diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
commit | eb0ece16027f8223d5dc9aaf90124f70577bd22a (patch) | |
tree | 1e2214cacd123b940ceca684322203643d5e9bc7 /include/linux/mm.h | |
parent | 08733088b566b58283f0f12fb73f5db6a9a9de30 (diff) | |
parent | 0a1e082b64ccce165e7307a7b49d22b2504f9d1f (diff) | |
download | linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.tar.gz linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.tar.bz2 linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.zip |
Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
Diffstat (limited to 'include/linux/mm.h')
-rw-r--r-- | include/linux/mm.h | 331 |
1 files changed, 212 insertions, 119 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h index beba5ba0fd97..32ba0e33422b 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -32,6 +32,7 @@ #include <linux/memremap.h> #include <linux/slab.h> #include <linux/cacheinfo.h> +#include <linux/rcuwait.h> struct mempolicy; struct anon_vma; @@ -40,20 +41,10 @@ struct user_struct; struct pt_regs; struct folio_batch; +void arch_mm_preinit(void); void mm_core_init(void); void init_mm_internals(void); -#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ -extern unsigned long max_mapnr; - -static inline void set_max_mapnr(unsigned long limit) -{ - max_mapnr = limit; -} -#else -static inline void set_max_mapnr(unsigned long limit) { } -#endif - extern atomic_long_t _totalram_pages; static inline unsigned long totalram_pages(void) { @@ -242,8 +233,6 @@ void setup_initial_init_mm(void *start_code, void *end_code, struct vm_area_struct *vm_area_alloc(struct mm_struct *); struct vm_area_struct *vm_area_dup(struct vm_area_struct *); void vm_area_free(struct vm_area_struct *); -/* Use only if VMA has no other users */ -void __vm_area_free(struct vm_area_struct *vma); #ifndef CONFIG_MMU extern struct rb_root nommu_region_tree; @@ -682,13 +671,57 @@ static inline void vma_numab_state_free(struct vm_area_struct *vma) {} #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_PER_VMA_LOCK +static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) +{ +#ifdef CONFIG_DEBUG_LOCK_ALLOC + static struct lock_class_key lockdep_key; + + lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); +#endif + if (reset_refcnt) + refcount_set(&vma->vm_refcnt, 0); + vma->vm_lock_seq = UINT_MAX; +} + +static inline bool is_vma_writer_only(int refcnt) +{ + /* + * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma + * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on + * a detached vma happens only in vma_mark_detached() and is a rare + * case, therefore most of the time there will be no unnecessary wakeup. + */ + return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; +} + +static inline void vma_refcount_put(struct vm_area_struct *vma) +{ + /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ + struct mm_struct *mm = vma->vm_mm; + int oldcnt; + + rwsem_release(&vma->vmlock_dep_map, _RET_IP_); + if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { + + if (is_vma_writer_only(oldcnt - 1)) + rcuwait_wake_up(&mm->vma_writer_wait); + } +} + /* * Try to read-lock a vma. The function is allowed to occasionally yield false * locked result to avoid performance overhead, in which case we fall back to * using mmap_lock. The function should never yield false unlocked result. + * False locked result is possible if mm_lock_seq overflows or if vma gets + * reused and attached to a different mm before we lock it. + * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got + * detached. */ -static inline bool vma_start_read(struct vm_area_struct *vma) +static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, + struct vm_area_struct *vma) { + int oldcnt; + /* * Check before locking. A race might cause false locked result. * We can use READ_ONCE() for the mm_lock_seq here, and don't need @@ -696,16 +729,26 @@ static inline bool vma_start_read(struct vm_area_struct *vma) * we don't rely on for anything - the mm_lock_seq read against which we * need ordering is below. */ - if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence)) - return false; + if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) + return NULL; - if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) - return false; + /* + * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() + * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. + * Acquire