summaryrefslogtreecommitdiffstats
path: root/arch/arc/net/bpf_jit_core.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/arc/net/bpf_jit_core.c')
-rw-r--r--arch/arc/net/bpf_jit_core.c1425
1 files changed, 1425 insertions, 0 deletions
diff --git a/arch/arc/net/bpf_jit_core.c b/arch/arc/net/bpf_jit_core.c
new file mode 100644
index 000000000000..e3628922c24a
--- /dev/null
+++ b/arch/arc/net/bpf_jit_core.c
@@ -0,0 +1,1425 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * The back-end-agnostic part of Just-In-Time compiler for eBPF bytecode.
+ *
+ * Copyright (c) 2024 Synopsys Inc.
+ * Author: Shahab Vahedi <shahab@synopsys.com>
+ */
+#include <linux/bug.h>
+#include "bpf_jit.h"
+
+/*
+ * Check for the return value. A pattern used often in this file.
+ * There must be a "ret" variable of type "int" in the scope.
+ */
+#define CHECK_RET(cmd) \
+ do { \
+ ret = (cmd); \
+ if (ret < 0) \
+ return ret; \
+ } while (0)
+
+#ifdef ARC_BPF_JIT_DEBUG
+/* Dumps bytes in /var/log/messages at KERN_INFO level (4). */
+static void dump_bytes(const u8 *buf, u32 len, const char *header)
+{
+ u8 line[64];
+ size_t i, j;
+
+ pr_info("-----------------[ %s ]-----------------\n", header);
+
+ for (i = 0, j = 0; i < len; i++) {
+ /* Last input byte? */
+ if (i == len - 1) {
+ j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
+ pr_info("%s\n", line);
+ break;
+ }
+ /* End of line? */
+ else if (i % 8 == 7) {
+ j += scnprintf(line + j, 64 - j, "0x%02x", buf[i]);
+ pr_info("%s\n", line);
+ j = 0;
+ } else {
+ j += scnprintf(line + j, 64 - j, "0x%02x, ", buf[i]);
+ }
+ }
+}
+#endif /* ARC_BPF_JIT_DEBUG */
+
+/********************* JIT context ***********************/
+
+/*
+ * buf: Translated instructions end up here.
+ * len: The length of whole block in bytes.
+ * index: The offset at which the _next_ instruction may be put.
+ */
+struct jit_buffer {
+ u8 *buf;
+ u32 len;
+ u32 index;
+};
+
+/*
+ * This is a subset of "struct jit_context" that its information is deemed
+ * necessary for the next extra pass to come.
+ *
+ * bpf_header: Needed to finally lock the region.
+ * bpf2insn: Used to find the translation for instructions of interest.
+ *
+ * Things like "jit.buf" and "jit.len" can be retrieved respectively from
+ * "prog->bpf_func" and "prog->jited_len".
+ */
+struct arc_jit_data {
+ struct bpf_binary_header *bpf_header;
+ u32 *bpf2insn;
+};
+
+/*
+ * The JIT pertinent context that is used by different functions.
+ *
+ * prog: The current eBPF program being handled.
+ * orig_prog: The original eBPF program before any possible change.
+ * jit: The JIT buffer and its length.
+ * bpf_header: The JITed program header. "jit.buf" points inside it.
+ * emit: If set, opcodes are written to memory; else, a dry-run.
+ * do_zext: If true, 32-bit sub-regs must be zero extended.
+ * bpf2insn: Maps BPF insn indices to their counterparts in jit.buf.
+ * bpf2insn_valid: Indicates if "bpf2ins" is populated with the mappings.
+ * jit_data: A piece of memory to transfer data to the next pass.
+ * arc_regs_clobbered: Each bit status determines if that arc reg is clobbered.
+ * save_blink: Whether ARC's "blink" register needs to be saved.
+ * frame_size: Derived from "prog->aux->stack_depth".
+ * epilogue_offset: Used by early "return"s in the code to jump here.
+ * need_extra_pass: A forecast if an "extra_pass" will occur.
+ * is_extra_pass: Indicates if the current pass is an extra pass.
+ * user_bpf_prog: True, if VM opcodes come from a real program.
+ * blinded: True if "constant blinding" step returned a new "prog".
+ * success: Indicates if the whole JIT went OK.
+ */
+struct jit_context {
+ struct bpf_prog *prog;
+ struct bpf_prog *orig_prog;
+ struct jit_buffer jit;
+ struct bpf_binary_header *bpf_header;
+ bool emit;
+ bool do_zext;
+ u32 *bpf2insn;
+ bool bpf2insn_valid;
+ struct arc_jit_data *jit_data;
+ u32 arc_regs_clobbered;
+ bool save_blink;
+ u16 frame_size;
+ u32 epilogue_offset;
+ bool need_extra_pass;
+ bool is_extra_pass;
+ bool user_bpf_prog;
+ bool blinded;
+ bool success;
+};
+
+/*
+ * If we're in ARC_BPF_JIT_DEBUG mode and the debug level is right, dump the
+ * input BPF stream. "bpf_jit_dump()" is not fully suited for this purpose.
+ */
+static void vm_dump(const struct bpf_prog *prog)
+{
+#ifdef ARC_BPF_JIT_DEBUG
+ if (bpf_jit_enable > 1)
+ dump_bytes((u8 *)prog->insns, 8 * prog->len, " VM ");
+#endif
+}
+
+/*
+ * If the right level of debug is set, dump the bytes. There are 2 variants
+ * of this function:
+ *
+ * 1. Use the standard bpf_jit_dump() which is meant only for JITed code.
+ * 2. Use the dump_bytes() to match its "vm_dump()" instance.
