summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-05-20 10:23:39 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2024-05-20 10:23:39 -0700
commitdaa121128a2d2ac6006159e2c47676e4fcd21eab (patch)
tree92f5ebb4ebc9be3535c5c3905ba40ab68cbdf964
parent6e51b4b5bbc07e52b226017936874715629932d1 (diff)
parenta6016aac5252da9d22a4dc0b98121b0acdf6d2f5 (diff)
downloadlinux-daa121128a2d2ac6006159e2c47676e4fcd21eab.tar.gz
linux-daa121128a2d2ac6006159e2c47676e4fcd21eab.tar.bz2
linux-daa121128a2d2ac6006159e2c47676e4fcd21eab.zip
Merge tag 'dma-mapping-6.10-2024-05-20' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig: - optimize DMA sync calls when they are no-ops (Alexander Lobakin) - fix swiotlb padding for untrusted devices (Michael Kelley) - add documentation for swiotb (Michael Kelley) * tag 'dma-mapping-6.10-2024-05-20' of git://git.infradead.org/users/hch/dma-mapping: dma: fix DMA sync for drivers not calling dma_set_mask*() xsk: use generic DMA sync shortcut instead of a custom one page_pool: check for DMA sync shortcut earlier page_pool: don't use driver-set flags field directly page_pool: make sure frag API fields don't span between cachelines iommu/dma: avoid expensive indirect calls for sync operations dma: avoid redundant calls for sync operations dma: compile-out DMA sync op calls when not used iommu/dma: fix zeroing of bounce buffer padding used by untrusted devices swiotlb: remove alloc_size argument to swiotlb_tbl_map_single() Documentation/core-api: add swiotlb documentation
-rw-r--r--Documentation/core-api/index.rst1
-rw-r--r--Documentation/core-api/swiotlb.rst321
-rw-r--r--drivers/iommu/dma-iommu.c34
-rw-r--r--drivers/net/ethernet/engleder/tsnep_main.c2
-rw-r--r--drivers/net/ethernet/freescale/dpaa2/dpaa2-xsk.c2
-rw-r--r--drivers/net/ethernet/intel/i40e/i40e_xsk.c2
-rw-r--r--drivers/net/ethernet/intel/ice/ice_xsk.c2
-rw-r--r--drivers/net/ethernet/intel/igc/igc_main.c2
-rw-r--r--drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c2
-rw-r--r--drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c4
-rw-r--r--drivers/net/ethernet/mellanox/mlx5/core/en_rx.c2
-rw-r--r--drivers/net/ethernet/netronome/nfp/nfd3/xsk.c2
-rw-r--r--drivers/net/ethernet/stmicro/stmmac/stmmac_main.c2
-rw-r--r--drivers/xen/swiotlb-xen.c2
-rw-r--r--include/linux/device.h4
-rw-r--r--include/linux/dma-map-ops.h12
-rw-r--r--include/linux/dma-mapping.h105
-rw-r--r--include/linux/iova.h5
-rw-r--r--include/linux/swiotlb.h2
-rw-r--r--include/net/page_pool/types.h25
-rw-r--r--include/net/xdp_sock_drv.h7
-rw-r--r--include/net/xsk_buff_pool.h14
-rw-r--r--kernel/dma/Kconfig5
-rw-r--r--kernel/dma/mapping.c69
-rw-r--r--kernel/dma/swiotlb.c62
-rw-r--r--net/core/page_pool.c78
-rw-r--r--net/xdp/xsk_buff_pool.c29
27 files changed, 634 insertions, 163 deletions
diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst
index 7a3a08d81f11..89c517665763 100644
--- a/Documentation/core-api/index.rst
+++ b/Documentation/core-api/index.rst
@@ -102,6 +102,7 @@ more memory-management documentation in Documentation/mm/index.rst.
dma-api-howto
dma-attributes
dma-isa-lpc
+ swiotlb
mm-api
genalloc
pin_user_pages
diff --git a/Documentation/core-api/swiotlb.rst b/Documentation/core-api/swiotlb.rst
new file mode 100644
index 000000000000..5ad2c9ca85bc
--- /dev/null
+++ b/Documentation/core-api/swiotlb.rst
@@ -0,0 +1,321 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+DMA and swiotlb
+===============
+
+swiotlb is a memory buffer allocator used by the Linux kernel DMA layer. It is
+typically used when a device doing DMA can't directly access the target memory
+buffer because of hardware limitations or other requirements. In such a case,
+the DMA layer calls swiotlb to allocate a temporary memory buffer that conforms
+to the limitations. The DMA is done to/from this temporary memory buffer, and
+the CPU copies the data between the temporary buffer and the original target
+memory buffer. This approach is generically called "bounce buffering", and the
+temporary memory buffer is called a "bounce buffer".
+
+Device drivers don't interact directly with swiotlb. Instead, drivers inform
+the DMA layer of the DMA attributes of the devices they are managing, and use
+the normal DMA map, unmap, and sync APIs when programming a device to do DMA.
+These APIs use the device DMA attributes and kernel-wide settings to determine
+if bounce buffering is necessary. If so, the DMA layer manages the allocation,
+freeing, and sync'ing of bounce buffers. Since the DMA attributes are per
+device, some devices in a system may use bounce buffering while others do not.
+
+Because the CPU copies data between the bounce buffer and the original target
+memory buffer, doing bounce buffering is slower than doing DMA directly to the
+original memory buffer, and it consumes more CPU resources. So it is used only
+when necessary for providing DMA functionality.
+
+Usage Scenarios
+---------------
+swiotlb was originally created to handle DMA for devices with addressing
+limitations. As physical memory sizes grew beyond 4 GiB, some devices could
+only provide 32-bit DMA addresses. By allocating bounce buffer memory below
+the 4 GiB line, these devices with addressing limitations could still work and
+do DMA.
+
+More recently, Confidential Computing (CoCo) VMs have the guest VM's memory
+encrypted by default, and the memory is not accessible by the host hypervisor
+and VMM. For the host to do I/O on behalf of the guest, the I/O must be
+directed to guest memory that is unencrypted. CoCo VMs set a kernel-wide option
+to force all DMA I/O to use bounce buffers, and the bounce buffer memory is set
+up as unencrypted. The host does DMA I/O to/from the bounce buffer memory, and
+the Linux kernel DMA layer does "sync" operations to cause the CPU to copy the
+data to/from the original target memory buffer. The CPU copying bridges between
+the unencrypted and the encrypted memory. This use of bounce buffers allows
+device drivers to "just work" in a CoCo VM, with no modifications
+needed to handle the memory encryption complexity.
+
+Other edge case scenarios arise for bounce buffers. For example, when IOMMU
+mappings are set up for a DMA operation to/from a device that is considered
+"untrusted", the device should be given access only to the memory containing
+the data being transferred. But if that memory occupies only part of an IOMMU
+granule, other parts of the granule may contain unrelated kernel data. Since
+IOMMU access control is per-granule, the untrusted device can gain access to
+the unrelated kernel data. This problem is solved by bounce buffering the DMA
+operation and ensuring that unused portions of the bounce buffers do not
+contain any unrelated kernel data.
+
+Core Functionality
+------------------
+The primary swiotlb APIs are swiotlb_tbl_map_single() and
+swiotlb_tbl_unmap_single(). The "map" API allocates a bounce buffer of a
+specified size in bytes and returns the physical address of the buffer. The
+buffer memory is physically contiguous. The expectation is that the DMA layer
+maps the physical memory address to a DMA address, and returns the DMA address
+to the driver for programming into the device. If a DMA operation specifies
+multiple memory buffer segments, a separate bounce buffer must be allocated for
+each segment. swiotlb_tbl_map_single() always does a "sync" operation (i.e., a
+CPU copy) to initialize the bounce buffer to match the contents of the original
+buffer.
+
+swiotlb_tbl_unmap_single() does the reverse. If the DMA operation might have
+updated the bounce buffer memory and DMA_ATTR_SKIP_CPU_SYNC is not set, the
+unmap does a "sync" operation to cause a CPU copy of the data from the bounce
+buffer back to the original buffer. Then the bounce buffer memory is freed.
+
+swiotlb also provides "sync" APIs that correspond to the dma_sync_*() APIs that
+a driver may use when control of a buffer transitions between the CPU and the
+device. The swiotlb "sync" APIs cause a CPU copy of the data between the
+original buffer and the bounce buffer. Like the dma_sync_*() APIs, the swiotlb
+"sync" APIs support doing a partial sync, where only a subset of the bounce
+buffer is copied to/from the original buffer.
