summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorDavid Brownell <david-b@pacbell.net>2006-01-11 11:23:49 -0800
committerGreg Kroah-Hartman <gregkh@suse.de>2006-01-13 16:29:56 -0800
commit2e10c84b9cf0b2d269c5629048d8d6e35eaf6b2b (patch)
tree2b338e8282d4e740529aeb3d5f303c4883f8d667 /Documentation
parent5d870c8e216f121307445c71caa72e7e10a20061 (diff)
downloadlinux-2e10c84b9cf0b2d269c5629048d8d6e35eaf6b2b.tar.gz
linux-2e10c84b9cf0b2d269c5629048d8d6e35eaf6b2b.tar.bz2
linux-2e10c84b9cf0b2d269c5629048d8d6e35eaf6b2b.zip
[PATCH] SPI: add spi_butterfly driver
This adds a bitbanging parport based adaptor cable for AVR Butterfly, giving SPI links to its DataFlash chip and (eventually) firmware running in the card. Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/spi/butterfly57
1 files changed, 57 insertions, 0 deletions
diff --git a/Documentation/spi/butterfly b/Documentation/spi/butterfly
new file mode 100644
index 000000000000..a2e8c8d90e35
--- /dev/null
+++ b/Documentation/spi/butterfly
@@ -0,0 +1,57 @@
+spi_butterfly - parport-to-butterfly adapter driver
+===================================================
+
+This is a hardware and software project that includes building and using
+a parallel port adapter cable, together with an "AVR Butterfly" to run
+firmware for user interfacing and/or sensors. A Butterfly is a $US20
+battery powered card with an AVR microcontroller and lots of goodies:
+sensors, LCD, flash, toggle stick, and more. You can use AVR-GCC to
+develop firmware for this, and flash it using this adapter cable.
+
+You can make this adapter from an old printer cable and solder things
+directly to the Butterfly. Or (if you have the parts and skills) you
+can come up with something fancier, providing ciruit protection to the
+Butterfly and the printer port, or with a better power supply than two
+signal pins from the printer port.
+
+
+The first cable connections will hook Linux up to one SPI bus, with the
+AVR and a DataFlash chip; and to the AVR reset line. This is all you
+need to reflash the firmware, and the pins are the standard Atmel "ISP"
+connector pins (used also on non-Butterfly AVR boards).
+
+ Signal Butterfly Parport (DB-25)
+ ------ --------- ---------------
+ SCK = J403.PB1/SCK = pin 2/D0
+ RESET = J403.nRST = pin 3/D1
+ VCC = J403.VCC_EXT = pin 8/D6
+ MOSI = J403.PB2/MOSI = pin 9/D7
+ MISO = J403.PB3/MISO = pin 11/S7,nBUSY
+ GND = J403.GND = pin 23/GND
+
+Then to let Linux master that bus to talk to the DataFlash chip, you must
+(a) flash new firmware that disables SPI (set PRR.2, and disable pullups
+by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
+(c) cable in the chipselect.
+
+ Signal Butterfly Parport (DB-25)
+ ------ --------- ---------------
+ VCC = J400.VCC_EXT = pin 7/D5
+ SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
+ GND = J400.GND = pin 24/GND
+
+The "USI" controller, using J405, can be used for a second SPI bus. That
+would let you talk to the AVR over SPI, running firmware that makes it act
+as an SPI slave, while letting either Linux or the AVR use the DataFlash.
+There are plenty of spare parport pins to wire this one up, such as:
+
+ Signal Butterfly Parport (DB-25)
+ ------ --------- ---------------
+ SCK = J403.PE4/USCK = pin 5/D3
+ MOSI = J403.PE5/DI = pin 6/D4
+ MISO = J403.PE6/DO = pin 12/S5,nPAPEROUT
+ GND = J403.GND = pin 22/GND
+
+ IRQ = J402.PF4 = pin 10/S6,ACK
+ GND = J402.GND(P2) = pin 25/GND
+