summaryrefslogtreecommitdiffstats
path: root/Documentation/hid
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2020-12-16 15:44:44 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2020-12-16 15:44:44 -0800
commitde925e2fbb44eed8a2a7ce166b485fed5eae01aa (patch)
tree078ddd7b31e1cde13f554d741140c8f519cd8f90 /Documentation/hid
parent62746f92b10a4add6a7db87ff59b901276746b11 (diff)
parent85a694738f6e7ad36918a3fa0569701b102d06c2 (diff)
downloadlinux-de925e2fbb44eed8a2a7ce166b485fed5eae01aa.tar.gz
linux-de925e2fbb44eed8a2a7ce166b485fed5eae01aa.tar.bz2
linux-de925e2fbb44eed8a2a7ce166b485fed5eae01aa.zip
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
Pull HID updates from Jiri Kosina: - AMD SFH (Sensor Fusion Hub) support (Sandeep Singh) - increase of maximum HID report size to 16KB in order to support some of the modern devices (Dean Camera) - control interface support for hidraw (Dean Camera) - Sony DS4 power and firmware reporting fixes (Roderick Colenbrander) - support for ghlive PS3/WII U dongles (Pascal Giard) * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid: (27 commits) HID: i2c-hid: add Vero K147 to descriptor override HID: ite: Add support for Acer S1002 keyboard-dock HID: sony: support for ghlive ps3/wii u dongles HID: hidraw: Add additional hidraw input/output report ioctls. HID: Increase HID maximum report size to 16KB HID: elecom: drop stray comment HID: mf: add support for 0079:1846 Mayflash/Dragonrise USB Gamecube Adapter HID: elecom: add support for EX-G M-XGL20DLBK wireless mouse HID: elecom: rewrite report based on model specific parameters HID: wacom: Constify attribute_groups HID: input: Fix fall-through warnings for Clang HID: usbhid: Fix fall-through warnings for Clang HID: logitech-hidpp: Add hid_device_id for V470 bluetooth mouse HID: intel-ish-hid: Remove unnecessary assignment to variable rv HID: sony: Workaround for DS4 dongle hotplug kernel crash. HID: sony: Don't use fw_version/hw_version for sysfs cleanup. HID: sony: Report more accurate DS4 power status. SFH: fix error return check for -ERESTARTSYS HID: SFH: Add documentation HID: hid-input: occasionally report stylus battery even if not changed ...
Diffstat (limited to 'Documentation/hid')
-rw-r--r--Documentation/hid/amd-sfh-hid.rst145
-rw-r--r--Documentation/hid/hidraw.rst45
-rw-r--r--Documentation/hid/index.rst1
3 files changed, 189 insertions, 2 deletions
diff --git a/Documentation/hid/amd-sfh-hid.rst b/Documentation/hid/amd-sfh-hid.rst
new file mode 100644
index 000000000000..1f2fe29ccd4f
--- /dev/null
+++ b/Documentation/hid/amd-sfh-hid.rst
@@ -0,0 +1,145 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+
+AMD Sensor Fusion Hub
+=====================
+AMD Sensor Fusion Hub (SFH) is part of an SOC starting from Ryzen based platforms.
+The solution is working well on several OEM products. AMD SFH uses HID over PCIe bus.
+In terms of architecture it resembles ISH, however the major difference is all
+the HID reports are generated as part of the kernel driver.
+
+1. Block Diagram
+================
+
+::
+
+ ---------------------------------
+ | HID User Space Applications |
+ - -------------------------------
+
+ ---------------------------------------------
+ ---------------------------------
+ | HID Core |
+ ---------------------------------
+
+ ---------------------------------
+ | AMD HID Transport |
+ ---------------------------------
+
+ --------------------------------
+ | AMD HID Client |
+ | with HID Report Generator|
+ --------------------------------
+
+ --------------------------------
+ | AMD MP2 PCIe Driver |
+ --------------------------------
+ OS
+ ---------------------------------------------
+ Hardware + Firmware
+ --------------------------------
+ | SFH MP2 Processor |
+ --------------------------------
+
+
+AMD HID Transport Layer
+-----------------------
+AMD SFH transport is also implemented as a bus. Each client application executing in the AMD MP2 is
+registered as a device on this bus. Here: MP2 which is an ARM core connected to x86 for processing
+sensor data. The layer, which binds each device (AMD SFH HID driver) identifies the device type and
+registers with the hid core. Transport layer attach a constant "struct hid_ll_driver" object with
+each device. Once a device is registered with HID core, the callbacks provided via this struct are
+used by HID core to communicate with the device. AMD HID Transport layer implements the synchronous calls.
+
+AMD HID Client Layer
+--------------------
+This layer is responsible to implement HID request and descriptors. As firmware is OS agnostic, HID
+client layer fills the HID request structure and descriptors. HID client layer is complex as it is
+interface between MP2 PCIe layer and HID. HID client layer initialized the MP2 PCIe layer and holds
+the instance of MP2 layer. It identifies the number of sensors connected using MP2-PCIe layer. Base
+on that allocates the DRAM address for each and every sensor and pass it to MP2-PCIe driver.On
+enumeration of each the sensor, client layer fills the HID Descriptor structure and HID input repor
+structure. HID Feature report structure is optional. The report descriptor structure varies from
+sensor to sensor.
+
+AMD MP2 PCIe layer
+------------------
+MP2 PCIe Layer is responsible for making all transactions with the firmware over PCIe.
