u64s required to represent all the C-brick nasids + * as a bitmap. The cross-partition kernel modules deal only with + * C-brick nasids, thus the need for bitmaps which don't account for + * odd-numbered (non C-brick) nasids. + */ +#define XP_MAX_PHYSNODE_ID (MAX_PHYSNODE_ID / 2) +#define XP_NASID_MASK_BYTES ((XP_MAX_PHYSNODE_ID + 7) / 8) +#define XP_NASID_MASK_WORDS ((XP_MAX_PHYSNODE_ID + 63) / 64) + + +/* + * Wrapper for bte_copy() that should it return a failure status will retry + * the bte_copy() once in the hope that the failure was due to a temporary + * aberration (i.e., the link going down temporarily). + * + * See bte_copy for definition of the input parameters. + * + * Note: xp_bte_copy() should never be called while holding a spinlock. + */ +static inline bte_result_t +xp_bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification) +{ + bte_result_t ret; + + + ret = bte_copy(src, dest, len, mode, notification); + + if (ret != BTE_SUCCESS) { + if (!in_interrupt()) { + cond_resched(); + } + ret = bte_copy(src, dest, len, mode, notification); + } + + return ret; +} + + +/* + * XPC establishes channel connections between the local partition and any + * other partition that is currently up. Over these channels, kernel-level + * `users' can communicate with their counterparts on the other partitions. + * + * The maxinum number of channels is limited to eight. For performance reasons, + * the internal cross partition structures require sixteen bytes per channel, + * and eight allows all of this interface-shared info to fit in one cache line. + * + * XPC_NCHANNELS reflects the total number of channels currently defined. + * If the need for additional channels arises, one can simply increase + * XPC_NCHANNELS accordingly. If the day should come where that number + * exceeds the MAXIMUM number of channels allowed (eight), then one will need + * to make changes to the XPC code to allow for this. + */ +#define XPC_MEM_CHANNEL 0 /* memory channel number */ +#define XPC_NET_CHANNEL 1 /* network channel number */ + +#define XPC_NCHANNELS 2 /* #of defined channels */ +#define XPC_MAX_NCHANNELS 8 /* max #of channels allowed */ + +#if XPC_NCHANNELS > XPC_MAX_NCHANNELS +#error XPC_NCHANNELS exceeds MAXIMUM allowed. +#endif + + +/* + * The format of an XPC message is as follows: + * + * +-------+--------------------------------+ + * | flags |////////////////////////////////| + * +-------+--------------------------------+ + * | message # | + * +----------------------------------------+ + * | payload (user-defined message) | + * | | + * : + * | | + * +----------------------------------------+ + * + * The size of the payload is defined by the user via xpc_connect(). A user- + * defined message resides in the payload area. + * + * The user should have no dealings with the message header, but only the + * message's payload. When a message entry is allocated (via xpc_allocate()) + * a pointer to the payload area is returned and not the actual beginning of + * the XPC message. The user then constructs a message in the payload area + * and passes that pointer as an argument on xpc_send() or xpc_send_notify(). + * + * The size of a message entry (within a message queue) must be a cacheline + * sized multiple in order to facilitate the BTE transfer of messages from one + * message queue to another. A macro, XPC_MSG_SIZE(), is provided for the user + * that wants to fit as many msg entries as possible in a given memory size + * (e.g. a memory page). + */ +struct xpc_msg { + u8 flags; /* FOR XPC INTERNAL USE ONLY */ + u8 reserved[7]; /* FOR XPC INTERNAL USE ONLY */ + s64 number; /* FOR XPC INTERNAL USE ONLY */ + + u64 payload; /* user defined portion of message */ +}; + + +#define XPC_MSG_PAYLOAD_OFFSET (u64) (&((struct xpc_msg *)0)->payload) +#define XPC_MSG_SIZE(_payload_size) \ + L1_CACHE_ALIGN(XPC_MSG_PAYLOAD_OFFSET + (_payload_size)) + + +/* + * Define the return values and values