summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorFilipe Manana <fdmanana@suse.com>2019-12-05 16:57:39 +0000
committerDavid Sterba <dsterba@suse.com>2019-12-13 13:29:22 +0100
commitfcb970581dd900675c4371c2b688a57924a8368c (patch)
treef5f467acb3b261571f8dd468fbb7143c5b696a85
parent37d02592f11bb76e4ab1dcaa5b8a2a0715403207 (diff)
downloadlinux-fcb970581dd900675c4371c2b688a57924a8368c.tar.gz
linux-fcb970581dd900675c4371c2b688a57924a8368c.tar.bz2
linux-fcb970581dd900675c4371c2b688a57924a8368c.zip
Btrfs: fix cloning range with a hole when using the NO_HOLES feature
When using the NO_HOLES feature if we clone a range that contains a hole and a temporary ENOSPC happens while dropping extents from the target inode's range, we can end up failing and aborting the transaction with -EEXIST or with a corrupt file extent item, that has a length greater than it should and overlaps with other extents. For example when cloning the following range from inode A to inode B: Inode A: extent A1 extent A2 [ ----------- ] [ hole, implicit, 4MB length ] [ ------------- ] 0 1MB 5MB 6MB Range to clone: [1MB, 6MB) Inode B: extent B1 extent B2 extent B3 extent B4 [ ---------- ] [ --------- ] [ ---------- ] [ ---------- ] 0 1MB 1MB 2MB 2MB 5MB 5MB 6MB Target range: [1MB, 6MB) (same as source, to make it easier to explain) The following can happen: 1) btrfs_punch_hole_range() gets -ENOSPC from __btrfs_drop_extents(); 2) At that point, 'cur_offset' is set to 1MB and __btrfs_drop_extents() set 'drop_end' to 2MB, meaning it was able to drop only extent B2; 3) We then compute 'clone_len' as 'drop_end' - 'cur_offset' = 2MB - 1MB = 1MB; 4) We then attempt to insert a file extent item at inode B with a file offset of 5MB, which is the value of clone_info->file_offset. This fails with error -EEXIST because there's already an extent at that offset (extent B4); 5) We abort the current transaction with -EEXIST and return that error to user space as well. Another example, for extent corruption: Inode A: extent A1 extent A2 [ ----------- ] [ hole, implicit, 10MB length ] [ ------------- ] 0 1MB 11MB 12MB Inode B: extent B1 extent B2 [ ----------- ] [ --------- ] [ ----------------------------- ] 0 1MB 1MB 5MB 5MB 12MB Target range: [1MB, 12MB) (same as source, to make it easier to explain) 1) btrfs_punch_hole_range() gets -ENOSPC from __btrfs_drop_extents(); 2) At that point, 'cur_offset' is set to 1MB and __btrfs_drop_extents() set 'drop_end' to 5MB, meaning it was able to drop only extent B2; 3) We then compute 'clone_len' as 'drop_end' - 'cur_offset' = 5MB - 1MB = 4MB; 4) We then insert a file extent item at inode B with a file offset of 11MB which is the value of clone_info->file_offset, and a length of 4MB (the value of 'clone_len'). So we get 2 extents items with ranges that overlap and an extent length of 4MB, larger then the extent A2 from inode A (1MB length); 5) After that we end the transaction, balance the btree dirty pages and then start another or join the previous transaction. It might happen that the transaction which inserted the incorrect extent was committed by another task so we end up with extent corruption if a power failure happens. So fix this by making sure we attempt to insert the extent to clone at the destination inode only if we are past dropping the sub-range that corresponds to a hole. Fixes: 690a5dbfc51315 ("Btrfs: fix ENOSPC errors, leading to transaction aborts, when cloning extents") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-rw-r--r--fs/btrfs/file.c4
1 files changed, 2 insertions, 2 deletions
diff --git a/fs/btrfs/file.c b/fs/btrfs/file.c
index 0cb43b682789..8d47c76b7bd1 100644
--- a/fs/btrfs/file.c
+++ b/fs/btrfs/file.c
@@ -2599,8 +2599,8 @@ int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
}
}
- if (clone_info) {
- u64 clone_len = drop_end - cur_offset;
+ if (clone_info && drop_end > clone_info->file_offset) {
+ u64 clone_len = drop_end - clone_info->file_offset;
ret = btrfs_insert_clone_extent(trans, inode, path,
clone_info, clone_len);