+The connection establishment between firmware and PCIe happens here.
+
+The communication between X86 and MP2 is split into three parts.
+1. Command transfer via the C2P mailbox registers.
+2. Data transfer via DRAM.
+3. Supported sensor info via P2C registers.
+
+Commands are sent to MP2 using C2P Mailbox registers. Writing into C2P Message registers generate
+interrupt to MP2. The client layer allocates the physical memory and the same is sent to MP2 via
+the PCI layer. MP2 firmware writes the command output to the access DRAM memory which the client
+layer has allocated. Firmware always writes minimum of 32 bytes into DRAM. So as a protocol driver
+shall allocate minimum of 32 bytes DRAM space.
+
+Enumeration and Probing flow
+----------------------------
+::
+
+ HID AMD AMD AMD -PCIe MP2
+ Core Transport Client layer layer FW
+ | | | | |
+ | | | on Boot Driver Loaded |
+ | | | | |
+ | | | MP2-PCIe Int |
+ | | | | |
+ | | |---Get Number of sensors-> | |
+ | | | Read P2C |
+ | | | Register |
+ | | | | |
+ | | | Loop(for No of Sensors) | |
+ | | |----------------------| | |
+ | | | Create HID Descriptor| | |
+ | | | Create Input report | | |
+ | | | Descriptor Map | | |
+ | | | the MP2 FW Index to | | |
+ | | | HID Index | | |
+ | | | Allocate the DRAM | Enable |
+ | | | address | Sensors |
+ | | |----------------------| | |
+ | | HID transport| | Enable |
+ | |<--Probe------| |---Sensor CMD--> |
+ | | Create the | | |
+ | | HID device | | |
+ | | (MFD) | | |
+ | | by Populating| | |
+ | | the HID | | |
+ | | ll_driver | | |
+ | HID | | | |
+ | add | | | |
+ |Device | | | |
+ |<------------- | | | |
+
+
+Data Flow from Application to the AMD SFH Driver
+------------------------------------------------
+
+::
+
+ | | | | |
+ | | | | |
+ | | | | |
+ | | | | |
+ | | | | |
+ |HID_req | | | |
+ |get_report | | | |
+ |------------->| | | |
+ | | HID_get_input| | |
+ | | report | | |
+ | |------------->|------------------------| | |
+ | | | Read the DRAM data for| | |
+ | | | requested sensor and | | |
+ | | | create the HID input | | |
+ | | | report | | |
+ | | |------------------------| | |
+ | |Data received | | |
+ | | in HID report| | |
+ To |<-------------|<-------------| | |
+ Applications| | | | |
+ <-------| | | | |
diff --git a/Documentation/hid/hidraw.rst b/Documentation/hid/hidraw.rst
index 4a4a0ba1f362..f41c1f0f6252 100644
--- a/Documentation/hid/hidraw.rst
+++ b/Documentation/hid/hidraw.rst
@@ -123,8 +123,49 @@ HIDIOCGFEATURE(len):
This ioctl will request a feature report from the device using the control
endpoint. The first byte of the supplied buffer should be set to the report
number of the requested report. For devices which do not use numbered
-reports, set the first byte to 0. The report will be returned starting at
-the first byte of the buffer (ie: the report number is not returned).
+reports, set the first byte to 0. The returned report buffer will contain the
+report number in the first byte, followed by the report data read from the
+device. For devices which do not use numbered reports, the report data will
+begin at the first byte of the returned buffer.
+
+HIDIOCSINPUT(len):
+ Send an Input Report
+
+This ioctl will send an input report to the device, using the control endpoint.
+In most cases, setting an input HID report on a device is meaningless and has
+no effect, but some devices may choose to use this to set or reset an initial
+state of a report. The format of the buffer issued with this report is identical
+to that of HIDIOCSFEATURE.
+
+HIDIOCGINPUT(len):
+ Get an Input Report
+
+This ioctl will request an input report from the device using the control
+endpoint. This is slower on most devices where a dedicated In endpoint exists
+for regular input reports, but allows the host to request the value of a
+specific report number. Typically, this is used to request the initial states of
+an input report of a device, before an application listens for normal reports via
+the regular device read() interface. The format of the buffer issued with this report
+is identical to that of HIDIOCGFEATURE.
+
+HIDIOCSOUTPUT(len):
+ Send an Output Report
+
+This ioctl will send an output report to the device, using the control endpoint.
+This is slower on most devices where a dedicated Out endpoint exists for regular
+output reports, but is added for completeness. Typically, this is used to set
+the initial states of an output report of a device, before an application sends
+updates via the regular device write() interface. The format of the buffer issued
+with this report is identical to that of HIDIOCSFEATURE.
+
+HIDIOCGOUTPUT(len):
+ Get an Output Report
+
+This ioctl will request an output report from the device using the control
+endpoint. Typically, this is used to retrive the initial state of
+an output report of a device, before an application updates it as necessary either
+via a HIDIOCSOUTPUT request, or the regular device write() interface. The format
+of the buffer issued with this report is identical to that of HIDIOCGFEATURE.
Example
-------
diff --git a/Documentation/hid/index.rst b/Documentation/hid/index.rst
index 737d66dc16a1..e50f513c579c 100644
--- a/Documentation/hid/index.rst
+++ b/Documentation/hid/index.rst
@@ -16,3 +16,4 @@ Human Interface Devices (HID)
hid-alps
intel-ish-hid
+ amd-sfh-hid