+ */
+static void jit_dump(const struct jit_context *ctx)
+{
+#ifdef ARC_BPF_JIT_DEBUG
+ u8 header[8];
+#endif
+ const int pass = ctx->is_extra_pass ? 2 : 1;
+
+ if (bpf_jit_enable <= 1 || !ctx->prog->jited)
+ return;
+
+#ifdef ARC_BPF_JIT_DEBUG
+ scnprintf(header, sizeof(header), "JIT:%d", pass);
+ dump_bytes(ctx->jit.buf, ctx->jit.len, header);
+ pr_info("\n");
+#else
+ bpf_jit_dump(ctx->prog->len, ctx->jit.len, pass, ctx->jit.buf);
+#endif
+}
+
+/* Initialise the context so there's no garbage. */
+static int jit_ctx_init(struct jit_context *ctx, struct bpf_prog *prog)
+{
+ memset(ctx, 0, sizeof(*ctx));
+
+ ctx->orig_prog = prog;
+
+ /* If constant blinding was requested but failed, scram. */
+ ctx->prog = bpf_jit_blind_constants(prog);
+ if (IS_ERR(ctx->prog))
+ return PTR_ERR(ctx->prog);
+ ctx->blinded = (ctx->prog != ctx->orig_prog);
+
+ /* If the verifier doesn't zero-extend, then we have to do it. */
+ ctx->do_zext = !ctx->prog->aux->verifier_zext;
+
+ ctx->is_extra_pass = ctx->prog->jited;
+ ctx->user_bpf_prog = ctx->prog->is_func;
+
+ return 0;
+}
+
+/*
+ * Only after the first iteration of normal pass (the dry-run),
+ * there are valid offsets in ctx->bpf2insn array.
+ */
+static inline bool offsets_available(const struct jit_context *ctx)
+{
+ return ctx->bpf2insn_valid;
+}
+
+/*
+ * "*mem" should be freed when there is no "extra pass" to come,
+ * or the compilation terminated abruptly. A few of such memory
+ * allocations are: ctx->jit_data and ctx->bpf2insn.
+ */
+static inline void maybe_free(struct jit_context *ctx, void **mem)
+{
+ if (*mem) {
+ if (!ctx->success || !ctx->need_extra_pass) {
+ kfree(*mem);
+ *mem = NULL;
+ }
+ }
+}
+
+/*
+ * Free memories based on the status of the context.
+ *
+ * A note about "bpf_header": On successful runs, "bpf_header" is
+ * not freed, because "jit.buf", a sub-array of it, is returned as
+ * the "bpf_func". However, "bpf_header" is lost and nothing points
+ * to it. This should not cause a leakage, because apparently
+ * "bpf_header" can be revived by "bpf_jit_binary_hdr()". This is
+ * how "bpf_jit_free()" in "kernel/bpf/core.c" releases the memory.
+ */
+static void jit_ctx_cleanup(struct jit_context *ctx)
+{
+ if (ctx->blinded) {
+ /* if all went well, release the orig_prog. */
+ if (ctx->success)
+ bpf_jit_prog_release_other(ctx->prog, ctx->orig_prog);
+ else
+ bpf_jit_prog_release_other(ctx->orig_prog, ctx->prog);
+ }
+
+ maybe_free(ctx, (void **)&ctx->bpf2insn);
+ maybe_free(ctx, (void **)&ctx->jit_data);
+
+ if (!ctx->bpf2insn)
+ ctx->bpf2insn_valid = false;
+
+ /* Freeing "bpf_header" is enough. "jit.buf" is a sub-array of it. */
+ if (!ctx->success && ctx->bpf_header) {
+ bpf_jit_binary_free(ctx->bpf_header);
+ ctx->bpf_header = NULL;
+ ctx->jit.buf = NULL;
+ ctx->jit.index = 0;
+ ctx->jit.len = 0;
+ }
+
+ ctx->emit = false;
+ ctx->do_zext = false;
+}
+
+/*
+ * Analyse the register usage and record the frame size.
+ * The register usage is determined by consulting the back-end.
+ */
+static void analyze_reg_usage(struct jit_context *ctx)
+{
+ size_t i;
+ u32 usage = 0;
+ const struct bpf_insn *insn = ctx->prog->insnsi;
+
+ for (i = 0; i < ctx->prog->len; i++) {
+ u8 bpf_reg;
+ bool call;
+
+ bpf_reg = insn[i].dst_reg;
+ call = (insn[i].code == (BPF_JMP | BPF_CALL)) ? true : false;
+ usage |= mask_for_used_regs(bpf_reg, call);
+ }
+
+ ctx->arc_regs_clobbered = usage;
+ ctx->frame_size = ctx->prog->aux->stack_depth;
+}
+
+/* Verify that no instruction will be emitted when there is no buffer. */
+static inline int jit_buffer_check(const struct jit_context *ctx)
+{
+ if (ctx->emit) {
+ if (!ctx->jit.buf) {
+ pr_err("bpf-jit: inconsistence state; no "
+ "buffer to emit instructions.\n");
+ return -EINVAL;
+ } else if (ctx->jit.index > ctx->jit.len) {
+ pr_err("bpf-jit: estimated JIT length is less "
+ "than the emitted instructions.\n");
+ return -EFAULT;
+ }
+ }
+ return 0;
+}
+
+/* On a dry-run (emit=false), "jit.len" is growing gradually. */
+static inline void jit_buffer_update(struct jit_context *ctx, u32 n)
+{
+ if (!ctx->emit)
+ ctx->jit.len += n;
+ else
+ ctx->jit.index += n;
+}
+
+/* Based on "emit", determine the address where instructions are emitted. */
+static inline u8 *effective_jit_buf(const struct jit_context *ctx)
+{
+ return ctx->emit ? (ctx->jit.buf + ctx->jit.index) : NULL;
+}
+
+/* Prologue based on context variables set by "analyze_reg_usage()". */
+static int handle_prologue(struct jit_context *ctx)
+{
+ int ret;
+ u8 *buf = effective_jit_buf(ctx);
+ u32 len = 0;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ len = arc_prologue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
+ jit_buffer_update(ctx, len);
+
+ return 0;
+}
+
+/* The counter part for "handle_prologue()". */
+static int handle_epilogue(struct jit_context *ctx)
+{
+ int ret;
+ u8 *buf = effective_jit_buf(ctx);
+ u32 len = 0;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ len = arc_epilogue(buf, ctx->arc_regs_clobbered, ctx->frame_size);
+ jit_buffer_update(ctx, len);
+
+ return 0;
+}
+
+/* Tell which number of the BPF instruction we are dealing with. */
+static inline s32 get_index_for_insn(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ return (insn - ctx->prog->insnsi);
+}
+
+/*
+ * In most of the cases, the "offset" is read from "insn->off". However,
+ * if it is an unconditional BPF_JMP32, then it comes from "insn->imm".
