diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2025-04-01 09:29:18 -0700 |
commit | eb0ece16027f8223d5dc9aaf90124f70577bd22a (patch) | |
tree | 1e2214cacd123b940ceca684322203643d5e9bc7 /mm/vma.c | |
parent | 08733088b566b58283f0f12fb73f5db6a9a9de30 (diff) | |
parent | 0a1e082b64ccce165e7307a7b49d22b2504f9d1f (diff) | |
download | linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.tar.gz linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.tar.bz2 linux-eb0ece16027f8223d5dc9aaf90124f70577bd22a.zip |
Merge tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
Diffstat (limited to 'mm/vma.c')
-rw-r--r-- | mm/vma.c | 352 |
1 files changed, 183 insertions, 169 deletions
@@ -52,10 +52,9 @@ struct mmap_state { .pgoff = (map_)->pgoff, \ .file = (map_)->file, \ .prev = (map_)->prev, \ - .vma = vma_, \ + .middle = vma_, \ .next = (vma_) ? NULL : (map_)->next, \ .state = VMA_MERGE_START, \ - .merge_flags = VMG_FLAG_DEFAULT, \ } static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) @@ -107,29 +106,44 @@ static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1, * init_multi_vma_prep() - Initializer for struct vma_prepare * @vp: The vma_prepare struct * @vma: The vma that will be altered once locked - * @next: The next vma if it is to be adjusted - * @remove: The first vma to be removed - * @remove2: The second vma to be removed + * @vmg: The merge state that will be used to determine adjustment and VMA + * removal. */ static void init_multi_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma, - struct vm_area_struct *next, - struct vm_area_struct *remove, - struct vm_area_struct *remove2) + struct vma_merge_struct *vmg) { + struct vm_area_struct *adjust; + struct vm_area_struct **remove = &vp->remove; + memset(vp, 0, sizeof(struct vma_prepare)); vp->vma = vma; vp->anon_vma = vma->anon_vma; - vp->remove = remove; - vp->remove2 = remove2; - vp->adj_next = next; - if (!vp->anon_vma && next) - vp->anon_vma = next->anon_vma; + + if (vmg && vmg->__remove_middle) { + *remove = vmg->middle; + remove = &vp->remove2; + } + if (vmg && vmg->__remove_next) + *remove = vmg->next; + + if (vmg && vmg->__adjust_middle_start) + adjust = vmg->middle; + else if (vmg && vmg->__adjust_next_start) + adjust = vmg->next; + else + adjust = NULL; + + vp->adj_next = adjust; + if (!vp->anon_vma && adjust) + vp->anon_vma = adjust->anon_vma; + + VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && + vp->anon_vma != adjust->anon_vma); vp->file = vma->vm_file; if (vp->file) vp->mapping = vma->vm_file->f_mapping; - } /* @@ -306,7 +320,7 @@ static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, * us to insert it before dropping the locks * (it may either follow vma or precede it). */ - vma_iter_store(vmi, vp->insert); + vma_iter_store_new(vmi, vp->insert); mm->map_count++; } @@ -327,7 +341,7 @@ static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, if (vp->remove) { again: - vma_mark_detached(vp->remove, true); + vma_mark_detached(vp->remove); if (vp->file) { uprobe_munmap(vp->remove, vp->remove->vm_start, vp->remove->vm_end); @@ -362,7 +376,7 @@ again: */ static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) { - init_multi_vma_prep(vp, vma, NULL, NULL, NULL); + init_multi_vma_prep(vp, vma, NULL); } /* @@ -406,17 +420,14 @@ static bool can_vma_merge_right(struct vma_merge_struct *vmg, /* * Close a vm structure and free it. */ -void remove_vma(struct vm_area_struct *vma, bool unreachable) +void remove_vma(struct vm_area_struct *vma) { might_sleep(); vma_close(vma); if (vma->vm_file) fput(vma->vm_file); mpol_put(vma_policy(vma)); - if (unreachable) - __vm_area_free(vma); - else - vm_area_free(vma); + vm_area_free(vma); } /* @@ -499,7 +510,7 @@ __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, init_vma_prep(&vp, vma); vp.insert = new; vma_prepare(&vp); - vma_adjust_trans_huge(vma, vma->vm_start, addr, 0); + vma_adjust_trans_huge(vma, vma->vm_start, addr, NULL); if (new_below) { vma->vm_start = addr; @@ -629,49 +640,66 @@ void validate_mm(struct mm_struct *mm) } #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ -/* Actually perform the VMA merge operation. */ -static int commit_merge(struct vma_merge_struct *vmg, - struct vm_area_struct *adjust, - struct vm_area_struct *remove, - struct vm_area_struct *remove2, - long adj_start, - bool expanded) +/* + * Based on the vmg flag indicating whether we need to adjust the vm_start field + * for the middle or next VMA, we calculate what the range of the newly adjusted + * VMA ought to be, and set the VMA's range accordingly. + */ +static void vmg_adjust_set_range(struct vma_merge_struct *vmg) { - struct vma_prepare vp; + struct vm_area_struct *adjust; + pgoff_t pgoff; - init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2); + if (vmg->__adjust_middle_start) { + adjust = vmg->middle; + pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); + } else if (vmg->__adjust_next_start) { + adjust = vmg->next; + pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); + } else { + return; + } - VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma && - vp.anon_vma != adjust->anon_vma); + vma_set_range(adjust, vmg->end, adjust->vm_end, pgoff); +} - if (expanded) { - /* Note: vma iterator must be pointing to 'start'. */ - vma_iter_config(vmg->vmi, vmg->start, vmg->end); +/* + * Actually perform the VMA merge operation. + * + * Returns 0 on success, or an error value on failure. + */ +static int commit_merge(struct vma_merge_struct *vmg) +{ + struct vm_area_struct *vma; + struct vma_prepare vp; + + if (vmg->__adjust_next_start) { + /* We manipulate middle and adjust next, which is the target. */ + vma = vmg->middle; + vma_iter_config(vmg->vmi, vmg->end, vmg->next->vm_end); } else { - vma_iter_config(vmg->vmi, adjust->vm_start + adj_start, - adjust->vm_end); + vma = vmg->target; + /* Note: vma iterator must be pointing to 'start'. */ + vma_iter_config(vmg->vmi, vmg->start, vmg->end); } - if (vma_iter_prealloc(vmg->vmi, vmg->vma)) + init_multi_vma_prep(&vp, vma, vmg); + + if (vma_iter_prealloc(vmg->vmi, vma)) return -ENOMEM; vma_prepare(&vp); - vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start); - vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff); - - if (expanded) - vma_iter_store(vmg->vmi, vmg->vma); - - if (adj_start) { - adjust->vm_start += adj_start; - adjust->vm_pgoff += PHYS_PFN(adj_start); - if (adj_start < 0) { - WARN_ON(expanded); - vma_iter_store(vmg->vmi, adjust); - } - } + /* + * THP pages may need to do additional splits if we increase + * middle->vm_start. + */ + vma_adjust_trans_huge(vma, vmg->start, vmg->end, + vmg->__adjust_middle_start ? vmg->middle : NULL); + vma_set_range(vma, vmg->start, vmg->end, vmg->pgoff); + vmg_adjust_set_range(vmg); + vma_iter_store_overwrite(vmg->vmi, vmg->target); - vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm); + vma_complete(&vp, vmg->vmi, vma->vm_mm); return 0; } @@ -694,8 +722,9 @@ static bool can_merge_remove_vma(struct vm_area_struct *vma) * identical properties. * * This function checks for the existence of any such mergeable VMAs and updates - * the maple tree describing the @vmg->vma->vm_mm address space to account for - * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge. + * the maple tree describing the @vmg->middle->vm_mm address space to account + * for this, as well as any VMAs shrunk/expanded/deleted as a result of this + * merge. * * As part of this