summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm
diff options
context:
space:
mode:
authorPaul Mackerras <paulus@samba.org>2014-05-26 19:48:40 +1000
committerAlexander Graf <agraf@suse.de>2014-05-30 14:26:29 +0200
commit9bc01a9bc77edac2ea6db62c5111a7f4335d4021 (patch)
tree302ce7b1b9e01ef8489d65083300c96a151c390d /arch/powerpc/kvm
parent6c576e74fd91b93ca1eedcd9eb5200171d2ba32b (diff)
downloadlinux-9bc01a9bc77edac2ea6db62c5111a7f4335d4021.tar.gz
linux-9bc01a9bc77edac2ea6db62c5111a7f4335d4021.tar.bz2
linux-9bc01a9bc77edac2ea6db62c5111a7f4335d4021.zip
KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs
This adds workarounds for two hardware bugs in the POWER8 performance monitor unit (PMU), both related to interrupt generation. The effect of these bugs is that PMU interrupts can get lost, leading to tools such as perf reporting fewer counts and samples than they should. The first bug relates to the PMAO (perf. mon. alert occurred) bit in MMCR0; setting it should cause an interrupt, but doesn't. The other bug relates to the PMAE (perf. mon. alert enable) bit in MMCR0. Setting PMAE when a counter is negative and counter negative conditions are enabled to cause alerts should cause an alert, but doesn't. The workaround for the first bug is to create conditions where a counter will overflow, whenever we are about to restore a MMCR0 value that has PMAO set (and PMAO_SYNC clear). The workaround for the second bug is to freeze all counters using MMCR2 before reading MMCR0. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
Diffstat (limited to 'arch/powerpc/kvm')
-rw-r--r--arch/powerpc/kvm/book3s_hv_rmhandlers.S59
1 files changed, 57 insertions, 2 deletions
diff --git a/arch/powerpc/kvm/book3s_hv_rmhandlers.S b/arch/powerpc/kvm/book3s_hv_rmhandlers.S
index ffbb871c2bd8..60fe8ba318cf 100644
--- a/arch/powerpc/kvm/book3s_hv_rmhandlers.S
+++ b/arch/powerpc/kvm/book3s_hv_rmhandlers.S
@@ -86,6 +86,12 @@ END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
lbz r4, LPPACA_PMCINUSE(r3)
cmpwi r4, 0
beq 23f /* skip if not */
+BEGIN_FTR_SECTION
+ ld r3, HSTATE_MMCR(r13)
+ andi. r4, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+ cmpwi r4, MMCR0_PMAO
+ beql kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
lwz r3, HSTATE_PMC(r13)
lwz r4, HSTATE_PMC + 4(r13)
lwz r5, HSTATE_PMC + 8(r13)
@@ -726,6 +732,12 @@ skip_tm:
sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
mtspr SPRN_MMCR0, r3 /* freeze all counters, disable ints */
isync
+BEGIN_FTR_SECTION
+ ld r3, VCPU_MMCR(r4)
+ andi. r5, r3, MMCR0_PMAO_SYNC | MMCR0_PMAO
+ cmpwi r5, MMCR0_PMAO
+ beql kvmppc_fix_pmao
+END_FTR_SECTION_IFSET(CPU_FTR_PMAO_BUG)
lwz r3, VCPU_PMC(r4) /* always load up guest PMU registers */
lwz r5, VCPU_PMC + 4(r4) /* to prevent information leak */
lwz r6, VCPU_PMC + 8(r4)
@@ -1324,6 +1336,30 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
25:
/* Save PMU registers if requested */
/* r8 and cr0.eq are live here */
+BEGIN_FTR_SECTION
+ /*
+ * POWER8 seems to have a hardware bug where setting
+ * MMCR0[PMAE] along with MMCR0[PMC1CE] and/or MMCR0[PMCjCE]
+ * when some counters are already negative doesn't seem
+ * to cause a performance monitor alert (and hence interrupt).
+ * The effect of this is that when saving the PMU state,
+ * if there is no PMU alert pending when we read MMCR0
+ * before freezing the counters, but one becomes pending
+ * before we read the counters, we lose it.
+ * To work around this, we need a way to freeze the counters
+ * before reading MMCR0. Normally, freezing the counters
+ * is done by writing MMCR0 (to set MMCR0[FC]) which
+ * unavoidably writes MMCR0[PMA0] as well. On POWER8,
+ * we can also freeze the counters using MMCR2, by writing
+ * 1s to all the counter freeze condition bits (there are
+ * 9 bits each for 6 counters).
+ */
+ li r3, -1 /* set all freeze bits */
+ clrrdi r3, r3, 10
+ mfspr r10, SPRN_MMCR2
+ mtspr SPRN_MMCR2, r3
+ isync
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
li r3, 1
sldi r3, r3, 31 /* MMCR0_FC (freeze counters) bit */
mfspr r4, SPRN_MMCR0 /* save MMCR0 */
@@ -1347,6 +1383,9 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
std r4, VCPU_MMCR(r9)
std r5, VCPU_MMCR + 8(r9)
std r6, VCPU_MMCR + 16(r9)
+BEGIN_FTR_SECTION
+ std r10, VCPU_MMCR + 24(r9)
+END_FTR_SECTION_IFSET(CPU_FTR_ARCH_207S)
std r7, VCPU_SIAR(r9)
std r8, VCPU_SDAR(r9)
mfspr r3, SPRN_PMC1
@@ -1370,12 +1409,10 @@ BEGIN_FTR_SECTION
stw r11, VCPU_PMC + 28(r9)
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_201)
BEGIN_FTR_SECTION
- mfspr r4, SPRN_MMCR2
mfspr r5, SPRN_SIER
mfspr r6, SPRN_SPMC1
mfspr r7, SPRN_SPMC2
mfspr r8, SPRN_MMCRS
- std r4, VCPU_MMCR + 24(r9)
std r5, VCPU_SIER(r9)
stw r6, VCPU_PMC + 24(r9)
stw r7, VCPU_PMC + 28(r9)
@@ -2311,3 +2348,21 @@ kvmppc_msr_interrupt:
li r0, 1
1: rldimi r11, r0, MSR_TS_S_LG, 63 - MSR_TS_T_LG
blr
+
+/*
+ * This works around a hardware bug on POWER8E processors, where
+ * writing a 1 to the MMCR0[PMAO] bit doesn't generate a
+ * performance monitor interrupt. Instead, when we need to have
+ * an interrupt pending, we have to arrange for a counter to overflow.
+ */
+kvmppc_fix_pmao:
+ li r3, 0
+ mtspr SPRN_MMCR2, r3
+ lis r3, (MMCR0_PMXE | MMCR0_FCECE)@h
+ ori r3, r3, MMCR0_PMCjCE | MMCR0_C56RUN
+ mtspr SPRN_MMCR0, r3
+ lis r3, 0x7fff
+ ori r3, r3, 0xffff
+ mtspr SPRN_PMC6, r3
+ isync
+ blr