+
+Core Functionality Constraints
+------------------------------
+The swiotlb map/unmap/sync APIs must operate without blocking, as they are
+called by the corresponding DMA APIs which may run in contexts that cannot
+block. Hence the default memory pool for swiotlb allocations must be
+pre-allocated at boot time (but see Dynamic swiotlb below). Because swiotlb
+allocations must be physically contiguous, the entire default memory pool is
+allocated as a single contiguous block.
+
+The need to pre-allocate the default swiotlb pool creates a boot-time tradeoff.
+The pool should be large enough to ensure that bounce buffer requests can
+always be satisfied, as the non-blocking requirement means requests can't wait
+for space to become available. But a large pool potentially wastes memory, as
+this pre-allocated memory is not available for other uses in the system. The
+tradeoff is particularly acute in CoCo VMs that use bounce buffers for all DMA
+I/O. These VMs use a heuristic to set the default pool size to ~6% of memory,
+with a max of 1 GiB, which has the potential to be very wasteful of memory.
+Conversely, the heuristic might produce a size that is insufficient, depending
+on the I/O patterns of the workload in the VM. The dynamic swiotlb feature
+described below can help, but has limitations. Better management of the swiotlb
+default memory pool size remains an open issue.
+
+A single allocation from swiotlb is limited to IO_TLB_SIZE * IO_TLB_SEGSIZE
+bytes, which is 256 KiB with current definitions. When a device's DMA settings
+are such that the device might use swiotlb, the maximum size of a DMA segment
+must be limited to that 256 KiB. This value is communicated to higher-level
+kernel code via dma_map_mapping_size() and swiotlb_max_mapping_size(). If the
+higher-level code fails to account for this limit, it may make requests that
+are too large for swiotlb, and get a "swiotlb full" error.
+
+A key device DMA setting is "min_align_mask", which is a power of 2 minus 1
+so that some number of low order bits are set, or it may be zero. swiotlb
+allocations ensure these min_align_mask bits of the physical address of the
+bounce buffer match the same bits in the address of the original buffer. When
+min_align_mask is non-zero, it may produce an "alignment offset" in the address
+of the bounce buffer that slightly reduces the maximum size of an allocation.
+This potential alignment offset is reflected in the value returned by
+swiotlb_max_mapping_size(), which can show up in places like
+/sys/block/<device>/queue/max_sectors_kb. For example, if a device does not use
+swiotlb, max_sectors_kb might be 512 KiB or larger. If a device might use
+swiotlb, max_sectors_kb will be 256 KiB. When min_align_mask is non-zero,
+max_sectors_kb might be even smaller, such as 252 KiB.
+
+swiotlb_tbl_map_single() also takes an "alloc_align_mask" parameter. This
+parameter specifies the allocation of bounce buffer space must start at a
+physical address with the alloc_align_mask bits set to zero. But the actual
+bounce buffer might start at a larger address if min_align_mask is non-zero.
+Hence there may be pre-padding space that is allocated prior to the start of
+the bounce buffer. Similarly, the end of the bounce buffer is rounded up to an
+alloc_align_mask boundary, potentially resulting in post-padding space. Any
+pre-padding or post-padding space is not initialized by swiotlb code. The
+"alloc_align_mask" parameter is used by IOMMU code when mapping for untrusted
+devices. It is set to the granule size - 1 so that the bounce buffer is
+allocated entirely from granules that are not used for any other purpose.
+
+Data structures concepts
+------------------------
+Memory used for swiotlb bounce buffers is allocated from overall system memory
+as one or more "pools". The default pool is allocated during system boot with a
+default size of 64 MiB. The default pool size may be modified with the
+"swiotlb=" kernel boot line parameter. The default size may also be adjusted
+due to other conditions, such as running in a CoCo VM, as described above. If
+CONFIG_SWIOTLB_DYNAMIC is enabled, additional pools may be allocated later in
+the life of the system. Each pool must be a contiguous range of physical
+memory. The default pool is allocated below the 4 GiB physical address line so
+it works for devices that can only address 32-bits of physical memory (unless
+architecture-specific code provides the SWIOTLB_ANY flag). In a CoCo VM, the
+pool memory must be decrypted before swiotlb is used.
+
+Each pool is divided into "slots" of size IO_TLB_SIZE, which is 2 KiB with
+current definitions. IO_TLB_SEGSIZE contiguous slots (128 slots) constitute
+what might be called a "slot set". When a bounce buffer is allocated, it
+occupies one or more contiguous slots. A slot is never shared by multiple
+bounce buffers. Furthermore, a bounce buffer must be allocated from a single
+slot set, which leads to the maximum bounce buffer size being IO_TLB_SIZE *
+IO_TLB_SEGSIZE. Multiple smaller bounce buffers may co-exist in a single slot
+set if the alignment and size constraints can be met.
+
+Slots are also grouped into "areas", with the constraint that a slot set exists
+entirely in a single area. Each area has its own spin lock that must be held to
+manipulate the slots in that area. The division into areas avoids contending
+for a single global spin lock when swiotlb is heavily used, such as in a CoCo
+VM. The number of areas defaults to the number of CPUs in the system for
+maximum parallelism, but since an area can't be smaller than IO_TLB_SEGSIZE
+slots, it might be necessary to assign multiple CPUs to the same area. The
+number of areas can also be set via the "swiotlb=" kernel boot parameter.
+
+When allocating a bounce buffer, if the area associated with the calling CPU
+does not have enough free space, areas associated with other CPUs are tried
+sequentially. For each area tried, the area's spin lock must be obtained before
+trying an allocation, so contention may occur if swiotlb is relatively busy
+overall. But an allocation request does not fail unless all areas do not have
+enough free space.
+
+IO_TLB_SIZE, IO_TLB_SEGSIZE, and the number of areas must all be powers of 2 as
+the code uses shifting and bit masking to do many of the calculations. The
+number of areas is rounded up to a power of 2 if necessary to meet this
+requirement.
+
+The default pool is allocated with PAGE_SIZE alignment. If an alloc_align_mask
+argument to swiotlb_tbl_map_single() specifies a larger alignment, one or more
+initial slots in each slot set might not meet the alloc_align_mask criterium.
+Because a bounce buffer allocation can't cross a slot set boundary, eliminating
+those initial slots effectively reduces the max size of a bounce buffer.
+Currently, there's no problem because alloc_align_mask is set based on IOMMU
+granule size, and granules cannot be larger than PAGE_SIZE. But if that were to
+change in the future, the initial pool allocation might need to be done with
+alignment larger than PAGE_SIZE.
+
+Dynamic swiotlb
+---------------
+When CONFIG_DYNAMIC_SWIOTLB is enabled, swiotlb can do on-demand expansion of
+the amount of memory available for allocation as bounce buffers. If a bounce
+buffer request fails due to lack of available space, an asynchronous background
+task is kicked off to allocate memory from general system memory and turn it
+into an swiotlb pool. Creating an additional pool must be done asynchronously
+because the memory allocation may block, and as noted above, swiotlb requests
+are not allowed to block. Once the background task is kicked off, the bounce
+buffer request creates a "transient pool" to avoid returning an "swiotlb full"
+error. A transient pool has the size of the bounce buffer request, and is
+deleted when the bounce buffer is freed. Memory for this transient pool comes
+from the general system memory atomic pool so that creation does not block.
+Creating a transient pool has relatively high cost, particularly in a CoCo VM
+where the memory must be decrypted, so it is done only as a stopgap until the
+background task can add another non-transient pool.
+
+Adding a dynamic pool has limitations. Like with the default pool, the memory
+must be physically contiguous, so the size is limited to MAX_PAGE_ORDER pages
+(e.g., 4 MiB on a typical x86 system). Due to memory fragmentation, a max size
+allocation may not be available. The dynamic pool allocator tries smaller sizes
+until it succeeds, but with a minimum size of 1 MiB. Given sufficient system
+memory fragmentation, dynamically adding a pool might not succeed at all.
+
+The number of areas in a dynamic pool may be different from the number of areas
+in the default pool. Because the new pool size is typically a few MiB at most,
+the number of areas will likely be smaller. For example, with a new pool size
+of 4 MiB and the 256 KiB minimum area size, only 16 areas can be created. If
+the system has more than 16 CPUs, multiple CPUs must share an area, creating
+more lock contention.