fence is required here to avoid reordering against later + * vm_lock_seq check and checks inside lock_vma_under_rcu(). + */ + if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, + VMA_REF_LIMIT))) { + /* return EAGAIN if vma got detached from under us */ + return oldcnt ? NULL : ERR_PTR(-EAGAIN); + } + rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); /* - * Overflow might produce false locked result. + * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. * False unlocked result is impossible because we modify and check - * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq + * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq * modification invalidates all existing locks. * * We must use ACQUIRE semantics for the mm_lock_seq so that if we are @@ -713,18 +756,47 @@ static inline bool vma_start_read(struct vm_area_struct *vma) * after it has been unlocked. * This pairs with RELEASE semantics in vma_end_write_all(). */ - if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) { - up_read(&vma->vm_lock->lock); - return false; + if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { + vma_refcount_put(vma); + return NULL; } + + return vma; +} + +/* + * Use only while holding mmap read lock which guarantees that locking will not + * fail (nobody can concurrently write-lock the vma). vma_start_read() should + * not be used in such cases because it might fail due to mm_lock_seq overflow. + * This functionality is used to obtain vma read lock and drop the mmap read lock. + */ +static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) +{ + int oldcnt; + + mmap_assert_locked(vma->vm_mm); + if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, + VMA_REF_LIMIT))) + return false; + + rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); return true; } +/* + * Use only while holding mmap read lock which guarantees that locking will not + * fail (nobody can concurrently write-lock the vma). vma_start_read() should + * not be used in such cases because it might fail due to mm_lock_seq overflow. + * This functionality is used to obtain vma read lock and drop the mmap read lock. + */ +static inline bool vma_start_read_locked(struct vm_area_struct *vma) +{ + return vma_start_read_locked_nested(vma, 0); +} + static inline void vma_end_read(struct vm_area_struct *vma) { - rcu_read_lock(); /* keeps vma alive till the end of up_read */ - up_read(&vma->vm_lock->lock); - rcu_read_unlock(); + vma_refcount_put(vma); } /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ @@ -740,6 +812,8 @@ static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_l return (vma->vm_lock_seq == *mm_lock_seq); } +void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); + /* * Begin writing to a VMA. * Exclude concurrent readers under the per-VMA lock until the currently @@ -752,15 +826,7 @@ static inline void vma_start_write(struct vm_area_struct *vma) if (__is_vma_write_locked(vma, &mm_lock_seq)) return; - down_write(&vma->vm_lock->lock); - /* - * We should use WRITE_ONCE() here because we can have concurrent reads - * from the early lockless pessimistic check in vma_start_read(). - * We don't really care about the correctness of that early check, but - * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. - */ - WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); - up_write(&vma->vm_lock->lock); + __vma_start_write(vma, mm_lock_seq); } static inline void vma_assert_write_locked(struct vm_area_struct *vma) @@ -772,18 +838,36 @@ static inline void vma_assert_write_locked(struct vm_area_struct *vma) static inline void vma_assert_locked(struct vm_area_struct *vma) { - if (!rwsem_is_locked(&vma->vm_lock->lock)) - vma_assert_write_locked(vma); + unsigned int mm_lock_seq; + + VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && + !__is_vma_write_locked(vma, &mm_lock_seq), vma); +} + +/* + * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these + * assertions should be made either under mmap_write_lock or when the object + * has been isolated under mmap_write_lock, ensuring no competing writers. + */ +static inline void vma_assert_attached(struct vm_area_struct *vma) +{ + WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); } -static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) +static inline void vma_assert_detached(struct vm_area_struct *vma) { - /* When detaching vma should be write-locked */ - if (detached) - vma_assert_write_locked(vma); - vma->detached = detached; + WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); } +static inline void vma_mark_attached(struct vm_area_struct *vma) +{ + vma_assert_write_locked(vma); + vma_assert_detached(vma); + refcount_set_release(&vma->vm_refcnt, 1); +} + +void vma_mark_detached(struct vm_area_struct *vma); + static inline void release_fault_lock(struct vm_fault *vmf) { if (vmf->flags & FAULT_FLAG_VMA_LOCK) @@ -805,14 +889,18 @@ struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, #else /* CONFIG_PER_VMA_LOCK */ -static inline bool vma_start_read(struct vm_area_struct *vma) - { return false; } +static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} +static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, + struct vm_area_struct *vma) + { return NULL; } static inline void vma_end_read(struct vm_area_struct *vma) {} static inline void vma_start_write(struct vm_area_struct *vma) {} static inline void vma_assert_write_locked(struct vm_area_struct *vma) { mmap_assert_write_locked(vma->vm_mm); } -static inline void vma_mark_detached(struct vm_area_struct *vma, - bool detached) {} +static inline void vma_assert_attached(struct vm_area_struct *vma) {} +static inline void vma_assert_detached(struct vm_area_struct *vma) {} +static inline void vma_mark_attached(struct vm_area_struct *vma) {} +static inline void vma_mark_detached(struct vm_area_struct *vma) {} static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, unsigned long address) @@ -839,18 +927,13 @@ static inline void assert_fault_locked(struct vm_fault *vmf) extern const struct vm_operations_struct vma_dummy_vm_ops; -/* - * WARNING: vma_init does not initialize vma->vm_lock. - * Use vm_area_alloc()/vm_area_free() if vma needs locking. - */ static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) { memset(vma, 0, sizeof(*vma)); vma->vm_mm = mm; vma->vm_ops = &vma_dummy_vm_ops; INIT_LIST_HEAD(&vma->anon_vma_chain); - vma_mark_detached(vma, false); - vma_numab_state_init(vma); + vma_lock_init(vma, false); } /* Use when VMA is not part of the VMA tree and needs no locking */ @@ -1043,6 +1126,7 @@ static inline int vma_iter_bulk_store(struct vma_iterator *vmi, if (unlikely(mas_is_err(&vmi->mas))) return -ENOMEM; + vma_mark_attached(vma); return 0; } @@ -1083,6 +1167,25 @@ int vma_is_stack_for_current(struct vm_area_struct *vma); struct mmu_gather; struct inode; +extern void prep_compound_page(struct page *page, unsigned int order); + +static inline unsigned int folio_large_order(const struct folio *folio) +{ + return folio->_flags_1 & 0xff; +} + +#ifdef NR_PAGES_IN_LARGE_FOLIO +static inline long folio_large_nr_pages(const struct folio *folio) +{ + return folio->_nr_pages; +} +#else +static inline long folio_large_nr_pages(const struct folio *folio) +{ + return 1L << folio_large_order(folio); +} +#endif + /* * compound_order() can be called without holding a reference, which means * that niceties like page_folio() don't work. These callers should be @@ -1096,7 +1199,7 @@ static inline unsigned int compound_order(struct page *page) if (!test_bit(PG_head, &folio->flags)) return 0; - return folio->_flags_1 & 0xff; + return folio_large_order(folio); } /** @@ -1112,7 +1215,7 @@ static inline unsigned int folio_order(const struct folio *folio) { if (!folio_test_large(folio)) return 0; - return folio->_flags_1 & 0xff; + return folio_large_order(folio); } #include <linux/huge_mm.h> @@ -1205,6 +1308,8 @@ static inline int is_vmalloc_or_module_addr(const void *x) static inline int folio_entire_mapcount(const struct folio *folio) { VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); + if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) + return 0; return atomic_read(&folio->_entire_mapcount) + 1; } @@ -1404,25 +1509,6 @@ vm_fault_t finish_fault(struct vm_fault *vmf); * back into memory. */ -#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) -DECLARE_STATIC_KEY_FALSE(devmap_managed_key); - -bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); -static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) -{ - if (!static_branch_unlikely(&devmap_managed_key)) - return false; - if (!folio_is_zone_device(folio)) - return false; - return __put_devmap_managed_folio_refs(folio, refs); -} -#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ -static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) -{ - return false; -} -#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ - /* 127: arbitrary random number, small enough to assemble well */ #define folio_ref_zero_or_close_to_overflow(folio) \ ((unsigned int) folio_ref_count(folio) + 127u <= 127u) @@ -1543,12 +1629,6 @@ static inline void put_page(struct page *page) if (folio_test_slab(folio)) return; - /* - * For some devmap managed pages we need to catch refcount transition - * from 2 to 1: - */ - if (put_devmap_managed_folio_refs(folio, 1)) - return; folio_put(folio); } @@ -1907,6 +1987,13 @@ static inline struct folio *pfn_folio(unsigned long pfn) return page_folio(pfn_to_page(pfn)); } +static inline bool folio_has_pincount(const struct folio *folio) +{ + if (IS_ENABLED(CONFIG_64BIT)) + return folio_test_large(folio); + return folio_order(folio) > 1; +} + /** * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. * @folio: The folio. @@ -1923,7 +2010,7 @@ static inline struct folio *pfn_folio(unsigned long pfn) * get that many refcounts, and b) all the callers of this routine are * expected to be able to deal gracefully with a false positive. * - * For large folios, the result will be exactly correct. That's because + * For most large folios, the result will be exactly correct. That's because * we have more tracking data available: the _pincount field is used * instead of the GUP_PIN_COUNTING_BIAS scheme. * @@ -1934,7 +2021,7 @@ static inline struct folio *pfn_folio(unsigned long pfn) */ static inline bool folio_maybe_dma_pinned(struct folio *folio) { - if (folio_test_large(folio)) + if (folio_has_pincount(folio)) return atomic_read(&folio->_pincount) > 0; /* @@ -2006,6 +2093,13 @@ static inline bool folio_is_longterm_pinnable(struct folio *folio) if (folio_is_device_coherent(folio)) return false; + /* + * Filesystems can only tolerate transient delays to truncate and + * hole-punch operations + */ + if (folio_is_fsdax(folio)) + return false; + /* Otherwise, non-movable zone folios can be pinned. */ return !folio_is_zone_movable(folio); @@ -2049,11 +2143,7 @@ static inline long folio_nr_pages(const struct folio *folio) { if (!folio_test_large(folio)) return 1; -#ifdef CONFIG_64BIT - return folio->_folio_nr_pages; -#else - return 1L << (folio->_flags_1 & 0xff); -#endif + return folio_large_nr_pages(folio); } /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ @@ -2068,24 +2158,20 @@ static inline long folio_nr_pages(const struct folio *folio) * page. compound_nr() can be called on a tail page, and is defined to * return 1 in that case. */ -static inline unsigned long compound_nr(struct page *page) +static inline long compound_nr(struct page *page) { struct folio *folio = (struct folio *)page; if (!test_bit(PG_head, &folio->flags)) return 1; -#ifdef CONFIG_64BIT - return folio->_folio_nr_pages; -#else - return 1L << (folio->_flags_1 & 0xff); -#endif + return folio_large_nr_pages(folio); } /** * thp_nr_pages - The number of regular pages in this huge page. * @page: The head page of a huge page. */ -static inline int thp_nr_pages(struct page *page) +static inline long thp_nr_pages(struct page *page) { return folio_nr_pages((struct folio *)page); } @@ -2140,23 +2226,18 @@ static inline size_t folio_size(const struct folio *folio) } /** - * folio_likely_mapped_shared - Estimate if the folio is mapped into the page - * tables of more than one MM + * folio_maybe_mapped_shared - Whether the folio is mapped into the page + * tables of more than one MM * @folio: The folio. * - * This function checks if the folio is currently mapped into more than one - * MM ("mapped shared"), or if the folio is only mapped into a single MM - * ("mapped exclusively"). + * This function checks if the folio maybe currently mapped into more than one + * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single + * MM ("mapped exclusively"). * * For KSM folios, this function also returns "mapped shared" when a folio is * mapped multiple times into the same MM, because the individual page mappings * are independent. * - * As precise information is not easily available for all folios, this function - * estimates the number of MMs ("sharers") that are currently mapping a folio - * using the number of times the first page of the folio is currently mapped - * into page tables. - * * For small anonymous folios and anonymous