passed to user's callout functions. + * (It is important to add new value codes at the end just preceding + * xpcUnknownReason, which must have the highest numerical value.) + */ +enum xpc_retval { + xpcSuccess = 0, + + xpcNotConnected, /* 1: channel is not connected */ + xpcConnected, /* 2: channel connected (opened) */ + xpcRETIRED1, /* 3: (formerly xpcDisconnected) */ + + xpcMsgReceived, /* 4: message received */ + xpcMsgDelivered, /* 5: message delivered and acknowledged */ + + xpcRETIRED2, /* 6: (formerly xpcTransferFailed) */ + + xpcNoWait, /* 7: operation would require wait */ + xpcRetry, /* 8: retry operation */ + xpcTimeout, /* 9: timeout in xpc_allocate_msg_wait() */ + xpcInterrupted, /* 10: interrupted wait */ + + xpcUnequalMsgSizes, /* 11: message size disparity between sides */ + xpcInvalidAddress, /* 12: invalid address */ + + xpcNoMemory, /* 13: no memory available for XPC structures */ + xpcLackOfResources, /* 14: insufficient resources for operation */ + xpcUnregistered, /* 15: channel is not registered */ + xpcAlreadyRegistered, /* 16: channel is already registered */ + + xpcPartitionDown, /* 17: remote partition is down */ + xpcNotLoaded, /* 18: XPC module is not loaded */ + xpcUnloading, /* 19: this side is unloading XPC module */ + + xpcBadMagic, /* 20: XPC MAGIC string not found */ + + xpcReactivating, /* 21: remote partition was reactivated */ + + xpcUnregistering, /* 22: this side is unregistering channel */ + xpcOtherUnregistering, /* 23: other side is unregistering channel */ + + xpcCloneKThread, /* 24: cloning kernel thread */ + xpcCloneKThreadFailed, /* 25: cloning kernel thread failed */ + + xpcNoHeartbeat, /* 26: remote partition has no heartbeat */ + + xpcPioReadError, /* 27: PIO read error */ + xpcPhysAddrRegFailed, /* 28: registration of phys addr range failed */ + + xpcBteDirectoryError, /* 29: maps to BTEFAIL_DIR */ + xpcBtePoisonError, /* 30: maps to BTEFAIL_POISON */ + xpcBteWriteError, /* 31: maps to BTEFAIL_WERR */ + xpcBteAccessError, /* 32: maps to BTEFAIL_ACCESS */ + xpcBtePWriteError, /* 33: maps to BTEFAIL_PWERR */ + xpcBtePReadError, /* 34: maps to BTEFAIL_PRERR */ + xpcBteTimeOutError, /* 35: maps to BTEFAIL_TOUT */ + xpcBteXtalkError, /* 36: maps to BTEFAIL_XTERR */ + xpcBteNotAvailable, /* 37: maps to BTEFAIL_NOTAVAIL */ + xpcBteUnmappedError, /* 38: unmapped BTEFAIL_ error */ + + xpcBadVersion, /* 39: bad version number */ + xpcVarsNotSet, /* 40: the XPC variables are not set up */ + xpcNoRsvdPageAddr, /* 41: unable to get rsvd page's phys addr */ + xpcInvalidPartid, /* 42: invalid partition ID */ + xpcLocalPartid, /* 43: local partition ID */ + + xpcUnknownReason /* 44: unknown reason -- must be last in list */ +}; + + +/* + * Define the callout function types used by XPC to update the user on + * connection activity and state changes (via the user function registered by + * xpc_connect()) and to notify them of messages received and delivered (via + * the user function registered by xpc_send_notify()). + * + * The two function types are xpc_channel_func and xpc_notify_func and + * both share the following arguments, with the exception of "data", which + * only xpc_channel_func has. + * + * Arguments: + * + * reason - reason code. (See following table.) + * partid - partition ID associated with condition. + * ch_number - channel # associated with condition. + * data - pointer to optional data. (See following table.) + * key - pointer to optional user-defined value provided as the "key" + * argument to xpc_connect() or xpc_send_notify(). + * + * In the following table the "Optional Data" column applies to callouts made + * to functions registered by xpc_connect(). A "NA" in that column indicates + * that this reason code can be passed to functions registered by + * xpc_send_notify() (i.e. they don't have data arguments). + * + * Also, the first three reason codes in the following table indicate + * success, whereas the