+
+New pools added via dynamic swiotlb are linked together in a linear list.
+swiotlb code frequently must search for the pool containing a particular
+swiotlb physical address, so that search is linear and not performant with a
+large number of dynamic pools. The data structures could be improved for
+faster searches.
+
+Overall, dynamic swiotlb works best for small configurations with relatively
+few CPUs. It allows the default swiotlb pool to be smaller so that memory is
+not wasted, with dynamic pools making more space available if needed (as long
+as fragmentation isn't an obstacle). It is less useful for large CoCo VMs.
+
+Data Structure Details
+----------------------
+swiotlb is managed with four primary data structures: io_tlb_mem, io_tlb_pool,
+io_tlb_area, and io_tlb_slot. io_tlb_mem describes a swiotlb memory allocator,
+which includes the default memory pool and any dynamic or transient pools
+linked to it. Limited statistics on swiotlb usage are kept per memory allocator
+and are stored in this data structure. These statistics are available under
+/sys/kernel/debug/swiotlb when CONFIG_DEBUG_FS is set.
+
+io_tlb_pool describes a memory pool, either the default pool, a dynamic pool,
+or a transient pool. The description includes the start and end addresses of
+the memory in the pool, a pointer to an array of io_tlb_area structures, and a
+pointer to an array of io_tlb_slot structures that are associated with the pool.
+
+io_tlb_area describes an area. The primary field is the spin lock used to
+serialize access to slots in the area. The io_tlb_area array for a pool has an
+entry for each area, and is accessed using a 0-based area index derived from the
+calling processor ID. Areas exist solely to allow parallel access to swiotlb
+from multiple CPUs.
+
+io_tlb_slot describes an individual memory slot in the pool, with size
+IO_TLB_SIZE (2 KiB currently). The io_tlb_slot array is indexed by the slot
+index computed from the bounce buffer address relative to the starting memory
+address of the pool. The size of struct io_tlb_slot is 24 bytes, so the
+overhead is about 1% of the slot size.
+
+The io_tlb_slot array is designed to meet several requirements. First, the DMA
+APIs and the corresponding swiotlb APIs use the bounce buffer address as the
+identifier for a bounce buffer. This address is returned by
+swiotlb_tbl_map_single(), and then passed as an argument to
+swiotlb_tbl_unmap_single() and the swiotlb_sync_*() functions. The original
+memory buffer address obviously must be passed as an argument to
+swiotlb_tbl_map_single(), but it is not passed to the other APIs. Consequently,
+swiotlb data structures must save the original memory buffer address so that it
+can be used when doing sync operations. This original address is saved in the
+io_tlb_slot array.
+
+Second, the io_tlb_slot array must handle partial sync requests. In such cases,
+the argument to swiotlb_sync_*() is not the address of the start of the bounce
+buffer but an address somewhere in the middle of the bounce buffer, and the
+address of the start of the bounce buffer isn't known to swiotlb code. But
+swiotlb code must be able to calculate the corresponding original memory buffer
+address to do the CPU copy dictated by the "sync". So an adjusted original
+memory buffer address is populated into the struct io_tlb_slot for each slot
+occupied by the bounce buffer. An adjusted "alloc_size" of the bounce buffer is
+also recorded in each struct io_tlb_slot so a sanity check can be performed on
+the size of the "sync" operation. The "alloc_size" field is not used except for
+the sanity check.
+
+Third, the io_tlb_slot array is used to track available slots. The "list" field
+in struct io_tlb_slot records how many contiguous available slots exist starting
+at that slot. A "0" indicates that the slot is occupied. A value of "1"
+indicates only the current slot is available. A value of "2" indicates the
+current slot and the next slot are available, etc. The maximum value is
+IO_TLB_SEGSIZE, which can appear in the first slot in a slot set, and indicates
+that the entire slot set is available. These values are used when searching for
+available slots to use for a new bounce buffer. They are updated when allocating
+a new bounce buffer and when freeing a bounce buffer. At pool creation time, the
+"list" field is initialized to IO_TLB_SEGSIZE down to 1 for the slots in every
+slot set.
+
+Fourth, the io_tlb_slot array keeps track of any "padding slots" allocated to
+meet alloc_align_mask requirements described above. When
+swiotlb_tlb_map_single() allocates bounce buffer space to meet alloc_align_mask
+requirements, it may allocate pre-padding space across zero or more slots. But
+when swiotbl_tlb_unmap_single() is called with the bounce buffer address, the
+alloc_align_mask value that governed the allocation, and therefore the
+allocation of any padding slots, is not known. The "pad_slots" field records
+the number of padding slots so that swiotlb_tbl_unmap_single() can free them.
+The "pad_slots" value is recorded only in the first non-padding slot allocated
+to the bounce buffer.
+
+Restricted pools
+----------------
+The swiotlb machinery is also used for "restricted pools", which are pools of
+memory separate from the default swiotlb pool, and that are dedicated for DMA
+use by a particular device. Restricted pools provide a level of DMA memory
+protection on systems with limited hardware protection capabilities, such as
+those lacking an IOMMU. Such usage is specified by DeviceTree entries and
+requires that CONFIG_DMA_RESTRICTED_POOL is set. Each restricted pool is based
+on its own io_tlb_mem data structure that is independent of the main swiotlb
+io_tlb_mem.
+
+Restricted pools add swiotlb_alloc() and swiotlb_free() APIs, which are called
+from the dma_alloc_*() and dma_free_*() APIs. The swiotlb_alloc/free() APIs
+allocate/free slots from/to the restricted pool directly and do not go through
+swiotlb_tbl_map/unmap_single().
diff --git a/drivers/iommu/dma-iommu.c b/drivers/iommu/dma-iommu.c
index eca1afa36508..f731e4b2a417 100644
--- a/drivers/iommu/dma-iommu.c
+++ b/drivers/iommu/dma-iommu.c
@@ -1152,9 +1152,6 @@ static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
*/
if (dev_use_swiotlb(dev, size, dir) &&
iova_offset(iovad, phys | size)) {
- void *padding_start;
- size_t padding_size, aligned_size;
-
if (!is_swiotlb_active(dev)) {
dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
return DMA_MAPPING_ERROR;
@@ -1162,24 +1159,30 @@ static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
trace_swiotlb_bounced(dev, phys, size);
- aligned_size = iova_align(iovad, size);
- phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
+ phys = swiotlb_tbl_map_single(dev, phys, size,
iova_mask(iovad), dir, attrs);
if (phys == DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
- /* Cleanup the padding area. */
- padding_start = phys_to_virt(phys);
- padding_size = aligned_size;
+ /*
+ * Untrusted devices should not see padding areas with random
+ * leftover kernel data, so zero the pre- and post-padding.
+ * swiotlb_tbl_map_single() has initialized the bounce buffer
+ * proper to the contents of the original memory buffer.