hugetlb folios, the return * value will be exactly correct: non-KSM folios can only be mapped at most once * into an MM, and they cannot be partially mapped. KSM folios are @@ -2164,8 +2245,8 @@ static inline size_t folio_size(const struct folio *folio) * * For other folios, the result can be fuzzy: * #. For partially-mappable large folios (THP), the return value can wrongly - * indicate "mapped exclusively" (false negative) when the folio is - * only partially mapped into at least one MM. + * indicate "mapped shared" (false positive) if a folio was mapped by + * more than two MMs at one point in time. * #. For pagecache folios (including hugetlb), the return value can wrongly * indicate "mapped shared" (false positive) when two VMAs in the same MM * cover the same file range. @@ -2182,7 +2263,7 @@ static inline size_t folio_size(const struct folio *folio) * * Return: Whether the folio is estimated to be mapped into more than one MM. */ -static inline bool folio_likely_mapped_shared(struct folio *folio) +static inline bool folio_maybe_mapped_shared(struct folio *folio) { int mapcount = folio_mapcount(folio); @@ -2190,16 +2271,22 @@ static inline bool folio_likely_mapped_shared(struct folio *folio) if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) return mapcount > 1; - /* A single mapping implies "mapped exclusively". */ - if (mapcount <= 1) - return false; - - /* If any page is mapped more than once we treat it "mapped shared". */ - if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) + /* + * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... + * simply assume "mapped shared", nobody should really care + * about this for arbitrary kernel allocations. + */ + if (!IS_ENABLED(CONFIG_MM_ID)) return true; - /* Let's guess based on the first subpage. */ - return atomic_read(&folio->_mapcount) > 0; + /* + * A single mapping implies "mapped exclusively", even if the + * folio flag says something different: it's easier to handle this + * case here instead of on the RMAP hot path. + */ + if (mapcount <= 1) + return false; + return folio_test_large_maybe_mapped_shared(folio); } #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE @@ -3179,7 +3266,6 @@ extern void reserve_bootmem_region(phys_addr_t start, /* Free the reserved page into the buddy system, so it gets managed. */ void free_reserved_page(struct page *page); -#define free_highmem_page(page) free_reserved_page(page) static inline void mark_page_reserved(struct page *page) { @@ -3539,6 +3625,8 @@ int vm_map_pages(struct vm_area_struct *vma, struct page **pages, unsigned long num); int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, unsigned long num); +vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, + bool write); vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn); vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, @@ -3817,6 +3905,7 @@ static inline void print_vma_addr(char *prefix, unsigned long rip) #endif void *sparse_buffer_alloc(unsigned long size); +unsigned long section_map_size(void); struct page * __populate_section_memmap(unsigned long pfn, unsigned long nr_pages, int nid, struct vmem_altmap *altmap, struct dev_pagemap *pgmap); @@ -3825,7 +3914,8 @@ p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, - struct vmem_altmap *altmap, struct page *reuse); + struct vmem_altmap *altmap, unsigned long ptpfn, + unsigned long flags); void *vmemmap_alloc_block(unsigned long size, int node); struct vmem_altmap; void *vmemmap_alloc_block_buf(unsigned long size, int node, @@ -3841,6 +3931,12 @@ int vmemmap_populate_hugepages(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); int vmemmap_populate(unsigned long start, unsigned long end, int node, struct vmem_altmap *altmap); +int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, + unsigned long headsize); +int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, + unsigned long headsize); +void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, + unsigned long headsize); void vmemmap_populate_print_last(void); #ifdef CONFIG_MEMORY_HOTPLUG void vmemmap_free(unsigned long start, unsigned long end, @@ -3907,9 +4003,6 @@ static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, } #endif -void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, - unsigned long nr_pages); - enum mf_flags { MF_COUNT_INCREASED = 1 << 0, MF_ACTION_REQUIRED = 1 << 1, |