+ *
+ * (Courtesy of "cpu=v4" support)
+ */
+static inline s32 get_offset(const struct bpf_insn *insn)
+{
+ if ((BPF_CLASS(insn->code) == BPF_JMP32) &&
+ (BPF_OP(insn->code) == BPF_JA))
+ return insn->imm;
+ else
+ return insn->off;
+}
+
+/*
+ * Determine to which number of the BPF instruction we're jumping to.
+ *
+ * The "offset" is interpreted as the "number" of BPF instructions
+ * from the _next_ BPF instruction. e.g.:
+ *
+ * 4 means 4 instructions after the next insn
+ * 0 means 0 instructions after the next insn -> fallthrough.
+ * -1 means 1 instruction before the next insn -> jmp to current insn.
+ *
+ * Another way to look at this, "offset" is the number of instructions
+ * that exist between the current instruction and the target instruction.
+ *
+ * It is worth noting that a "mov r,i64", which is 16-byte long, is
+ * treated as two instructions long, therefore "offset" needn't be
+ * treated specially for those. Everything is uniform.
+ */
+static inline s32 get_target_index_for_insn(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ return (get_index_for_insn(ctx, insn) + 1) + get_offset(insn);
+}
+
+/* Is there an immediate operand encoded in the "insn"? */
+static inline bool has_imm(const struct bpf_insn *insn)
+{
+ return BPF_SRC(insn->code) == BPF_K;
+}
+
+/* Is the last BPF instruction? */
+static inline bool is_last_insn(const struct bpf_prog *prog, u32 idx)
+{
+ return idx == (prog->len - 1);
+}
+
+/*
+ * Invocation of this function, conditionally signals the need for
+ * an extra pass. The conditions that must be met are:
+ *
+ * 1. The current pass itself shouldn't be an extra pass.
+ * 2. The stream of bytes being JITed must come from a user program.
+ */
+static inline void set_need_for_extra_pass(struct jit_context *ctx)
+{
+ if (!ctx->is_extra_pass)
+ ctx->need_extra_pass = ctx->user_bpf_prog;
+}
+
+/*
+ * Check if the "size" is valid and then transfer the control to
+ * the back-end for the swap.
+ */
+static int handle_swap(u8 *buf, u8 rd, u8 size, u8 endian,
+ bool force, bool do_zext, u8 *len)
+{
+ /* Sanity check on the size. */
+ switch (size) {
+ case 16:
+ case 32:
+ case 64:
+ break;
+ default:
+ pr_err("bpf-jit: invalid size for swap.\n");
+ return -EINVAL;
+ }
+
+ *len = gen_swap(buf, rd, size, endian, force, do_zext);
+
+ return 0;
+}
+
+/* Checks if the (instruction) index is in valid range. */
+static inline bool check_insn_idx_valid(const struct jit_context *ctx,
+ const s32 idx)
+{
+ return (idx >= 0 && idx < ctx->prog->len);
+}
+
+/*
+ * Decouple the back-end from BPF by converting BPF conditions
+ * to internal enum. ARC_CC_* start from 0 and are used as index
+ * to an array. BPF_J* usage must end after this conversion.
+ */
+static int bpf_cond_to_arc(const u8 op, u8 *arc_cc)
+{
+ switch (op) {
+ case BPF_JA:
+ *arc_cc = ARC_CC_AL;
+ break;
+ case BPF_JEQ:
+ *arc_cc = ARC_CC_EQ;
+ break;
+ case BPF_JGT:
+ *arc_cc = ARC_CC_UGT;
+ break;
+ case BPF_JGE:
+ *arc_cc = ARC_CC_UGE;
+ break;
+ case BPF_JSET:
+ *arc_cc = ARC_CC_SET;
+ break;
+ case BPF_JNE:
+ *arc_cc = ARC_CC_NE;
+ break;
+ case BPF_JSGT:
+ *arc_cc = ARC_CC_SGT;
+ break;
+ case BPF_JSGE:
+ *arc_cc = ARC_CC_SGE;
+ break;
+ case BPF_JLT:
+ *arc_cc = ARC_CC_ULT;
+ break;
+ case BPF_JLE:
+ *arc_cc = ARC_CC_ULE;
+ break;
+ case BPF_JSLT:
+ *arc_cc = ARC_CC_SLT;
+ break;
+ case BPF_JSLE:
+ *arc_cc = ARC_CC_SLE;
+ break;
+ default:
+ pr_err("bpf-jit: can't handle condition 0x%02X\n", op);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+/*
+ * Check a few things for a supposedly "jump" instruction:
+ *
+ * 0. "insn" is a "jump" instruction, but not the "call/exit" variant.
+ * 1. The current "insn" index is in valid range.
+ * 2. The index of target instruction is in valid range.
+ */
+static int check_bpf_jump(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const u8 class = BPF_CLASS(insn->code);
+ const u8 op = BPF_OP(insn->code);
+
+ /* Must be a jmp(32) instruction that is not a "call/exit". */
+ if ((class != BPF_JMP && class != BPF_JMP32) ||
+ (op == BPF_CALL || op == BPF_EXIT)) {
+ pr_err("bpf-jit: not a jump instruction.\n");
+ return -EINVAL;
+ }
+
+ if (!check_insn_idx_valid(ctx, get_index_for_insn(ctx, insn))) {
+ pr_err("bpf-jit: the bpf jump insn is not in prog.\n");
+ return -EINVAL;
+ }
+
+ if (!check_insn_idx_valid(ctx, get_target_index_for_insn(ctx, insn))) {
+ pr_err("bpf-jit: bpf jump label is out of range.\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Based on input "insn", consult "ctx->bpf2insn" to get the
+ * related index (offset) of the translation in JIT stream.