+ */
+ if (dev_is_untrusted(dev)) {
+ size_t start, virt = (size_t)phys_to_virt(phys);
- if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
- (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
- padding_start += size;
- padding_size -= size;
- }
+ /* Pre-padding */
+ start = iova_align_down(iovad, virt);
+ memset((void *)start, 0, virt - start);
- memset(padding_start, 0, padding_size);
+ /* Post-padding */
+ start = virt + size;
+ memset((void *)start, 0,
+ iova_align(iovad, start) - start);
+ }
}
if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
@@ -1718,7 +1721,8 @@ static size_t iommu_dma_max_mapping_size(struct device *dev)
}
static const struct dma_map_ops iommu_dma_ops = {
- .flags = DMA_F_PCI_P2PDMA_SUPPORTED,
+ .flags = DMA_F_PCI_P2PDMA_SUPPORTED |
+ DMA_F_CAN_SKIP_SYNC,
.alloc = iommu_dma_alloc,
.free = iommu_dma_free,
.alloc_pages_op = dma_common_alloc_pages,
diff --git a/drivers/net/ethernet/engleder/tsnep_main.c b/drivers/net/ethernet/engleder/tsnep_main.c
index 4b15af6b7122..44da335d66bd 100644
--- a/drivers/net/ethernet/engleder/tsnep_main.c
+++ b/drivers/net/ethernet/engleder/tsnep_main.c
@@ -1587,7 +1587,7 @@ static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
length = __le32_to_cpu(entry->desc_wb->properties) &
TSNEP_DESC_LENGTH_MASK;
xsk_buff_set_size(entry->xdp, length - ETH_FCS_LEN);
- xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(entry->xdp);
/* RX metadata with timestamps is in front of actual data,
* subtract metadata size to get length of actual data and
diff --git a/drivers/net/ethernet/freescale/dpaa2/dpaa2-xsk.c b/drivers/net/ethernet/freescale/dpaa2/dpaa2-xsk.c
index 051748b997f3..a466c2379146 100644
--- a/drivers/net/ethernet/freescale/dpaa2/dpaa2-xsk.c
+++ b/drivers/net/ethernet/freescale/dpaa2/dpaa2-xsk.c
@@ -55,7 +55,7 @@ static u32 dpaa2_xsk_run_xdp(struct dpaa2_eth_priv *priv,
xdp_set_data_meta_invalid(xdp_buff);
xdp_buff->rxq = &ch->xdp_rxq;
- xsk_buff_dma_sync_for_cpu(xdp_buff, ch->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(xdp_buff);
xdp_act = bpf_prog_run_xdp(xdp_prog, xdp_buff);
/* xdp.data pointer may have changed */
diff --git a/drivers/net/ethernet/intel/i40e/i40e_xsk.c b/drivers/net/ethernet/intel/i40e/i40e_xsk.c
index a85b425794df..4e885df789ef 100644
--- a/drivers/net/ethernet/intel/i40e/i40e_xsk.c
+++ b/drivers/net/ethernet/intel/i40e/i40e_xsk.c
@@ -482,7 +482,7 @@ int i40e_clean_rx_irq_zc(struct i40e_ring *rx_ring, int budget)
bi = *i40e_rx_bi(rx_ring, next_to_process);
xsk_buff_set_size(bi, size);
- xsk_buff_dma_sync_for_cpu(bi, rx_ring->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(bi);
if (!first)
first = bi;
diff --git a/drivers/net/ethernet/intel/ice/ice_xsk.c b/drivers/net/ethernet/intel/ice/ice_xsk.c
index aa81d1162b81..7541f223bf4f 100644
--- a/drivers/net/ethernet/intel/ice/ice_xsk.c
+++ b/drivers/net/ethernet/intel/ice/ice_xsk.c
@@ -878,7 +878,7 @@ int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
ICE_RX_FLX_DESC_PKT_LEN_M;
xsk_buff_set_size(xdp, size);
- xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
+ xsk_buff_dma_sync_for_cpu(xdp);
if (!first) {
first = xdp;
diff --git a/drivers/net/ethernet/intel/igc/igc_main.c b/drivers/net/ethernet/intel/igc/igc_main.c
index b5bcabab7a1d..12f004f46082 100644
--- a/drivers/net/ethernet/intel/igc/igc_main.c
+++ b/drivers/net/ethernet/intel/igc/igc_main.c
@@ -2812,7 +2812,7 @@ static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
}
bi->xdp->data_end = bi->xdp->data + size;
- xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(bi->xdp);
res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
switch (res) {
diff --git a/drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c b/drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c
index 397cb773fabb..3e3b471e53f0 100644
--- a/drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c
+++ b/drivers/net/ethernet/intel/ixgbe/ixgbe_xsk.c
@@ -303,7 +303,7 @@ int ixgbe_clean_rx_irq_zc(struct ixgbe_q_vector *q_vector,
}
bi->xdp->data_end = bi->xdp->data + size;
- xsk_buff_dma_sync_for_cpu(bi->xdp, rx_ring->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(bi->xdp);
xdp_res = ixgbe_run_xdp_zc(adapter, rx_ring, bi->xdp);
if (likely(xdp_res & (IXGBE_XDP_TX | IXGBE_XDP_REDIR))) {
diff --git a/drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c b/drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c
index b8dd74453655..1b7132fa70de 100644
--- a/drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c
+++ b/drivers/net/ethernet/mellanox/mlx5/core/en/xsk/rx.c
@@ -270,7 +270,7 @@ struct sk_buff *mlx5e_xsk_skb_from_cqe_mpwrq_linear(struct mlx5e_rq *rq,
/* mxbuf->rq is set on allocation, but cqe is per-packet so set it here */
mxbuf->cqe = cqe;
xsk_buff_set_size(&mxbuf->xdp, cqe_bcnt);
- xsk_buff_dma_sync_for_cpu(&mxbuf->xdp, rq->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(&mxbuf->xdp);
net_prefetch(mxbuf->xdp.data);
/* Possible flows:
@@ -319,7 +319,7 @@ struct sk_buff *mlx5e_xsk_skb_from_cqe_linear(struct mlx5e_rq *rq,
/* mxbuf->rq is set on allocation, but cqe is per-packet so set it here */
mxbuf->cqe = cqe;
xsk_buff_set_size(&mxbuf->xdp, cqe_bcnt);
- xsk_buff_dma_sync_for_cpu(&mxbuf->xdp, rq->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(&mxbuf->xdp);
net_prefetch(mxbuf->xdp.data);
prog = rcu_dereference(rq->xdp_prog);
diff --git a/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c b/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
index d601b5faaed5..b5333da20e8a 100644
--- a/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
+++ b/drivers/net/ethernet/mellanox/mlx5/core/en_rx.c
@@ -917,7 +917,7 @@ INDIRECT_CALLABLE_SCOPE bool mlx5e_post_rx_wqes(struct mlx5e_rq *rq)
if (!rq->xsk_pool) {
count = mlx5e_refill_rx_wqes(rq, head, wqe_bulk);
- } else if (likely(!rq->xsk_pool->dma_need_sync)) {
+ } else if (likely(!dma_dev_need_sync(rq->pdev))) {
mlx5e_xsk_free_rx_wqes(rq, head, wqe_bulk);
count = mlx5e_xsk_alloc_rx_wqes_batched(rq, head, wqe_bulk);
} else {
diff --git a/drivers/net/ethernet/netronome/nfp/nfd3/xsk.c b/drivers/net/ethernet/netronome/nfp/nfd3/xsk.c
index 45be6954d5aa..01cfa9cc1b5e 100644
--- a/drivers/net/ethernet/netronome/nfp/nfd3/xsk.c
+++ b/drivers/net/ethernet/netronome/nfp/nfd3/xsk.c
@@ -184,7 +184,7 @@ nfp_nfd3_xsk_rx(struct nfp_net_rx_ring *rx_ring, int budget,
xrxbuf->xdp->data += meta_len;
xrxbuf->xdp->data_end = xrxbuf->xdp->data + pkt_len;
xdp_set_data_meta_invalid(xrxbuf->xdp);
- xsk_buff_dma_sync_for_cpu(xrxbuf->xdp, r_vec->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(xrxbuf->xdp);
net_prefetch(xrxbuf->xdp->data);
if (meta_len) {
diff --git a/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c b/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
index 2e9a2da605f6..b3afc7cb7d72 100644
--- a/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
+++ b/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
@@ -5361,7 +5361,7 @@ read_again:
/* RX buffer is good and fit into a XSK pool buffer */
buf->xdp->data_end = buf->xdp->data + buf1_len;
- xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
+ xsk_buff_dma_sync_for_cpu(buf->xdp);
prog = READ_ONCE(priv->xdp_prog);
res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
diff --git a/drivers/xen/swiotlb-xen.c b/drivers/xen/swiotlb-xen.c
index 1c4ef5111651..6579ae3f6dac 100644
--- a/drivers/xen/swiotlb-xen.c
+++ b/drivers/xen/swiotlb-xen.c
@@ -216,7 +216,7 @@ static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
*/
trace_swiotlb_bounced(dev, dev_addr, size);
- map = swiotlb_tbl_map_single(dev, phys, size, size, 0, dir, attrs);
+ map = swiotlb_tbl_map_single(dev, phys, size, 0, dir, attrs);
if (map == (phys_addr_t)DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
diff --git a/include/linux/device.h b/include/linux/device.h
index b9f5464f44ed..d4b50accff26 100644
--- a/include/linux/device.h
+++ b/include/linux/device.h
@@ -691,6 +691,7 @@ struct device_physical_location {
* and optionall (if the coherent mask is large enough) also
* for dma allocations. This flag is managed by the dma ops
* instance from ->dma_supported.
+ * @dma_skip_sync: DMA sync operations can be skipped for coherent buffers.