operation, if a merge occurs, the @vmg object will have its * vma, start, end, and pgoff fields modified to execute the merge. Subsequent @@ -704,45 +733,43 @@ static bool can_merge_remove_vma(struct vm_area_struct *vma) * Returns: The merged VMA if merge succeeds, or NULL otherwise. * * ASSUMPTIONS: - * - The caller must assign the VMA to be modifed to @vmg->vma. + * - The caller must assign the VMA to be modifed to @vmg->middle. * - The caller must have set @vmg->prev to the previous VMA, if there is one. * - The caller must not set @vmg->next, as we determine this. * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. - * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end). + * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). */ static __must_check struct vm_area_struct *vma_merge_existing_range( struct vma_merge_struct *vmg) { - struct vm_area_struct *vma = vmg->vma; + struct vm_area_struct *middle = vmg->middle; struct vm_area_struct *prev = vmg->prev; - struct vm_area_struct *next, *res; + struct vm_area_struct *next; struct vm_area_struct *anon_dup = NULL; - struct vm_area_struct *adjust = NULL; unsigned long start = vmg->start; unsigned long end = vmg->end; - bool left_side = vma && start == vma->vm_start; - bool right_side = vma && end == vma->vm_end; + bool left_side = middle && start == middle->vm_start; + bool right_side = middle && end == middle->vm_end; int err = 0; - long adj_start = 0; - bool merge_will_delete_vma, merge_will_delete_next; bool merge_left, merge_right, merge_both; - bool expanded; mmap_assert_write_locked(vmg->mm); - VM_WARN_ON_VMG(!vma, vmg); /* We are modifying a VMA, so caller must specify. */ + VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); VM_WARN_ON_VMG(start >= end, vmg); /* - * If vma == prev, then we are offset into a VMA. Otherwise, if we are + * If middle == prev, then we are offset into a VMA. Otherwise, if we are * not, we must span a portion of the VMA. */ - VM_WARN_ON_VMG(vma && ((vma != prev && vmg->start != vma->vm_start) || - vmg->end > vma->vm_end), vmg); - /* The vmi must be positioned within vmg->vma. */ - VM_WARN_ON_VMG(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start && - vma_iter_addr(vmg->vmi) < vma->vm_end), vmg); + VM_WARN_ON_VMG(middle && + ((middle != prev && vmg->start != middle->vm_start) || + vmg->end > middle->vm_end), vmg); + /* The vmi must be positioned within vmg->middle. */ + VM_WARN_ON_VMG(middle && + !(vma_iter_addr(vmg->vmi) >= middle->vm_start && + vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); vmg->state = VMA_MERGE_NOMERGE; @@ -776,49 +803,52 @@ static __must_check struct vm_area_struct *vma_merge_existing_range( merge_both = merge_left && merge_right; /* If we span the entire VMA, a merge implies it will be deleted. */ - merge_will_delete_vma = left_side && right_side; + vmg->__remove_middle = left_side && right_side; /* - * If we need to remove vma in its entirety but are unable to do so, + * If we need to remove middle in its entirety but are unable to do so, * we have no sensible recourse but to abort the merge. */ - if (merge_will_delete_vma && !can_merge_remove_vma(vma)) + if (vmg->__remove_middle && !can_merge_remove_vma(middle)) return NULL; /* * If we merge both VMAs, then next is also deleted. This implies * merge_will_delete_vma also. */ - merge_will_delete_next = merge_both; + vmg->__remove_next = merge_both; /* * If we cannot delete next, then we can reduce the operation to merging - * prev and vma (thereby deleting vma). + * prev and middle (thereby deleting middle). */ - if (merge_will_delete_next && !can_merge_remove_vma(next)) { - merge_will_delete_next = false; + if (vmg->__remove_next && !can_merge_remove_vma(next)) { + vmg->__remove_next = false; merge_right = false; merge_both = false; } - /* No matter what happens, we will be adjusting vma. */ - vma_start_write(vma); - - if (merge_left) - vma_start_write(prev); + /* No matter what happens, we will be adjusting middle. */ + vma_start_write(middle); - if (merge_right) + if (merge_right) { vma_start_write(next); + vmg->target = next; + } + + if (merge_left) { + vma_start_write(prev); + vmg->target = prev; + } if (merge_both) { /* - * |<----->| - * |-------*********-------| - * prev vma next - * extend delete delete + * |<-------------------->| + * |-------********-------| + * prev middle next + * extend delete delete */ - vmg->vma = prev; vmg->start = prev->vm_start; vmg->end = next->vm_end; vmg->pgoff = prev->vm_pgoff; @@ -826,80 +856,62 @@ static __must_check struct vm_area_struct *vma_merge_existing_range( /* * We already ensured anon_vma compatibility above, so now it's * simply a case of, if prev has no anon_vma object, which of - * next or vma contains the anon_vma we must duplicate. + * next or middle contains the anon_vma we must duplicate. */ - err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup); + err = dup_anon_vma(prev, next->anon_vma ? next : middle, + &anon_dup); } else if (merge_left) { /* - * |<----->| OR - * |<--------->| + * |<------------>| OR + * |<----------------->| * |-------************* - * prev vma + * prev middle * extend shrink/delete */ - vmg->vma = prev; vmg->start = prev->vm_start; vmg->pgoff = prev->vm_pgoff; - if (!merge_will_delete_vma) { - adjust = vma; - adj_start = vmg->end - vma->vm_start; - } + if (!vmg->__remove_middle) + vmg->__adjust_middle_start = true; - err = dup_anon_vma(prev, vma, &anon_dup); + err = dup_anon_vma(prev, middle, &anon_dup); } else { /* merge_right */ /* - * |<----->| OR - * |<--------->| + * |<------------->| OR + * |<----------------->| * *************-------| - * vma next + * middle next * shrink/delete extend */ pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); VM_WARN_ON_VMG(!merge_right, vmg); - /* If we are offset into a VMA, then prev must be vma. */ - VM_WARN_ON_VMG(vmg->start > vma->vm_start && prev && vma != prev, vmg); + /* If we are offset into a VMA, then prev must be middle. */ + VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); - if (merge_will_delete_vma) { - vmg->vma = next; + if (vmg->__remove_middle) { vmg->end = next->vm_end; vmg->pgoff = next->vm_pgoff - pglen; } else { - /* - * We shrink vma and expand next. - * - * IMPORTANT: This is the ONLY case where the final - * merged VMA is NOT vmg->vma, but rather vmg->next. - */ - - vmg->start = vma->vm_start; + /* We shrink middle and expand next. */ + vmg->__adjust_next_start = true; + vmg->start = middle->vm_start; vmg->end = start; - vmg->pgoff = vma->vm_pgoff; - - adjust = next; - adj_start = -(vma->vm_end - start); + vmg->pgoff = middle->vm_pgoff; } - err = dup_anon_vma(next, vma, &anon_dup); + err = dup_anon_vma(next, middle, &anon_dup); } if (err) goto abort; - /* - * In nearly all cases, we expand vmg->vma. There is one exception - - * merge_right where we partially span the VMA. In this case we shrink - * the end of vmg->vma and adjust the start of vmg->next accordingly. - */ - expanded = !merge_right || merge_will_delete_vma; + err = commit_merge(vmg); + if (err) { + VM_WARN_ON(err != -ENOMEM); - if (commit_merge(vmg, adjust, - merge_will_delete_vma ? vma : NULL, - merge_will_delete_next ? next : NULL, - adj_start, expanded)) { if (anon_dup) unlink_anon_vmas(anon_dup); @@ -907,11 +919,9 @@ static __must_check struct vm_area_struct *vma_merge_existing_range( return NULL; } - res = merge_left ? prev : next; - khugepaged_enter_vma(res, vmg->flags); - + khugepaged_enter_vma(vmg->target, vmg->flags); vmg->state = VMA_MERGE_SUCCESS; - return res; + return vmg->target; abort: vma_iter_set(vmg->vmi, start); @@ -970,10 +980,9 @@ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) struct vm_area_struct *next = vmg->next; unsigned long end = vmg->end; bool can_merge_left, can_merge_right; - bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND; mmap_assert_write_locked(vmg->mm); - VM_WARN_ON_VMG(vmg->vma, vmg); + VM_WARN_ON_VMG(vmg->middle, vmg); /* vmi must point at or before the gap. */ VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); @@ -984,18 +993,18 @@ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) return NULL; can_merge_left = can_vma_merge_left(vmg); - can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left); + can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); /* If we can merge with the next VMA, adjust vmg accordingly. */ if (can_merge_right) { vmg->end = next->vm_end; - vmg->vma = next; + vmg->middle = next; } /* If we can merge with the previous VMA, adjust vmg accordingly. */ if (can_merge_left) { vmg->start = prev->vm_start; - vmg->vma = prev; + vmg->middle = prev; vmg->pgoff = prev->vm_pgoff; /* @@ -1007,7 +1016,7 @@ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) vmg->end = end; /* In expand-only case we are already positioned at prev. */ - if (!just_expand) { + if (!vmg->just_expand) { /* Equivalent to going to the previous range. */ vma_prev(vmg->vmi); } @@ -1017,10 +1026,10 @@ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) * Now try to expand adjacent VMA(s). This takes care of removing the * following VMA if we have VMAs on both sides. */ - if (vmg->vma && !vma_expand(vmg)) { - khugepaged_enter_vma(vmg->vma, vmg->flags); + if (vmg->middle && !vma_expand(vmg)) { + khugepaged_enter_vma(vmg->middle, vmg->flags); vmg->state = VMA_MERGE_SUCCESS; - return vmg->vma; + return vmg->middle; } return NULL; @@ -1032,45 +1041,50 @@ struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) * @vmg: Describes a VMA expansion operation. * * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. - * Will expand over vmg->next if it's different from vmg->vma and vmg->end == - * vmg->next->vm_end. Checking if the vmg->vma can expand and merge with + * Will expand over vmg->next if it's different from vmg->middle and vmg->end == + * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with * vmg->next needs to be handled by the caller. * * Returns: 0 on success. * * ASSUMPTIONS: - * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock. - * - The caller must have set @vmg->vma and @vmg->next. + * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. + * - The caller must have set @vmg->middle and @vmg->next. */ int vma_expand(struct vma_merge_struct *vmg) { struct vm_area_struct *anon_dup = NULL; bool remove_next = false; - struct vm_area_struct *vma = vmg->vma; + struct vm_area_struct *middle = vmg->middle; struct vm_area_struct *next = vmg->next; mmap_assert_write_locked(vmg->mm); - vma_start_write(vma); - if (next && (vma != next) && (vmg->end == next->vm_end)) { + vma_start_write(middle); + if (next && (middle != next) && (vmg->end == next->vm_end)) { int ret; remove_next = true; /* This should already have been checked by this point. */ VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); vma_start_write(next); - ret = dup_anon_vma(vma, next, &anon_dup); + ret = dup_anon_vma(middle, next, &anon_dup); if (ret) return ret; } /* Not merging but overwriting any part of next is not handled. */ VM_WARN_ON_VMG(next && !remove_next && - next != vma && vmg->end > next->vm_start, vmg); + next != middle && vmg->end > next->vm_start, vmg); /* Only handles expanding */ - VM_WARN_ON_VMG(vma->vm_start < vmg->start || vma->vm_end > vmg->end, vmg); + VM_WARN_ON_VMG(middle->vm_start < vmg->start || + middle->vm_end > vmg->end, vmg); + + vmg->target = middle; + if (remove_next) + vmg->__remove_next = true; - if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true)) + if (commit_merge(vmg)) goto nomem; return 0; @@ -1110,7 +1124,7 @@ int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, init_vma_prep(&vp, vma); vma_prepare(&vp); - vma_adjust_trans_huge(vma, start, end, 0); + vma_adjust_trans_huge(vma, start, end, NULL); vma_iter_clear(vmi); vma_set_range(vma, start, end, pgoff); @@ -1199,7 +1213,7 @@ static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, /* Remove and clean up vmas */ mas_set(mas_detach, 0); mas_for_each(mas_detach, vma, ULONG_MAX) - remove_vma(vma, /* unreachable = */ false); + remove_vma(vma); vm_unacct_memory(vms->nr_accounted); validate_mm(mm); @@ -1221,7 +1235,7 @@ static void reattach_vmas(struct ma_state *mas_detach) mas_set(mas_detach, 0); mas_for_each(mas_detach, vma, ULONG_MAX) - vma_mark_detached(vma, false); + vma_mark_attached(vma); __mt_destroy(mas_detach->tree); } @@ -1296,7 +1310,7 @@ static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, if (error) goto munmap_gather_failed; - vma_mark_detached(next, true); + vma_mark_detached(next); nrpages = vma_pages(next); vms->nr_pages += nrpages; @@ -1508,7 +1522,7 @@ int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, */ static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) { - struct vm_area_struct *vma = vmg->vma; + struct vm_area_struct *vma = vmg->middle; unsigned long start = vmg->start; unsigned long end = vmg->end; struct vm_area_struct *merged; @@ -1609,7 +1623,7 @@ struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); vmg.next = vma_iter_next_rewind(vmi, NULL); - vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */ + vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ return vma_merge_new_range(&vmg); } @@ -1694,7 +1708,7 @@ int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) return -ENOMEM; vma_start_write(vma); - vma_iter_store(&vmi, vma); + vma_iter_store_new(&vmi, vma); vma_link_file(vma); mm->map_count++; validate_mm(mm); @@ -1730,7 +1744,7 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, if (new_vma && new_vma->vm_start < addr + len) return NULL; /* should never get here */ - vmg.vma = NULL; /* New VMA range. */ + vmg.middle = NULL; /* New VMA range. */ vmg.pgoff = pgoff; vmg.next = vma_iter_next_rewind(&vmi, NULL); new_vma = vma_merge_new_range(&vmg); @@ -2373,7 +2387,7 @@ static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) /* Lock the VMA since it is modified after insertion into VMA tree */ vma_start_write(vma); - vma_iter_store(vmi, vma); + vma_iter_store_new(vmi, vma); map->mm->map_count++; vma_link_file(vma); @@ -2587,7 +2601,7 @@ int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, vmg.prev = vma; /* vmi is positioned at prev, which this mode expects. */ - vmg.merge_flags = VMG_FLAG_JUST_EXPAND; + vmg.just_expand = true; if (vma_merge_new_range(&vmg)) goto out; @@ -2850,7 +2864,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) anon_vma_interval_tree_pre_update_vma(vma); vma->vm_end = address; /* Overwrite old entry in mtree. */ - vma_iter_store(&vmi, vma); + vma_iter_store_overwrite(&vmi, vma); anon_vma_interval_tree_post_update_vma(vma); perf_event_mmap(vma); @@ -2930,7 +2944,7 @@ int expand_downwards(struct vm_area_struct *vma, unsigned long address) vma->vm_start = address; vma->vm_pgoff -= grow; /* Overwrite old entry in mtree. */ - vma_iter_store(&vmi, vma); + vma_iter_store_overwrite(&vmi, vma); anon_vma_interval_tree_post_update_vma(vma); perf_event_mmap(vma); |