others indicate failure. When a failure reason code + * is received, one can assume that the channel is not connected. + * + * + * Reason Code | Cause | Optional Data + * =====================+================================+===================== + * xpcConnected | connection has been established| max #of entries + * | to the specified partition on | allowed in message + * | the specified channel | queue + * ---------------------+--------------------------------+--------------------- + * xpcMsgReceived | an XPC message arrived from | address of payload + * | the specified partition on the | + * | specified channel | [the user must call + * | | xpc_received() when + * | | finished with the + * | | payload] + * ---------------------+--------------------------------+--------------------- + * xpcMsgDelivered | notification that the message | NA + * | was delivered to the intended | + * | recipient and that they have | + * | acknowledged its receipt by | + * | calling xpc_received() | + * =====================+================================+===================== + * xpcUnequalMsgSizes | can't connect to the specified | NULL + * | partition on the specified | + * | channel because of mismatched | + * | message sizes | + * ---------------------+--------------------------------+--------------------- + * xpcNoMemory | insufficient memory avaiable | NULL + * | to allocate message queue | + * ---------------------+--------------------------------+--------------------- + * xpcLackOfResources | lack of resources to create | NULL + * | the necessary kthreads to | + * | support the channel | + * ---------------------+--------------------------------+--------------------- + * xpcUnregistering | this side's user has | NULL or NA + * | unregistered by calling | + * | xpc_disconnect() | + * ---------------------+--------------------------------+--------------------- + * xpcOtherUnregistering| the other side's user has | NULL or NA + * | unregistered by calling | + * | xpc_disconnect() | + * ---------------------+--------------------------------+--------------------- + * xpcNoHeartbeat | the other side's XPC is no | NULL or NA + * | longer heartbeating | + * | | + * ---------------------+--------------------------------+--------------------- + * xpcUnloading | this side's XPC module is | NULL or NA + * | being unloaded | + * | | + * ---------------------+--------------------------------+--------------------- + * xpcOtherUnloading | the other side's XPC module is | NULL or NA + * | is being unloaded | + * | | + * ---------------------+--------------------------------+--------------------- + * xpcPioReadError | xp_nofault_PIOR() returned an | NULL or NA + * | error while sending an IPI | + * | | + * ---------------------+--------------------------------+--------------------- + * xpcInvalidAddress | the address either received or | NULL or NA + * | sent by the specified partition| + * | is invalid | + * ---------------------+--------------------------------+--------------------- + * xpcBteNotAvailable | attempt to pull data from the | NULL or NA + * xpcBtePoisonError | specified partition over the | + * xpcBteWriteError | specified channel via a | + * xpcBteAccessError | bte_copy() failed | + * xpcBteTimeOutError | | + * xpcBteXtalkError | | + * xpcBteDirectoryError | | + * xpcBteGenericError | | + * xpcBteUnmappedError | | + * ---------------------+--------------------------------+--------------------- + * xpcUnknownReason | the specified channel to the | NULL or NA + * | specified partition was | + * | unavailable for unknown reasons| + * =====================+================================+===================== + */ + +typedef void (*xpc_channel_func)(enum xpc_retval reason, partid_t partid, + int ch_number, void *data, void *key); + +typedef void (*xpc_notify_func)(enum xpc_retval reason, partid_t partid, + int ch_number, void *key); + + +/* + * The following is a registration