*
* At the lowest level, every device in a Linux system is represented by an
* instance of struct device. The device structure contains the information
@@ -803,6 +804,9 @@ struct device {
#ifdef CONFIG_DMA_OPS_BYPASS
bool dma_ops_bypass : 1;
#endif
+#ifdef CONFIG_DMA_NEED_SYNC
+ bool dma_skip_sync:1;
+#endif
};
/**
diff --git a/include/linux/dma-map-ops.h b/include/linux/dma-map-ops.h
index bdb3abb77a87..02a1c825896b 100644
--- a/include/linux/dma-map-ops.h
+++ b/include/linux/dma-map-ops.h
@@ -18,8 +18,11 @@ struct iommu_ops;
*
* DMA_F_PCI_P2PDMA_SUPPORTED: Indicates the dma_map_ops implementation can
* handle PCI P2PDMA pages in the map_sg/unmap_sg operation.
+ * DMA_F_CAN_SKIP_SYNC: DMA sync operations can be skipped if the device is
+ * coherent and it's not an SWIOTLB buffer.
*/
#define DMA_F_PCI_P2PDMA_SUPPORTED (1 << 0)
+#define DMA_F_CAN_SKIP_SYNC (1 << 1)
struct dma_map_ops {
unsigned int flags;
@@ -273,6 +276,15 @@ static inline bool dev_is_dma_coherent(struct device *dev)
}
#endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
+static inline void dma_reset_need_sync(struct device *dev)
+{
+#ifdef CONFIG_DMA_NEED_SYNC
+ /* Reset it only once so that the function can be called on hotpath */
+ if (unlikely(dev->dma_skip_sync))
+ dev->dma_skip_sync = false;
+#endif
+}
+
/*
* Check whether potential kmalloc() buffers are safe for non-coherent DMA.
*/
diff --git a/include/linux/dma-mapping.h b/include/linux/dma-mapping.h
index 4a658de44ee9..f693aafe221f 100644
--- a/include/linux/dma-mapping.h
+++ b/include/linux/dma-mapping.h
@@ -117,14 +117,6 @@ dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
size_t size, enum dma_data_direction dir, unsigned long attrs);
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir, unsigned long attrs);
-void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
- enum dma_data_direction dir);
-void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
- size_t size, enum dma_data_direction dir);
-void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir);
-void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
- int nelems, enum dma_data_direction dir);
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, unsigned long attrs);
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
@@ -147,7 +139,6 @@ u64 dma_get_required_mask(struct device *dev);
bool dma_addressing_limited(struct device *dev);
size_t dma_max_mapping_size(struct device *dev);
size_t dma_opt_mapping_size(struct device *dev);
-bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
unsigned long dma_get_merge_boundary(struct device *dev);
struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
@@ -195,22 +186,6 @@ static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir, unsigned long attrs)
{
}
-static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
- size_t size, enum dma_data_direction dir)
-{
-}
-static inline void dma_sync_single_for_device(struct device *dev,
- dma_addr_t addr, size_t size, enum dma_data_direction dir)
-{
-}
-static inline void dma_sync_sg_for_cpu(struct device *dev,
- struct scatterlist *sg, int nelems, enum dma_data_direction dir)
-{
-}
-static inline void dma_sync_sg_for_device(struct device *dev,
- struct scatterlist *sg, int nelems, enum dma_data_direction dir)
-{
-}
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return -ENOMEM;
@@ -277,10 +252,6 @@ static inline size_t dma_opt_mapping_size(struct device *dev)
{
return 0;
}
-static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
-{
- return false;
-}
static inline unsigned long dma_get_merge_boundary(struct device *dev)
{
return 0;
@@ -310,6 +281,82 @@ static inline int dma_mmap_noncontiguous(struct device *dev,
}
#endif /* CONFIG_HAS_DMA */
+#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
+void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
+ enum dma_data_direction dir);
+void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
+ size_t size, enum dma_data_direction dir);
+void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
+ int nelems, enum dma_data_direction dir);
+void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
+ int nelems, enum dma_data_direction dir);
+bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr);
+
+static inline bool dma_dev_need_sync(const struct device *dev)
+{
+ /* Always call DMA sync operations when debugging is enabled */
+ return !dev->dma_skip_sync || IS_ENABLED(CONFIG_DMA_API_DEBUG);
+}
+
+static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
+ size_t size, enum dma_data_direction dir)
+{
+ if (dma_dev_need_sync(dev))
+ __dma_sync_single_for_cpu(dev, addr, size, dir);
+}
+
+static inline void dma_sync_single_for_device(struct device *dev,
+ dma_addr_t addr, size_t size, enum dma_data_direction dir)
+{
+ if (dma_dev_need_sync(dev))
+ __dma_sync_single_for_device(dev, addr, size, dir);
+}
+
+static inline void dma_sync_sg_for_cpu(struct device *dev,
+ struct scatterlist *sg, int nelems, enum dma_data_direction dir)
+{
+ if (dma_dev_need_sync(dev))
+ __dma_sync_sg_for_cpu(dev, sg, nelems, dir);
+}
+
+static inline void dma_sync_sg_for_device(struct device *dev,
+ struct scatterlist *sg, int nelems, enum dma_data_direction dir)
+{
+ if (dma_dev_need_sync(dev))
+ __dma_sync_sg_for_device(dev, sg, nelems, dir);
+}
+
+static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
+{
+ return dma_dev_need_sync(dev) ? __dma_need_sync(dev, dma_addr) : false;
+}
+#else /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
+static inline bool dma_dev_need_sync(const struct device *dev)
+{
+ return false;
+}
+static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
+ size_t size, enum dma_data_direction dir)
+{
+}
+static inline void dma_sync_single_for_device(struct device *dev,
+ dma_addr_t addr, size_t size, enum dma_data_direction dir)
+{
+}
+static inline void dma_sync_sg_for_cpu(struct device *dev,
+ struct scatterlist *sg, int nelems, enum dma_data_direction dir)
+{
+}
+static inline void dma_sync_sg_for_device(struct device *dev,
+ struct scatterlist *sg, int nelems, enum dma_data_direction dir)
+{
+}
+static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
+{
+ return false;
+}
+#endif /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
+
struct page *dma_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
void dma_free_pages(struct device *dev, size_t size, struct page *page,
diff --git a/include/linux/iova.h b/include/linux/iova.h
index 83c00fac2acb..d2c4fd923efa 100644
--- a/include/linux/iova.h
+++ b/include/linux/iova.h
@@ -65,6 +65,11 @@ static inline size_t iova_align(struct iova_domain *iovad, size_t size)
return ALIGN(size, iovad->granule);
}
+static inline size_t iova_align_down(struct iova_domain *iovad, size_t size)
+{
+ return ALIGN_DOWN(size, iovad->granule);
+}
+
static inline dma_addr_t iova_dma_addr(struct iova_domain *iovad, struct iova *iova)
{
return (dma_addr_t)iova->pfn_lo << iova_shift(iovad);
diff --git a/include/linux/swiotlb.h b/include/linux/swiotlb.h
index ea23097e351f..14bc10c1bb23 100644
--- a/include/linux/swiotlb.h
+++ b/include/linux/swiotlb.h
@@ -43,7 +43,7 @@ int swiotlb_init_late(size_t size, gfp_t gfp_mask,
extern void __init swiotlb_update_mem_attributes(void);
phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, phys_addr_t phys,
- size_t mapping_size, size_t alloc_size,
+ size_t mapping_size,
unsigned int alloc_aligned_mask, enum dma_data_direction dir,
unsigned long attrs);
diff --git a/include/net/page_pool/types.h b/include/net/page_pool/types.h
index a6ebed002216..b088d131aeb0 100644
--- a/include/net/page_pool/types.h
+++ b/include/net/page_pool/types.h
@@ -45,7 +45,6 @@ struct pp_alloc_cache {
/**
* struct page_pool_params - page pool parameters
- * @flags: PP_FLAG_DMA_MAP, PP_FLAG_DMA_SYNC_DEV
* @order: 2^order pages on allocation
* @pool_size: size of the ptr_ring
* @nid: NUMA node id to allocate from pages from
@@ -55,10 +54,11 @@ struct pp_alloc_cache {
* @dma_dir: DMA mapping direction
* @max_len: max DMA sync memory size for PP_FLAG_DMA_SYNC_DEV
* @offset: DMA sync address offset for PP_FLAG_DMA_SYNC_DEV
+ * @netdev: corresponding &net_device for Netlink introspection
+ * @flags: PP_FLAG_DMA_MAP, PP_FLAG_DMA_SYNC_DEV, PP_FLAG_SYSTEM_POOL
*/
struct page_pool_params {
struct_group_tagged(page_pool_params_fast, fast,
- unsigned int flags;
unsigned int order;
unsigned int pool_size;
int nid;
@@ -70,6 +70,7 @@ struct page_pool_params {
);
struct_group_tagged(page_pool_params_slow, slow,
struct net_device *netdev;
+ unsigned int flags;
/* private: used by test code only */
void (*init_callback)(struct page *page, void *arg);
void *init_arg;
@@ -130,12 +131,28 @@ struct page_pool {
struct page_pool_params_fast p;
int cpuid;
- bool has_init_callback;
+ u32 pages_state_hold_cnt;
+
+ bool has_init_callback:1; /* slow::init_callback is set */
+ bool dma_map:1; /* Perform DMA mapping */
+ bool dma_sync:1; /* Perform DMA sync */
+#ifdef CONFIG_PAGE_POOL_STATS
+ bool system:1; /* This is a global percpu pool */
+#endif
+ /* The following block must stay within one cacheline. On 32-bit
+ * systems, sizeof(long) == sizeof(int), so that the block size is
+ * ``3 * sizeof(long)``. On 64-bit systems, the actual size is
+ * ``2 * sizeof(long) + sizeof(int)``. The closest pow-2 to both of
+ * them is ``4 * sizeof(long)``, so just use that one for simplicity.