+ */
+static u32 get_curr_jit_off(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const s32 idx = get_index_for_insn(ctx, insn);
+#ifdef ARC_BPF_JIT_DEBUG
+ BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, idx));
+#endif
+ return ctx->bpf2insn[idx];
+}
+
+/*
+ * The input "insn" must be a jump instruction.
+ *
+ * Based on input "insn", consult "ctx->bpf2insn" to get the
+ * related JIT index (offset) of "target instruction" that
+ * "insn" would jump to.
+ */
+static u32 get_targ_jit_off(const struct jit_context *ctx,
+ const struct bpf_insn *insn)
+{
+ const s32 tidx = get_target_index_for_insn(ctx, insn);
+#ifdef ARC_BPF_JIT_DEBUG
+ BUG_ON(!offsets_available(ctx) || !check_insn_idx_valid(ctx, tidx));
+#endif
+ return ctx->bpf2insn[tidx];
+}
+
+/*
+ * This function will return 0 for a feasible jump.
+ *
+ * Consult the back-end to check if it finds it feasible to emit
+ * the necessary instructions based on "cond" and the displacement
+ * between the "from_off" and the "to_off".
+ */
+static int feasible_jit_jump(u32 from_off, u32 to_off, u8 cond, bool j32)
+{
+ int ret = 0;
+
+ if (j32) {
+ if (!check_jmp_32(from_off, to_off, cond))
+ ret = -EFAULT;
+ } else {
+ if (!check_jmp_64(from_off, to_off, cond))
+ ret = -EFAULT;
+ }
+
+ if (ret != 0)
+ pr_err("bpf-jit: the JIT displacement is not OK.\n");
+
+ return ret;
+}
+
+/*
+ * This jump handler performs the following steps:
+ *
+ * 1. Compute ARC's internal condition code from BPF's
+ * 2. Determine the bitness of the operation (32 vs. 64)
+ * 3. Sanity check on BPF stream
+ * 4. Sanity check on what is supposed to be JIT's displacement
+ * 5. And finally, emit the necessary instructions
+ *
+ * The last two steps are performed through the back-end.
+ * The value of steps 1 and 2 are necessary inputs for the back-end.
+ */
+static int handle_jumps(const struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ u8 cond;
+ int ret = 0;
+ u8 *buf = effective_jit_buf(ctx);
+ const bool j32 = (BPF_CLASS(insn->code) == BPF_JMP32) ? true : false;
+ const u8 rd = insn->dst_reg;
+ u8 rs = insn->src_reg;
+ u32 curr_off = 0, targ_off = 0;
+
+ *len = 0;
+
+ /* Map the BPF condition to internal enum. */
+ CHECK_RET(bpf_cond_to_arc(BPF_OP(insn->code), &cond));
+
+ /* Sanity check on the BPF byte stream. */
+ CHECK_RET(check_bpf_jump(ctx, insn));
+
+ /*
+ * Move the immediate into a temporary register _now_ for 2 reasons:
+ *
+ * 1. "gen_jmp_{32,64}()" deal with operands in registers.
+ *
+ * 2. The "len" parameter will grow so that the current jit offset
+ * (curr_off) will have increased to a point where the necessary
+ * instructions can be inserted by "gen_jmp_{32,64}()".
+ */
+ if (has_imm(insn) && cond != ARC_CC_AL) {
+ if (j32) {
+ *len += mov_r32_i32(BUF(buf, *len), JIT_REG_TMP,
+ insn->imm);
+ } else {
+ *len += mov_r64_i32(BUF(buf, *len), JIT_REG_TMP,
+ insn->imm);
+ }
+ rs = JIT_REG_TMP;
+ }
+
+ /* If the offsets are known, check if the branch can occur. */
+ if (offsets_available(ctx)) {
+ curr_off = get_curr_jit_off(ctx, insn) + *len;
+ targ_off = get_targ_jit_off(ctx, insn);
+
+ /* Sanity check on the back-end side. */
+ CHECK_RET(feasible_jit_jump(curr_off, targ_off, cond, j32));
+ }
+
+ if (j32) {
+ *len += gen_jmp_32(BUF(buf, *len), rd, rs, cond,
+ curr_off, targ_off);
+ } else {
+ *len += gen_jmp_64(BUF(buf, *len), rd, rs, cond,
+ curr_off, targ_off);
+ }
+
+ return ret;
+}
+
+/* Jump to translated epilogue address. */
+static int handle_jmp_epilogue(struct jit_context *ctx,
+ const struct bpf_insn *insn, u8 *len)
+{
+ u8 *buf = effective_jit_buf(ctx);
+ u32 curr_off = 0, epi_off = 0;
+
+ /* Check the offset only if the data is available. */
+ if (offsets_available(ctx)) {
+ curr_off = get_curr_jit_off(ctx, insn);
+ epi_off = ctx->epilogue_offset;
+
+ if (!check_jmp_64(curr_off, epi_off, ARC_CC_AL)) {
+ pr_err("bpf-jit: epilogue offset is not valid.\n");
+ return -EINVAL;
+ }
+ }
+
+ /* Jump to "epilogue offset" (rd and rs don't matter). */
+ *len = gen_jmp_64(buf, 0, 0, ARC_CC_AL, curr_off, epi_off);
+
+ return 0;
+}
+
+/* Try to get the resolved address and generate the instructions. */
+static int handle_call(struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ int ret;
+ bool in_kernel_func, fixed = false;
+ u64 addr = 0;
+ u8 *buf = effective_jit_buf(ctx);
+
+ ret = bpf_jit_get_func_addr(ctx->prog, insn, ctx->is_extra_pass,
+ &addr, &fixed);
+ if (ret < 0) {
+ pr_err("bpf-jit: can't get the address for call.\n");
+ return ret;
+ }
+ in_kernel_func = (fixed ? true : false);
+
+ /* No valuable address retrieved (yet). */
+ if (!fixed && !addr)
+ set_need_for_extra_pass(ctx);
+
+ *len = gen_func_call(buf, (ARC_ADDR)addr, in_kernel_func);
+
+ if (insn->src_reg != BPF_PSEUDO_CALL) {
+ /* Assigning ABI's return reg to JIT's return reg. */
+ *len += arc_to_bpf_return(BUF(buf, *len));
+ }
+
+ return 0;
+}
+
+/*
+ * Try to generate instructions for loading a 64-bit immediate.
