summaryrefslogtreecommitdiffstats
path: root/kernel/task_work.c
diff options
context:
space:
mode:
authorJens Axboe <axboe@kernel.dk>2022-04-28 17:25:16 -0600
committerJens Axboe <axboe@kernel.dk>2022-04-30 08:39:32 -0600
commite788be95a57a9bebe446878ce9bf2750f6fe4974 (patch)
tree5eded2436e2690b614d4f28c2344a79e31bd5563 /kernel/task_work.c
parent69cc1b6fa565993b62210f314614be166d902a54 (diff)
downloadlinux-e788be95a57a9bebe446878ce9bf2750f6fe4974.tar.gz
linux-e788be95a57a9bebe446878ce9bf2750f6fe4974.tar.bz2
linux-e788be95a57a9bebe446878ce9bf2750f6fe4974.zip
task_work: allow TWA_SIGNAL without a rescheduling IPI
Some use cases don't always need an IPI when sending a TWA_SIGNAL notification. Add TWA_SIGNAL_NO_IPI, which is just like TWA_SIGNAL, except it doesn't send an IPI to the target task. It merely sets TIF_NOTIFY_SIGNAL and wakes up the task. This can be useful in avoiding a forceful transition to the kernel if the task is running in userspace. Depending on the task_work in question, it may be quite fine waiting for the next reschedule or kernel enter anyway, or the use case may even have other mechanisms for hinting to the task that a transition may be useful. This can drive more cooperative scheduling of task_work. Reviewed-by: Pavel Begunkov <asml.silence@gmail.com> Link: https://lore.kernel.org/r/821f42b6-7d91-8074-8212-d34998097de4@kernel.dk Signed-off-by: Jens Axboe <axboe@kernel.dk>
Diffstat (limited to 'kernel/task_work.c')
-rw-r--r--kernel/task_work.c25
1 files changed, 19 insertions, 6 deletions
diff --git a/kernel/task_work.c b/kernel/task_work.c
index c59e1a49bc40..dff75bcde151 100644
--- a/kernel/task_work.c
+++ b/kernel/task_work.c
@@ -12,12 +12,22 @@ static struct callback_head work_exited; /* all we need is ->next == NULL */
* @notify: how to notify the targeted task
*
* Queue @work for task_work_run() below and notify the @task if @notify
- * is @TWA_RESUME or @TWA_SIGNAL. @TWA_SIGNAL works like signals, in that the
- * it will interrupt the targeted task and run the task_work. @TWA_RESUME
- * work is run only when the task exits the kernel and returns to user mode,
- * or before entering guest mode. Fails if the @task is exiting/exited and thus
- * it can't process this @work. Otherwise @work->func() will be called when the
- * @task goes through one of the aforementioned transitions, or exits.
+ * is @TWA_RESUME, @TWA_SIGNAL, or @TWA_SIGNAL_NO_IPI.
+ *
+ * @TWA_SIGNAL works like signals, in that the it will interrupt the targeted
+ * task and run the task_work, regardless of whether the task is currently
+ * running in the kernel or userspace.
+ * @TWA_SIGNAL_NO_IPI works like @TWA_SIGNAL, except it doesn't send a
+ * reschedule IPI to force the targeted task to reschedule and run task_work.
+ * This can be advantageous if there's no strict requirement that the
+ * task_work be run as soon as possible, just whenever the task enters the
+ * kernel anyway.
+ * @TWA_RESUME work is run only when the task exits the kernel and returns to
+ * user mode, or before entering guest mode.
+ *
+ * Fails if the @task is exiting/exited and thus it can't process this @work.
+ * Otherwise @work->func() will be called when the @task goes through one of
+ * the aforementioned transitions, or exits.
*
* If the targeted task is exiting, then an error is returned and the work item
* is not queued. It's up to the caller to arrange for an alternative mechanism
@@ -53,6 +63,9 @@ int task_work_add(struct task_struct *task, struct callback_head *work,
case TWA_SIGNAL:
set_notify_signal(task);
break;
+ case TWA_SIGNAL_NO_IPI:
+ __set_notify_signal(task);
+ break;
default:
WARN_ON_ONCE(1);
break;