+ * Having it aligned to a cacheline boundary may be excessive and
+ * doesn't bring any good.
+ */
+ __cacheline_group_begin(frag) __aligned(4 * sizeof(long));
long frag_users;
struct page *frag_page;
unsigned int frag_offset;
- u32 pages_state_hold_cnt;
+ __cacheline_group_end(frag);
struct delayed_work release_dw;
void (*disconnect)(void *pool);
diff --git a/include/net/xdp_sock_drv.h b/include/net/xdp_sock_drv.h
index c9aec9ab6191..0a5dca2b2b3f 100644
--- a/include/net/xdp_sock_drv.h
+++ b/include/net/xdp_sock_drv.h
@@ -219,13 +219,10 @@ static inline struct xsk_tx_metadata *xsk_buff_get_metadata(struct xsk_buff_pool
return meta;
}
-static inline void xsk_buff_dma_sync_for_cpu(struct xdp_buff *xdp, struct xsk_buff_pool *pool)
+static inline void xsk_buff_dma_sync_for_cpu(struct xdp_buff *xdp)
{
struct xdp_buff_xsk *xskb = container_of(xdp, struct xdp_buff_xsk, xdp);
- if (!pool->dma_need_sync)
- return;
-
xp_dma_sync_for_cpu(xskb);
}
@@ -402,7 +399,7 @@ static inline struct xsk_tx_metadata *xsk_buff_get_metadata(struct xsk_buff_pool
return NULL;
}
-static inline void xsk_buff_dma_sync_for_cpu(struct xdp_buff *xdp, struct xsk_buff_pool *pool)
+static inline void xsk_buff_dma_sync_for_cpu(struct xdp_buff *xdp)
{
}
diff --git a/include/net/xsk_buff_pool.h b/include/net/xsk_buff_pool.h
index 99dd7376df6a..bacb33f1e3e5 100644
--- a/include/net/xsk_buff_pool.h
+++ b/include/net/xsk_buff_pool.h
@@ -43,7 +43,6 @@ struct xsk_dma_map {
refcount_t users;
struct list_head list; /* Protected by the RTNL_LOCK */
u32 dma_pages_cnt;
- bool dma_need_sync;
};
struct xsk_buff_pool {
@@ -82,7 +81,6 @@ struct xsk_buff_pool {
u8 tx_metadata_len; /* inherited from umem */
u8 cached_need_wakeup;
bool uses_need_wakeup;
- bool dma_need_sync;
bool unaligned;
bool tx_sw_csum;
void *addrs;
@@ -155,21 +153,17 @@ static inline dma_addr_t xp_get_frame_dma(struct xdp_buff_xsk *xskb)
return xskb->frame_dma;
}
-void xp_dma_sync_for_cpu_slow(struct xdp_buff_xsk *xskb);
static inline void xp_dma_sync_for_cpu(struct xdp_buff_xsk *xskb)
{
- xp_dma_sync_for_cpu_slow(xskb);
+ dma_sync_single_for_cpu(xskb->pool->dev, xskb->dma,
+ xskb->pool->frame_len,
+ DMA_BIDIRECTIONAL);
}
-void xp_dma_sync_for_device_slow(struct xsk_buff_pool *pool, dma_addr_t dma,
- size_t size);
static inline void xp_dma_sync_for_device(struct xsk_buff_pool *pool,
dma_addr_t dma, size_t size)
{
- if (!pool->dma_need_sync)
- return;
-
- xp_dma_sync_for_device_slow(pool, dma, size);
+ dma_sync_single_for_device(pool->dev, dma, size, DMA_BIDIRECTIONAL);
}
/* Masks for xdp_umem_page flags.
diff --git a/kernel/dma/Kconfig b/kernel/dma/Kconfig
index d62f5957f36b..c06e56be0ca1 100644
--- a/kernel/dma/Kconfig
+++ b/kernel/dma/Kconfig
@@ -107,6 +107,11 @@ config DMA_BOUNCE_UNALIGNED_KMALLOC
bool
depends on SWIOTLB
+config DMA_NEED_SYNC
+ def_bool ARCH_HAS_SYNC_DMA_FOR_DEVICE || ARCH_HAS_SYNC_DMA_FOR_CPU || \
+ ARCH_HAS_SYNC_DMA_FOR_CPU_ALL || DMA_API_DEBUG || DMA_OPS || \
+ SWIOTLB
+
config DMA_RESTRICTED_POOL
bool "DMA Restricted Pool"
depends on OF && OF_RESERVED_MEM && SWIOTLB
diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c
index 5e2d51e1cdf6..81de84318ccc 100644
--- a/kernel/dma/mapping.c
+++ b/kernel/dma/mapping.c
@@ -329,7 +329,8 @@ void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
}
EXPORT_SYMBOL(dma_unmap_resource);
-void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
+#ifdef CONFIG_DMA_NEED_SYNC
+void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
@@ -341,9 +342,9 @@ void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
ops->sync_single_for_cpu(dev, addr, size, dir);
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
}
-EXPORT_SYMBOL(dma_sync_single_for_cpu);
+EXPORT_SYMBOL(__dma_sync_single_for_cpu);
-void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
+void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
size_t size, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
@@ -355,9 +356,9 @@ void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
ops->sync_single_for_device(dev, addr, size, dir);
debug_dma_sync_single_for_device(dev, addr, size, dir);
}
-EXPORT_SYMBOL(dma_sync_single_for_device);
+EXPORT_SYMBOL(__dma_sync_single_for_device);
-void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
+void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
@@ -369,9 +370,9 @@ void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
}
-EXPORT_SYMBOL(dma_sync_sg_for_cpu);
+EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
-void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
+void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
@@ -383,7 +384,47 @@ void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
ops->sync_sg_for_device(dev, sg, nelems, dir);
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
}
-EXPORT_SYMBOL(dma_sync_sg_for_device);
+EXPORT_SYMBOL(__dma_sync_sg_for_device);
+
+bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
+{
+ const struct dma_map_ops *ops = get_dma_ops(dev);
+
+ if (dma_map_direct(dev, ops))
+ /*
+ * dma_skip_sync could've been reset on first SWIOTLB buffer
+ * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
+ * In this case, fall back to more granular check.
+ */
+ return dma_direct_need_sync(dev, dma_addr);
+ return true;
+}
+EXPORT_SYMBOL_GPL(__dma_need_sync);
+
+static void dma_setup_need_sync(struct device *dev)
+{
+ const struct dma_map_ops *ops = get_dma_ops(dev);
+
+ if (dma_map_direct(dev, ops) || (ops->flags & DMA_F_CAN_SKIP_SYNC))
+ /*
+ * dma_skip_sync will be reset to %false on first SWIOTLB buffer
+ * mapping, if any. During the device initialization, it's
+ * enough to check only for the DMA coherence.