entry. There is a global array of these, + * one per channel. It is used to record the connection registration made + * by the users of XPC. As long as a registration entry exists, for any + * partition that comes up, XPC will attempt to establish a connection on + * that channel. Notification that a connection has been made will occur via + * the xpc_channel_func function. + * + * The 'func' field points to the function to call when aynchronous + * notification is required for such events as: a connection established/lost, + * or an incomming message received, or an error condition encountered. A + * non-NULL 'func' field indicates that there is an active registration for + * the channel. + */ +struct xpc_registration { + struct semaphore sema; + xpc_channel_func func; /* function to call */ + void *key; /* pointer to user's key */ + u16 nentries; /* #of msg entries in local msg queue */ + u16 msg_size; /* message queue's message size */ + u32 assigned_limit; /* limit on #of assigned kthreads */ + u32 idle_limit; /* limit on #of idle kthreads */ +} ____cacheline_aligned; + + +#define XPC_CHANNEL_REGISTERED(_c) (xpc_registrations[_c].func != NULL) + + +/* the following are valid xpc_allocate() flags */ +#define XPC_WAIT 0 /* wait flag */ +#define XPC_NOWAIT 1 /* no wait flag */ + + +struct xpc_interface { + void (*connect)(int); + void (*disconnect)(int); + enum xpc_retval (*allocate)(partid_t, int, u32, void **); + enum xpc_retval (*send)(partid_t, int, void *); + enum xpc_retval (*send_notify)(partid_t, int, void *, + xpc_notify_func, void *); + void (*received)(partid_t, int, void *); + enum xpc_retval (*partid_to_nasids)(partid_t, void *); +}; + + +extern struct xpc_interface xpc_interface; + +extern void xpc_set_interface(void (*)(int), + void (*)(int), + enum xpc_retval (*)(partid_t, int, u32, void **), + enum xpc_retval (*)(partid_t, int, void *), + enum xpc_retval (*)(partid_t, int, void *, xpc_notify_func, + void *), + void (*)(partid_t, int, void *), + enum xpc_retval (*)(partid_t, void *)); +extern void xpc_clear_interface(void); + + +extern enum xpc_retval xpc_connect(int, xpc_channel_func, void *, u16, + u16, u32, u32); +extern void xpc_disconnect(int); + +static inline enum xpc_retval +xpc_allocate(partid_t partid, int ch_number, u32 flags, void **payload) +{ + return xpc_interface.allocate(partid, ch_number, flags, payload); +} + +static inline enum xpc_retval +xpc_send(partid_t partid, int ch_number, void *payload) +{ + return xpc_interface.send(partid, ch_number, payload); +} + +static inline enum xpc_retval +xpc_send_notify(partid_t partid, int ch_number, void *payload, + xpc_notify_func func, void *key) +{ + return xpc_interface.send_notify(partid, ch_number, payload, func, key); +} + +static inline void +xpc_received(partid_t partid, int ch_number, void *payload) +{ + return xpc_interface.received(partid, ch_number, payload); +} + +static inline enum xpc_retval +xpc_partid_to_nasids(partid_t partid, void *nasids) +{ + return xpc_interface.partid_to_nasids(partid, nasids); +} + + +extern u64 xp_nofault_PIOR_target; +extern int xp_nofault_PIOR(void *); +extern int xp_error_PIOR(void); + + +#endif /* _ASM_IA64_SN_XP_H */ + diff --git a/kernel/exit.c b/kernel/exit.c index 7be283d98983..edaa50b5bbfa 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -846,6 +846,8 @@ fastcall NORET_TYPE void do_exit(long code) for (;;) ; } +EXPORT_SYMBOL_GPL(do_exit); + NORET_TYPE void complete_and_exit(struct completion *comp, long code) { if (comp) diff --git a/mm/page_alloc.c b/mm/page_alloc.c index fc1b1064c505..b1061b1962f8 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -43,7 +43,9 @@ * initializer cleaner */ nodemask_t node_online_map = { { [0] = 1UL } }; +EXPORT_SYMBOL(node_online_map); nodemask_t node_possible_map = NODE_MASK_ALL; +EXPORT_SYMBOL(node_possible_map); struct pglist_data *pgdat_list; unsigned long totalram_pages; unsigned long totalhigh_pages; |