+ * These sort of instructions are usually associated with the 64-bit
+ * relocations: R_BPF_64_64. Therefore, signal the need for an extra
+ * pass if the circumstances are right.
+ */
+static int handle_ld_imm64(struct jit_context *ctx,
+ const struct bpf_insn *insn,
+ u8 *len)
+{
+ const s32 idx = get_index_for_insn(ctx, insn);
+ u8 *buf = effective_jit_buf(ctx);
+
+ /* We're about to consume 2 VM instructions. */
+ if (is_last_insn(ctx->prog, idx)) {
+ pr_err("bpf-jit: need more data for 64-bit immediate.\n");
+ return -EINVAL;
+ }
+
+ *len = mov_r64_i64(buf, insn->dst_reg, insn->imm, (insn + 1)->imm);
+
+ if (bpf_pseudo_func(insn))
+ set_need_for_extra_pass(ctx);
+
+ return 0;
+}
+
+/*
+ * Handles one eBPF instruction at a time. To make this function faster,
+ * it does not call "jit_buffer_check()". Else, it would call it for every
+ * instruction. As a result, it should not be invoked directly. Only
+ * "handle_body()", that has already executed the "check", may call this
+ * function.
+ *
+ * If the "ret" value is negative, something has went wrong. Else,
+ * it mostly holds the value 0 and rarely 1. Number 1 signals
+ * the loop in "handle_body()" to skip the next instruction, because
+ * it has been consumed as part of a 64-bit immediate value.
+ */
+static int handle_insn(struct jit_context *ctx, u32 idx)
+{
+ const struct bpf_insn *insn = &ctx->prog->insnsi[idx];
+ const u8 code = insn->code;
+ const u8 dst = insn->dst_reg;
+ const u8 src = insn->src_reg;
+ const s16 off = insn->off;
+ const s32 imm = insn->imm;
+ u8 *buf = effective_jit_buf(ctx);
+ u8 len = 0;
+ int ret = 0;
+
+ switch (code) {
+ /* dst += src (32-bit) */
+ case BPF_ALU | BPF_ADD | BPF_X:
+ len = add_r32(buf, dst, src);
+ break;
+ /* dst += imm (32-bit) */
+ case BPF_ALU | BPF_ADD | BPF_K:
+ len = add_r32_i32(buf, dst, imm);
+ break;
+ /* dst -= src (32-bit) */
+ case BPF_ALU | BPF_SUB | BPF_X:
+ len = sub_r32(buf, dst, src);
+ break;
+ /* dst -= imm (32-bit) */
+ case BPF_ALU | BPF_SUB | BPF_K:
+ len = sub_r32_i32(buf, dst, imm);
+ break;
+ /* dst = -dst (32-bit) */
+ case BPF_ALU | BPF_NEG:
+ len = neg_r32(buf, dst);
+ break;
+ /* dst *= src (32-bit) */
+ case BPF_ALU | BPF_MUL | BPF_X:
+ len = mul_r32(buf, dst, src);
+ break;
+ /* dst *= imm (32-bit) */
+ case BPF_ALU | BPF_MUL | BPF_K:
+ len = mul_r32_i32(buf, dst, imm);
+ break;
+ /* dst /= src (32-bit) */
+ case BPF_ALU | BPF_DIV | BPF_X:
+ len = div_r32(buf, dst, src, off == 1);
+ break;
+ /* dst /= imm (32-bit) */
+ case BPF_ALU | BPF_DIV | BPF_K:
+ len = div_r32_i32(buf, dst, imm, off == 1);
+ break;
+ /* dst %= src (32-bit) */
+ case BPF_ALU | BPF_MOD | BPF_X:
+ len = mod_r32(buf, dst, src, off == 1);
+ break;
+ /* dst %= imm (32-bit) */
+ case BPF_ALU | BPF_MOD | BPF_K:
+ len = mod_r32_i32(buf, dst, imm, off == 1);
+ break;
+ /* dst &= src (32-bit) */
+ case BPF_ALU | BPF_AND | BPF_X:
+ len = and_r32(buf, dst, src);
+ break;
+ /* dst &= imm (32-bit) */
+ case BPF_ALU | BPF_AND | BPF_K:
+ len = and_r32_i32(buf, dst, imm);
+ break;
+ /* dst |= src (32-bit) */
+ case BPF_ALU | BPF_OR | BPF_X:
+ len = or_r32(buf, dst, src);
+ break;
+ /* dst |= imm (32-bit) */
+ case BPF_ALU | BPF_OR | BPF_K:
+ len = or_r32_i32(buf, dst, imm);
+ break;
+ /* dst ^= src (32-bit) */
+ case BPF_ALU | BPF_XOR | BPF_X:
+ len = xor_r32(buf, dst, src);
+ break;
+ /* dst ^= imm (32-bit) */
+ case BPF_ALU | BPF_XOR | BPF_K:
+ len = xor_r32_i32(buf, dst, imm);
+ break;
+ /* dst <<= src (32-bit) */
+ case BPF_ALU | BPF_LSH | BPF_X:
+ len = lsh_r32(buf, dst, src);
+ break;
+ /* dst <<= imm (32-bit) */
+ case BPF_ALU | BPF_LSH | BPF_K:
+ len = lsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (32-bit) [unsigned] */
+ case BPF_ALU | BPF_RSH | BPF_X:
+ len = rsh_r32(buf, dst, src);
+ break;
+ /* dst >>= imm (32-bit) [unsigned] */
+ case BPF_ALU | BPF_RSH | BPF_K:
+ len = rsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (32-bit) [signed] */
+ case BPF_ALU | BPF_ARSH | BPF_X:
+ len = arsh_r32(buf, dst, src);
+ break;
+ /* dst >>= imm (32-bit) [signed] */
+ case BPF_ALU | BPF_ARSH | BPF_K:
+ len = arsh_r32_i32(buf, dst, imm);
+ break;
+ /* dst = src (32-bit) */
+ case BPF_ALU | BPF_MOV | BPF_X:
+ len = mov_r32(buf, dst, src, (u8)off);
+ break;
+ /* dst = imm32 (32-bit) */
+ case BPF_ALU | BPF_MOV | BPF_K:
+ len = mov_r32_i32(buf, dst, imm);
+ break;
+ /* dst = swap(dst) */
+ case BPF_ALU | BPF_END | BPF_FROM_LE:
+ case BPF_ALU | BPF_END | BPF_FROM_BE:
+ case BPF_ALU64 | BPF_END | BPF_FROM_LE: {
+ CHECK_RET(handle_swap(buf, dst, imm, BPF_SRC(code),
+ BPF_CLASS(code) == BPF_ALU64,
+ ctx->do_zext, &len));
+ break;
+ }
+ /* dst += src (64-bit) */
+ case BPF_ALU64 | BPF_ADD | BPF_X:
+ len = add_r64(buf, dst, src);
+ break;
+ /* dst += imm32 (64-bit) */
+ case BPF_ALU64 | BPF_ADD | BPF_K:
+ len = add_r64_i32(buf, dst, imm);
+ break;
+ /* dst -= src (64-bit) */
+ case BPF_ALU64 | BPF_SUB | BPF_X:
+ len = sub_r64(buf, dst, src);
+ break;
+ /* dst -= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_SUB | BPF_K:
+ len = sub_r64_i32(buf, dst, imm);
+ break;
+ /* dst = -dst (64-bit) */
+ case BPF_ALU64 | BPF_NEG:
+ len = neg_r64(buf, dst);
+ break;
+ /* dst *= src (64-bit) */
+ case BPF_ALU64 | BPF_MUL | BPF_X:
+ len = mul_r64(buf, dst, src);
+ break;
+ /* dst *= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_MUL | BPF_K:
+ len = mul_r64_i32(buf, dst, imm);
+ break;
+ /* dst &= src (64-bit) */
+ case BPF_ALU64 | BPF_AND | BPF_X:
+ len = and_r64(buf, dst, src);
+ break;
+ /* dst &= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_AND | BPF_K:
+ len = and_r64_i32(buf, dst, imm);
+ break;
+ /* dst |= src (64-bit) */
+ case BPF_ALU64 | BPF_OR | BPF_X:
+ len = or_r64(buf, dst, src);
+ break;
+ /* dst |= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_OR | BPF_K:
+ len = or_r64_i32(buf, dst, imm);
+ break;
+ /* dst ^= src (64-bit) */
+ case BPF_ALU64 | BPF_XOR | BPF_X:
+ len = xor_r64(buf, dst, src);
+ break;
+ /* dst ^= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_XOR | BPF_K:
+ len = xor_r64_i32(buf, dst, imm);
+ break;
+ /* dst <<= src (64-bit) */
+ case BPF_ALU64 | BPF_LSH | BPF_X:
+ len = lsh_r64(buf, dst, src);
+ break;
+ /* dst <<= imm32 (64-bit) */
+ case BPF_ALU64 | BPF_LSH | BPF_K:
+ len = lsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (64-bit) [unsigned] */
+ case BPF_ALU64 | BPF_RSH | BPF_X:
+ len = rsh_r64(buf, dst, src);
+ break;
+ /* dst >>= imm32 (64-bit) [unsigned] */
+ case BPF_ALU64 | BPF_RSH | BPF_K:
+ len = rsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst >>= src (64-bit) [signed] */
+ case BPF_ALU64 | BPF_ARSH | BPF_X:
+ len = arsh_r64(buf, dst, src);
+ break;
+ /* dst >>= imm32 (64-bit) [signed] */
+ case BPF_ALU64 | BPF_ARSH | BPF_K:
+ len = arsh_r64_i32(buf, dst, imm);
+ break;
+ /* dst = src (64-bit) */
+ case BPF_ALU64 | BPF_MOV | BPF_X:
+ len = mov_r64(buf, dst, src, (u8)off);
+ break;
+ /* dst = imm32 (sign extend to 64-bit) */
+ case BPF_ALU64 | BPF_MOV | BPF_K:
+ len = mov_r64_i32(buf, dst, imm);
+ break;
+ /* dst = imm64 */
+ case BPF_LD | BPF_DW | BPF_IMM:
+ CHECK_RET(handle_ld_imm64(ctx, insn, &len));
+ /* Tell the loop to skip the next instruction. */
+ ret = 1;
+ break;
+ /* dst = *(size *)(src + off) */
+ case BPF_LDX | BPF_MEM | BPF_W:
+ case BPF_LDX | BPF_MEM | BPF_H:
+ case BPF_LDX | BPF_MEM | BPF_B:
+ case BPF_LDX | BPF_MEM | BPF_DW:
+ len = load_r(buf, dst, src, off, BPF_SIZE(code), false);
+ break;
+ case BPF_LDX | BPF_MEMSX | BPF_W:
+ case BPF_LDX | BPF_MEMSX | BPF_H:
+ case BPF_LDX | BPF_MEMSX | BPF_B:
+ len = load_r(buf, dst, src, off, BPF_SIZE(code), true);
+ break;
+ /* *(size *)(dst + off) = src */
+ case BPF_STX | BPF_MEM | BPF_W:
+ case BPF_STX | BPF_MEM | BPF_H:
+ case BPF_STX | BPF_MEM | BPF_B:
+ case BPF_STX | BPF_MEM | BPF_DW:
+ len = store_r(buf, src, dst, off, BPF_SIZE(code));
+ break;
+ case BPF_ST | BPF_MEM | BPF_W:
+ case BPF_ST | BPF_MEM | BPF_H:
+ case BPF_ST | BPF_MEM | BPF_B:
+ case BPF_ST | BPF_MEM | BPF_DW:
+ len = store_i(buf, imm, dst, off, BPF_SIZE(code));
+ break;
+ case BPF_JMP | BPF_JA:
+ case BPF_JMP | BPF_JEQ | BPF_X:
+ case BPF_JMP | BPF_JEQ | BPF_K:
+ case BPF_JMP | BPF_JNE | BPF_X:
+ case BPF_JMP | BPF_JNE | BPF_K:
+ case BPF_JMP | BPF_JSET | BPF_X:
+ case BPF_JMP | BPF_JSET | BPF_K:
+ case BPF_JMP | BPF_JGT | BPF_X:
+ case BPF_JMP | BPF_JGT | BPF_K:
+ case BPF_JMP | BPF_JGE | BPF_X:
+ case BPF_JMP | BPF_JGE | BPF_K:
+ case BPF_JMP | BPF_JSGT | BPF_X:
+ case BPF_JMP | BPF_JSGT | BPF_K:
+ case BPF_JMP | BPF_JSGE | BPF_X:
+ case BPF_JMP | BPF_JSGE | BPF_K:
+ case BPF_JMP | BPF_JLT | BPF_X:
+ case BPF_JMP | BPF_JLT | BPF_K:
+ case BPF_JMP | BPF_JLE | BPF_X:
+ case BPF_JMP | BPF_JLE | BPF_K:
+ case BPF_JMP | BPF_JSLT | BPF_X:
+ case BPF_JMP | BPF_JSLT | BPF_K:
+ case BPF_JMP | BPF_JSLE | BPF_X:
+ case BPF_JMP | BPF_JSLE | BPF_K:
+ case BPF_JMP32 | BPF_JA:
+ case BPF_JMP32 | BPF_JEQ | BPF_X:
+ case BPF_JMP32 | BPF_JEQ | BPF_K:
+ case BPF_JMP32 | BPF_JNE | BPF_X:
+ case BPF_JMP32 | BPF_JNE | BPF_K:
+ case BPF_JMP32 | BPF_JSET | BPF_X:
+ case BPF_JMP32 | BPF_JSET | BPF_K:
+ case BPF_JMP32 | BPF_JGT | BPF_X:
+ case BPF_JMP32 | BPF_JGT | BPF_K:
+ case BPF_JMP32 | BPF_JGE | BPF_X:
+ case BPF_JMP32 | BPF_JGE | BPF_K:
+ case BPF_JMP32 | BPF_JSGT | BPF_X:
+ case BPF_JMP32 | BPF_JSGT | BPF_K:
+ case BPF_JMP32 | BPF_JSGE | BPF_X:
+ case BPF_JMP32 | BPF_JSGE | BPF_K:
+ case BPF_JMP32 | BPF_JLT | BPF_X:
+ case BPF_JMP32 | BPF_JLT | BPF_K:
+ case BPF_JMP32 | BPF_JLE | BPF_X:
+ case BPF_JMP32 | BPF_JLE | BPF_K:
+ case BPF_JMP32 | BPF_JSLT | BPF_X:
+ case BPF_JMP32 | BPF_JSLT | BPF_K:
+ case BPF_JMP32 | BPF_JSLE | BPF_X:
+ case BPF_JMP32 | BPF_JSLE | BPF_K:
+ CHECK_RET(handle_jumps(ctx, insn, &len));
+ break;
+ case BPF_JMP | BPF_CALL:
+ CHECK_RET(handle_call(ctx, insn, &len));
+ break;
+
+ case BPF_JMP | BPF_EXIT:
+ /* If this is the last instruction, epilogue will follow. */
+ if (is_last_insn(ctx->prog, idx))
+ break;
+ CHECK_RET(handle_jmp_epilogue(ctx, insn, &len));
+ break;
+ default:
+ pr_err("bpf-jit: can't handle instruction code 0x%02X\n", code);
+ return -EOPNOTSUPP;
+ }
+
+ if (BPF_CLASS(code) == BPF_ALU) {
+ /*
+ * Skip the "swap" instructions. Even 64-bit swaps are of type
+ * BPF_ALU (and not BPF_ALU64). Therefore, for the swaps, one
+ * has to look at the "size" of the operations rather than the
+ * ALU type. "gen_swap()" specifically takes care of that.
+ */
+ if (BPF_OP(code) != BPF_END && ctx->do_zext)
+ len += zext(BUF(buf, len), dst);
+ }
+
+ jit_buffer_update(ctx, len);
+
+ return ret;
+}
+
+static int handle_body(struct jit_context *ctx)
+{
+ int ret;
+ bool populate_bpf2insn = false;
+ const struct bpf_prog *prog = ctx->prog;
+
+ CHECK_RET(jit_buffer_check(ctx));
+
+ /*
+ * Record the mapping for the instructions during the dry-run.
+ * Doing it this way allows us to have the mapping ready for
+ * the jump instructions during the real compilation phase.
+ */
+ if (!ctx->emit)
+ populate_bpf2insn = true;
+
+ for (u32 i = 0; i < prog->len; i++) {
+ /* During the dry-run, jit.len grows gradually per BPF insn. */
+ if (populate_bpf2insn)
+ ctx->bpf2insn[i] = ctx->jit.len;
+
+ CHECK_RET(handle_insn(ctx, i));
+ if (ret > 0) {
+ /* "ret" is 1 if two (64-bit) chunks were consumed. */
+ ctx->bpf2insn[i + 1] = ctx->bpf2insn[i];
+ i++;
+ }
+ }
+
+ /* If bpf2insn had to be populated, then it is done at this point. */
+ if (populate_bpf2insn)
+ ctx->bpf2insn_valid = true;
+
+ return 0;
+}
+
+/*
+ * Initialize the memory with "unimp_s" which is the mnemonic for
+ * "unimplemented" instruction and always raises an exception.