+ */
+ dev->dma_skip_sync = dev_is_dma_coherent(dev);
+ else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
+ !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
+ /*
+ * Synchronization is not possible when none of DMA sync ops
+ * is set.
+ */
+ dev->dma_skip_sync = true;
+ else
+ dev->dma_skip_sync = false;
+}
+#else /* !CONFIG_DMA_NEED_SYNC */
+static inline void dma_setup_need_sync(struct device *dev) { }
+#endif /* !CONFIG_DMA_NEED_SYNC */
/*
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
@@ -773,6 +814,8 @@ int dma_set_mask(struct device *dev, u64 mask)
arch_dma_set_mask(dev, mask);
*dev->dma_mask = mask;
+ dma_setup_need_sync(dev);
+
return 0;
}
EXPORT_SYMBOL(dma_set_mask);
@@ -841,16 +884,6 @@ size_t dma_opt_mapping_size(struct device *dev)
}
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
-bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
-{
- const struct dma_map_ops *ops = get_dma_ops(dev);
-
- if (dma_map_direct(dev, ops))
- return dma_direct_need_sync(dev, dma_addr);
- return ops->sync_single_for_cpu || ops->sync_single_for_device;
-}
-EXPORT_SYMBOL_GPL(dma_need_sync);
-
unsigned long dma_get_merge_boundary(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c
index 0de66f0ff43a..fe1ccb53596f 100644
--- a/kernel/dma/swiotlb.c
+++ b/kernel/dma/swiotlb.c
@@ -1340,15 +1340,40 @@ static unsigned long mem_used(struct io_tlb_mem *mem)
#endif /* CONFIG_DEBUG_FS */
+/**
+ * swiotlb_tbl_map_single() - bounce buffer map a single contiguous physical area
+ * @dev: Device which maps the buffer.
+ * @orig_addr: Original (non-bounced) physical IO buffer address
+ * @mapping_size: Requested size of the actual bounce buffer, excluding
+ * any pre- or post-padding for alignment
+ * @alloc_align_mask: Required start and end alignment of the allocated buffer
+ * @dir: DMA direction
+ * @attrs: Optional DMA attributes for the map operation
+ *
+ * Find and allocate a suitable sequence of IO TLB slots for the request.
+ * The allocated space starts at an alignment specified by alloc_align_mask,
+ * and the size of the allocated space is rounded up so that the total amount
+ * of allocated space is a multiple of (alloc_align_mask + 1). If
+ * alloc_align_mask is zero, the allocated space may be at any alignment and
+ * the size is not rounded up.
+ *
+ * The returned address is within the allocated space and matches the bits
+ * of orig_addr that are specified in the DMA min_align_mask for the device. As
+ * such, this returned address may be offset from the beginning of the allocated
+ * space. The bounce buffer space starting at the returned address for
+ * mapping_size bytes is initialized to the contents of the original IO buffer
+ * area. Any pre-padding (due to an offset) and any post-padding (due to
+ * rounding-up the size) is not initialized.
+ */
phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
- size_t mapping_size, size_t alloc_size,
- unsigned int alloc_align_mask, enum dma_data_direction dir,
- unsigned long attrs)
+ size_t mapping_size, unsigned int alloc_align_mask,
+ enum dma_data_direction dir, unsigned long attrs)
{
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
unsigned int offset;
struct io_tlb_pool *pool;
unsigned int i;
+ size_t size;
int index;
phys_addr_t tlb_addr;
unsigned short pad_slots;
@@ -1362,24 +1387,34 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
- if (mapping_size > alloc_size) {
- dev_warn_once(dev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
- mapping_size, alloc_size);
- return (phys_addr_t)DMA_MAPPING_ERROR;
- }
+ /*
+ * The default swiotlb memory pool is allocated with PAGE_SIZE
+ * alignment. If a mapping is requested with larger alignment,
+ * the mapping may be unable to use the initial slot(s) in all
+ * sets of IO_TLB_SEGSIZE slots. In such case, a mapping request
+ * of or near the maximum mapping size would always fail.
+ */
+ dev_WARN_ONCE(dev, alloc_align_mask > ~PAGE_MASK,
+ "Alloc alignment may prevent fulfilling requests with max mapping_size\n");
offset = swiotlb_align_offset(dev, alloc_align_mask, orig_addr);
- index = swiotlb_find_slots(dev, orig_addr,
- alloc_size + offset, alloc_align_mask, &pool);
+ size = ALIGN(mapping_size + offset, alloc_align_mask + 1);
+ index = swiotlb_find_slots(dev, orig_addr, size, alloc_align_mask, &pool);
if (index == -1) {
if (!(attrs & DMA_ATTR_NO_WARN))
dev_warn_ratelimited(dev,
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
- alloc_size, mem->nslabs, mem_used(mem));
+ size, mem->nslabs, mem_used(mem));
return (phys_addr_t)DMA_MAPPING_ERROR;
}
/*
+ * If dma_skip_sync was set, reset it on first SWIOTLB buffer
+ * mapping to always sync SWIOTLB buffers.
+ */
+ dma_reset_need_sync(dev);
+
+ /*
* Save away the mapping from the original address to the DMA address.
* This is needed when we sync the memory. Then we sync the buffer if
* needed.
@@ -1388,7 +1423,7 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
offset &= (IO_TLB_SIZE - 1);
index += pad_slots;
pool->slots[index].pad_slots = pad_slots;
- for (i = 0; i < nr_slots(alloc_size + offset); i++)
+ for (i = 0; i < (nr_slots(size) - pad_slots); i++)
pool->slots[index + i].orig_addr = slot_addr(orig_addr, i);
tlb_addr = slot_addr(pool->start, index) + offset;
/*
@@ -1543,8 +1578,7 @@ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
trace_swiotlb_bounced(dev, phys_to_dma(dev, paddr), size);
- swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, size, 0, dir,
- attrs);
+ swiotlb_addr = swiotlb_tbl_map_single(dev, paddr, size, 0, dir, attrs);
if (swiotlb_addr == (phys_addr_t)DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
diff --git a/net/core/page_pool.c b/net/core/page_pool.c
index 8bcc7014a61a..f4444b4e39e6 100644
--- a/net/core/page_pool.c
+++ b/net/core/page_pool.c
@@ -173,19 +173,29 @@ static void page_pool_producer_unlock(struct page_pool *pool,
spin_unlock_bh(&pool->ring.producer_lock);
}
+static void page_pool_struct_check(void)
+{
+ CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users);
+ CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page);
+ CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset);
+ CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 4 * sizeof(long));
+}
+
static int page_pool_init(struct page_pool *pool,
const struct page_pool_params *params,
int cpuid)
{
unsigned int ring_qsize = 1024; /* Default */
+ page_pool_struct_check();
+
memcpy(&pool->p, &params->fast, sizeof(pool->p));
memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
pool->cpuid = cpuid;
/* Validate only known flags were used */
- if (pool->p.flags & ~(PP_FLAG_ALL))
+ if (pool->slow.flags & ~PP_FLAG_ALL)
return -EINVAL;
if (pool->p.pool_size)
@@ -199,22 +209,26 @@ static int page_pool_init(struct page_pool *pool,
* DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
* which is the XDP_TX use-case.
*/
- if (pool->p.flags & PP_FLAG_DMA_MAP) {
+ if (pool->slow.flags & PP_FLAG_DMA_MAP) {
if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
(pool->p.dma_dir != DMA_BIDIRECTIONAL))
return -EINVAL;
+
+ pool->dma_map = true;
}
- if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
+ if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) {
/* In order to request DMA-sync-for-device the page
* needs to be mapped
*/
- if (!(pool->p.flags & PP_FLAG_DMA_MAP))
+ if (!(pool->slow.flags & PP_FLAG_DMA_MAP))
return -EINVAL;
if (!pool->p.max_len)
return -EINVAL;
+ pool->dma_sync = true;
+
/* pool->p.offset has to be set according to the address
* offset used by the DMA engine to start copying rx data
*/
@@ -223,7 +237,7 @@ static int page_pool_init(struct page_pool *pool,
pool->has_init_callback = !!pool->slow.init_callback;
#ifdef CONFIG_PAGE_POOL_STATS
- if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL)) {
+ if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) {
pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
if (!pool->recycle_stats)
return -ENOMEM;
@@ -233,12 +247,13 @@ static int page_pool_init(struct page_pool *pool,
* (also percpu) page pool instance.
