summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gvt
diff options
context:
space:
mode:
authorChris Wilson <chris@chris-wilson.co.uk>2019-10-04 14:39:58 +0100
committerChris Wilson <chris@chris-wilson.co.uk>2019-10-04 15:39:02 +0100
commit2850748ef8763ab46958e43a4d1c445f29eeb37d (patch)
treeba213c8039460e33090e9d8bb39b91d102a3a85d /drivers/gpu/drm/i915/gvt
parent11331125e1480ff786be9d2051301401b652bbe1 (diff)
downloadlinux-2850748ef8763ab46958e43a4d1c445f29eeb37d.tar.gz
linux-2850748ef8763ab46958e43a4d1c445f29eeb37d.tar.bz2
linux-2850748ef8763ab46958e43a4d1c445f29eeb37d.zip
drm/i915: Pull i915_vma_pin under the vm->mutex
Replace the struct_mutex requirement for pinning the i915_vma with the local vm->mutex instead. Note that the vm->mutex is tainted by the shrinker (we require unbinding from inside fs-reclaim) and so we cannot allocate while holding that mutex. Instead we have to preallocate workers to do allocate and apply the PTE updates after we have we reserved their slot in the drm_mm (using fences to order the PTE writes with the GPU work and with later unbind). In adding the asynchronous vma binding, one subtle requirement is to avoid coupling the binding fence into the backing object->resv. That is the asynchronous binding only applies to the vma timeline itself and not to the pages as that is a more global timeline (the binding of one vma does not need to be ordered with another vma, nor does the implicit GEM fencing depend on a vma, only on writes to the backing store). Keeping the vma binding distinct from the backing store timelines is verified by a number of async gem_exec_fence and gem_exec_schedule tests. The way we do this is quite simple, we keep the fence for the vma binding separate and only wait on it as required, and never add it to the obj->resv itself. Another consequence in reducing the locking around the vma is the destruction of the vma is no longer globally serialised by struct_mutex. A natural solution would be to add a kref to i915_vma, but that requires decoupling the reference cycles, possibly by introducing a new i915_mm_pages object that is own by both obj->mm and vma->pages. However, we have not taken that route due to the overshadowing lmem/ttm discussions, and instead play a series of complicated games with trylocks to (hopefully) ensure that only one destruction path is called! v2: Add some commentary, and some helpers to reduce patch churn. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191004134015.13204-4-chris@chris-wilson.co.uk
Diffstat (limited to 'drivers/gpu/drm/i915/gvt')
-rw-r--r--drivers/gpu/drm/i915/gvt/aperture_gm.c12
1 files changed, 6 insertions, 6 deletions
diff --git a/drivers/gpu/drm/i915/gvt/aperture_gm.c b/drivers/gpu/drm/i915/gvt/aperture_gm.c
index 5ff2437b2998..d996bbc7ea59 100644
--- a/drivers/gpu/drm/i915/gvt/aperture_gm.c
+++ b/drivers/gpu/drm/i915/gvt/aperture_gm.c
@@ -61,14 +61,14 @@ static int alloc_gm(struct intel_vgpu *vgpu, bool high_gm)
flags = PIN_MAPPABLE;
}
- mutex_lock(&dev_priv->drm.struct_mutex);
+ mutex_lock(&dev_priv->ggtt.vm.mutex);
mmio_hw_access_pre(dev_priv);
ret = i915_gem_gtt_insert(&dev_priv->ggtt.vm, node,
size, I915_GTT_PAGE_SIZE,
I915_COLOR_UNEVICTABLE,
start, end, flags);
mmio_hw_access_post(dev_priv);
- mutex_unlock(&dev_priv->drm.struct_mutex);
+ mutex_unlock(&dev_priv->ggtt.vm.mutex);
if (ret)
gvt_err("fail to alloc %s gm space from host\n",
high_gm ? "high" : "low");
@@ -98,9 +98,9 @@ static int alloc_vgpu_gm(struct intel_vgpu *vgpu)
return 0;
out_free_aperture:
- mutex_lock(&dev_priv->drm.struct_mutex);
+ mutex_lock(&dev_priv->ggtt.vm.mutex);
drm_mm_remove_node(&vgpu->gm.low_gm_node);
- mutex_unlock(&dev_priv->drm.struct_mutex);
+ mutex_unlock(&dev_priv->ggtt.vm.mutex);
return ret;
}
@@ -108,10 +108,10 @@ static void free_vgpu_gm(struct intel_vgpu *vgpu)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
- mutex_lock(&dev_priv->drm.struct_mutex);
+ mutex_lock(&dev_priv->ggtt.vm.mutex);
drm_mm_remove_node(&vgpu->gm.low_gm_node);
drm_mm_remove_node(&vgpu->gm.high_gm_node);
- mutex_unlock(&dev_priv->drm.struct_mutex);
+ mutex_unlock(&dev_priv->ggtt.vm.mutex);
}
/**