summaryrefslogtreecommitdiffstats
path: root/kernel/pid.c
diff options
context:
space:
mode:
authorChristian Brauner <brauner@kernel.org>2024-03-12 10:39:44 +0100
committerLinus Torvalds <torvalds@linux-foundation.org>2024-03-13 12:53:53 -0700
commit9d9539db8638cfe053fcd1f441746f0e2c8c2d32 (patch)
treeade3be60a23f710040dc8856d9d386676b701bd2 /kernel/pid.c
parentce0c1c92656e3ea3840c4a5c748aa352285cae9c (diff)
downloadlinux-9d9539db8638cfe053fcd1f441746f0e2c8c2d32.tar.gz
linux-9d9539db8638cfe053fcd1f441746f0e2c8c2d32.tar.bz2
linux-9d9539db8638cfe053fcd1f441746f0e2c8c2d32.zip
pidfs: remove config option
As Linus suggested this enables pidfs unconditionally. A key property to retain is the ability to compare pidfds by inode number (cf. [1]). That's extremely helpful just as comparing namespace file descriptors by inode number is. They are used in a variety of scenarios where they need to be compared, e.g., when receiving a pidfd via SO_PEERPIDFD from a socket to trivially authenticate a the sender and various other use-cases. For 64bit systems this is pretty trivial to do. For 32bit it's slightly more annoying as we discussed but we simply add a dumb ida based allocator that gets used on 32bit. This gives the same guarantees about inode numbers on 64bit without any overflow risk. Practically, we'll never run into overflow issues because we're constrained by the number of processes that can exist on 32bit and by the number of open files that can exist on a 32bit system. On 64bit none of this matters and things are very simple. If 32bit also needs the uniqueness guarantee they can simply parse the contents of /proc/<pid>/fd/<nr>. The uniqueness guarantees have a variety of use-cases. One of the most obvious ones is that they will make pidfiles (or "pidfdfiles", I guess) reliable as the unique identifier can be placed into there that won't be reycled. Also a frequent request. Note, I took the chance and simplified path_from_stashed() even further. Instead of passing the inode number explicitly to path_from_stashed() we let the filesystem handle that internally. So path_from_stashed() ends up even simpler than it is now. This is also a good solution allowing the cleanup code to be clean and consistent between 32bit and 64bit. The cleanup path in prepare_anon_dentry() is also switched around so we put the inode before the dentry allocation. This means we only have to call the cleanup handler for the filesystem's inode data once and can rely ->evict_inode() otherwise. Aside from having to have a bit of extra code for 32bit it actually ends up a nice cleanup for path_from_stashed() imho. Tested on both 32 and 64bit including error injection. Link: https://github.com/systemd/systemd/pull/31713 [1] Link: https://lore.kernel.org/r/20240312-dingo-sehnlich-b3ecc35c6de7@brauner Signed-off-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'kernel/pid.c')
-rw-r--r--kernel/pid.c6
1 files changed, 0 insertions, 6 deletions
diff --git a/kernel/pid.c b/kernel/pid.c
index 99a0c5eb24b8..da76ed1873f7 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -62,17 +62,13 @@ struct pid init_struct_pid = {
int pid_max = PID_MAX_DEFAULT;
-#define RESERVED_PIDS 300
-
int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;
-#ifdef CONFIG_FS_PID
/*
* Pseudo filesystems start inode numbering after one. We use Reserved
* PIDs as a natural offset.
*/
static u64 pidfs_ino = RESERVED_PIDS;
-#endif
/*
* PID-map pages start out as NULL, they get allocated upon
@@ -280,10 +276,8 @@ struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
spin_lock_irq(&pidmap_lock);
if (!(ns->pid_allocated & PIDNS_ADDING))
goto out_unlock;
-#ifdef CONFIG_FS_PID
pid->stashed = NULL;
pid->ino = ++pidfs_ino;
-#endif
for ( ; upid >= pid->numbers; --upid) {
/* Make the PID visible to find_pid_ns. */
idr_replace(&upid->ns->idr, pid, upid->nr);