*/
pool->recycle_stats = &pp_system_recycle_stats;
+ pool->system = true;
}
#endif
if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
#ifdef CONFIG_PAGE_POOL_STATS
- if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL))
+ if (!pool->system)
free_percpu(pool->recycle_stats);
#endif
return -ENOMEM;
@@ -249,7 +264,7 @@ static int page_pool_init(struct page_pool *pool,
/* Driver calling page_pool_create() also call page_pool_destroy() */
refcount_set(&pool->user_cnt, 1);
- if (pool->p.flags & PP_FLAG_DMA_MAP)
+ if (pool->dma_map)
get_device(pool->p.dev);
return 0;
@@ -259,11 +274,11 @@ static void page_pool_uninit(struct page_pool *pool)
{
ptr_ring_cleanup(&pool->ring, NULL);
- if (pool->p.flags & PP_FLAG_DMA_MAP)
+ if (pool->dma_map)
put_device(pool->p.dev);
#ifdef CONFIG_PAGE_POOL_STATS
- if (!(pool->p.flags & PP_FLAG_SYSTEM_POOL))
+ if (!pool->system)
free_percpu(pool->recycle_stats);
#endif
}
@@ -384,16 +399,26 @@ static struct page *__page_pool_get_cached(struct page_pool *pool)
return page;
}
-static void page_pool_dma_sync_for_device(const struct page_pool *pool,
- const struct page *page,
- unsigned int dma_sync_size)
+static void __page_pool_dma_sync_for_device(const struct page_pool *pool,
+ const struct page *page,
+ u32 dma_sync_size)
{
+#if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
dma_addr_t dma_addr = page_pool_get_dma_addr(page);
dma_sync_size = min(dma_sync_size, pool->p.max_len);
- dma_sync_single_range_for_device(pool->p.dev, dma_addr,
- pool->p.offset, dma_sync_size,
- pool->p.dma_dir);
+ __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset,
+ dma_sync_size, pool->p.dma_dir);
+#endif
+}
+
+static __always_inline void
+page_pool_dma_sync_for_device(const struct page_pool *pool,
+ const struct page *page,
+ u32 dma_sync_size)
+{
+ if (pool->dma_sync && dma_dev_need_sync(pool->p.dev))
+ __page_pool_dma_sync_for_device(pool, page, dma_sync_size);
}
static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
@@ -415,8 +440,7 @@ static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
if (page_pool_set_dma_addr(page, dma))
goto unmap_failed;
- if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
- page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
+ page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
return true;
@@ -461,8 +485,7 @@ static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
if (unlikely(!page))
return NULL;
- if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
- unlikely(!page_pool_dma_map(pool, page))) {
+ if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page))) {
put_page(page);
return NULL;
}
@@ -482,8 +505,8 @@ static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
gfp_t gfp)
{
const int bulk = PP_ALLOC_CACHE_REFILL;
- unsigned int pp_flags = pool->p.flags;
unsigned int pp_order = pool->p.order;
+ bool dma_map = pool->dma_map;
struct page *page;
int i, nr_pages;
@@ -508,8 +531,7 @@ static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
*/
for (i = 0; i < nr_pages; i++) {
page = pool->alloc.cache[i];
- if ((pp_flags & PP_FLAG_DMA_MAP) &&
- unlikely(!page_pool_dma_map(pool, page))) {
+ if (dma_map && unlikely(!page_pool_dma_map(pool, page))) {
put_page(page);
continue;
}
@@ -582,7 +604,7 @@ void __page_pool_release_page_dma(struct page_pool *pool, struct page *page)
{
dma_addr_t dma;
- if (!(pool->p.flags & PP_FLAG_DMA_MAP))
+ if (!pool->dma_map)
/* Always account for inflight pages, even if we didn't
* map them
*/
@@ -665,7 +687,7 @@ static bool __page_pool_page_can_be_recycled(const struct page *page)
}
/* If the page refcnt == 1, this will try to recycle the page.
- * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
+ * If pool->dma_sync is set, we'll try to sync the DMA area for
* the configured size min(dma_sync_size, pool->max_len).
* If the page refcnt != 1, then the page will be returned to memory
* subsystem.
@@ -688,9 +710,7 @@ __page_pool_put_page(struct page_pool *pool, struct page *page,
if (likely(__page_pool_page_can_be_recycled(page))) {
/* Read barrier done in page_ref_count / READ_ONCE */
- if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
- page_pool_dma_sync_for_device(pool, page,
- dma_sync_size);
+ page_pool_dma_sync_for_device(pool, page, dma_sync_size);
if (allow_direct && page_pool_recycle_in_cache(page, pool))
return NULL;
@@ -829,9 +849,7 @@ static struct page *page_pool_drain_frag(struct page_pool *pool,
return NULL;
if (__page_pool_page_can_be_recycled(page)) {
- if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
- page_pool_dma_sync_for_device(pool, page, -1);
-
+ page_pool_dma_sync_for_device(pool, page, -1);
return page;
}
diff --git a/net/xdp/xsk_buff_pool.c b/net/xdp/xsk_buff_pool.c
index ce60ecd48a4d..c0e0204b9630 100644
--- a/net/xdp/xsk_buff_pool.c
+++ b/net/xdp/xsk_buff_pool.c
@@ -338,7 +338,6 @@ static struct xsk_dma_map *xp_create_dma_map(struct device *dev, struct net_devi
dma_map->netdev = netdev;
dma_map->dev = dev;
- dma_map->dma_need_sync = false;
dma_map->dma_pages_cnt = nr_pages;
refcount_set(&dma_map->users, 1);
list_add(&dma_map->list, &umem->xsk_dma_list);
@@ -424,7 +423,6 @@ static int xp_init_dma_info(struct xsk_buff_pool *pool, struct xsk_dma_map *dma_
pool->dev = dma_map->dev;
pool->dma_pages_cnt = dma_map->dma_pages_cnt;
- pool->dma_need_sync = dma_map->dma_need_sync;
memcpy(pool->dma_pages, dma_map->dma_pages,
pool->dma_pages_cnt * sizeof(*pool->dma_pages));
@@ -460,8 +458,6 @@ int xp_dma_map(struct xsk_buff_pool *pool, struct device *dev,
__xp_dma_unmap(dma_map, attrs);
return -ENOMEM;
}
- if (dma_need_sync(dev, dma))
- dma_map->dma_need_sync = true;
dma_map->dma_pages[i] = dma;
}
@@ -557,11 +553,9 @@ struct xdp_buff *xp_alloc(struct xsk_buff_pool *pool)
xskb->xdp.data_meta = xskb->xdp.data;
xskb->xdp.flags = 0;
- if (pool->dma_need_sync) {
- dma_sync_single_range_for_device(pool->dev, xskb->dma, 0,
- pool->frame_len,
- DMA_BIDIRECTIONAL);
- }
+ if (pool->dev)
+ xp_dma_sync_for_device(pool, xskb->dma, pool->frame_len);
+
return &xskb->xdp;
}
EXPORT_SYMBOL(xp_alloc);
@@ -633,7 +627,7 @@ u32 xp_alloc_batch(struct xsk_buff_pool *pool, struct xdp_buff **xdp, u32 max)
{
u32 nb_entries1 = 0, nb_entries2;
- if (unlikely(pool->dma_need_sync)) {
+ if (unlikely(pool->dev && dma_dev_need_sync(pool->dev))) {
struct xdp_buff *buff;
/* Slow path */
@@ -693,18 +687,3 @@ dma_addr_t xp_raw_get_dma(struct xsk_buff_pool *pool, u64 addr)
(addr & ~PAGE_MASK);
}
EXPORT_SYMBOL(xp_raw_get_dma);
-
-void xp_dma_sync_for_cpu_slow(struct xdp_buff_xsk *xskb)
-{
- dma_sync_single_range_for_cpu(xskb->pool->dev, xskb->dma, 0,
- xskb->pool->frame_len, DMA_BIDIRECTIONAL);
-}
-EXPORT_SYMBOL(xp_dma_sync_for_cpu_slow);
-
-void xp_dma_sync_for_device_slow(struct xsk_buff_pool *pool, dma_addr_t dma,
- size_t size)
-{
- dma_sync_single_range_for_device(pool->dev, dma, 0,
- size, DMA_BIDIRECTIONAL);
-}
-EXPORT_SYMBOL(xp_dma_sync_for_device_slow);