+ *
+ * The instruction is 2 bytes. If "size" is odd, there is not much
+ * that can be done about the last byte in "area". Because, the
+ * CPU always fetches instructions in two bytes. Therefore, the
+ * byte beyond the last one is going to accompany it during a
+ * possible fetch. In the most likely case of a little endian
+ * system, that beyond-byte will become the major opcode and
+ * we have no control over its initialisation.
+ */
+static void fill_ill_insn(void *area, unsigned int size)
+{
+ const u16 unimp_s = 0x79e0;
+
+ if (size & 1) {
+ *((u8 *)area + (size - 1)) = 0xff;
+ size -= 1;
+ }
+
+ memset16(area, unimp_s, size >> 1);
+}
+
+/* Piece of memory that can be allocated at the beginning of jit_prepare(). */
+static int jit_prepare_early_mem_alloc(struct jit_context *ctx)
+{
+ ctx->bpf2insn = kcalloc(ctx->prog->len, sizeof(ctx->jit.len),
+ GFP_KERNEL);
+
+ if (!ctx->bpf2insn) {
+ pr_err("bpf-jit: could not allocate memory for "
+ "mapping of the instructions.\n");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * Memory allocations that rely on parameters known at the end of
+ * jit_prepare().
+ */
+static int jit_prepare_final_mem_alloc(struct jit_context *ctx)
+{
+ const size_t alignment = sizeof(u32);
+
+ ctx->bpf_header = bpf_jit_binary_alloc(ctx->jit.len, &ctx->jit.buf,
+ alignment, fill_ill_insn);
+ if (!ctx->bpf_header) {
+ pr_err("bpf-jit: could not allocate memory for translation.\n");
+ return -ENOMEM;
+ }
+
+ if (ctx->need_extra_pass) {
+ ctx->jit_data = kzalloc(sizeof(*ctx->jit_data), GFP_KERNEL);
+ if (!ctx->jit_data)
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * The first phase of the translation without actually emitting any
+ * instruction. It helps in getting a forecast on some aspects, such
+ * as the length of the whole program or where the epilogue starts.
+ *
+ * Whenever the necessary parameters are known, memories are allocated.
+ */
+static int jit_prepare(struct jit_context *ctx)
+{
+ int ret;
+
+ /* Dry run. */
+ ctx->emit = false;
+
+ CHECK_RET(jit_prepare_early_mem_alloc(ctx));
+
+ /* Get the length of prologue section after some register analysis. */
+ analyze_reg_usage(ctx);
+ CHECK_RET(handle_prologue(ctx));
+
+ CHECK_RET(handle_body(ctx));
+
+ /* Record at which offset epilogue begins. */
+ ctx->epilogue_offset = ctx->jit.len;
+
+ /* Process the epilogue section now. */
+ CHECK_RET(handle_epilogue(ctx));
+
+ CHECK_RET(jit_prepare_final_mem_alloc(ctx));
+
+ return 0;
+}
+
+/*
+ * jit_compile() is the real compilation phase. jit_prepare() is
+ * invoked before jit_compile() as a dry-run to make sure everything
+ * will go OK and allocate the necessary memory.
+ *
+ * In the end, jit_compile() checks if it has produced the same number
+ * of instructions as jit_prepare() would.
+ */
+static int jit_compile(struct jit_context *ctx)
+{
+ int ret;
+
+ /* Let there be code. */
+ ctx->emit = true;
+
+ CHECK_RET(handle_prologue(ctx));
+
+ CHECK_RET(handle_body(ctx));
+
+ CHECK_RET(handle_epilogue(ctx));
+
+ if (ctx->jit.index != ctx->jit.len) {
+ pr_err("bpf-jit: divergence between the phases; "
+ "%u vs. %u (bytes).\n",
+ ctx->jit.len, ctx->jit.index);
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+/*
+ * Calling this function implies a successful JIT. A successful
+ * translation is signaled by setting the right parameters:
+ *
+ * prog->jited=1, prog->jited_len=..., prog->bpf_func=...
+ */
+static int jit_finalize(struct jit_context *ctx)
+{
+ struct bpf_prog *prog = ctx->prog;
+
+ /* We're going to need this information for the "do_extra_pass()". */
+ if (ctx->need_extra_pass) {
+ ctx->jit_data->bpf_header = ctx->bpf_header;
+ ctx->jit_data->bpf2insn = ctx->bpf2insn;
+ prog->aux->jit_data = (void *)ctx->jit_data;
+ } else {
+ /*
+ * If things seem finalised, then mark the JITed memory
+ * as R-X and flush it.
+ */
+ if (bpf_jit_binary_lock_ro(ctx->bpf_header)) {
+ pr_err("bpf-jit: Could not lock the JIT memory.\n");
+ return -EFAULT;
+ }
+ flush_icache_range((unsigned long)ctx->bpf_header,
+ (unsigned long)
+ BUF(ctx->jit.buf, ctx->jit.len));
+ prog->aux->jit_data = NULL;
+ bpf_prog_fill_jited_linfo(prog, ctx->bpf2insn);
+ }
+
+ ctx->success = true;
+ prog->bpf_func = (void *)ctx->jit.buf;
+ prog->jited_len = ctx->jit.len;
+ prog->jited = 1;
+
+ jit_ctx_cleanup(ctx);
+ jit_dump(ctx);
+
+ return 0;
+}
+
+/*
+ * A lenient verification for the existence of JIT context in "prog".
+ * Apparently the JIT internals, namely jit_subprogs() in bpf/verifier.c,
+ * may request for a second compilation although nothing needs to be done.
+ */
+static inline int check_jit_context(const struct bpf_prog *prog)
+{
+ if (!prog->aux->jit_data) {
+ pr_notice("bpf-jit: no jit data for the extra pass.\n");
+ return 1;
+ } else {
+ return 0;
+ }
+}
+
+/* Reuse the previous pass's data. */
+static int jit_resume_context(struct jit_context *ctx)
+{
+ struct arc_jit_data *jdata =
+ (struct arc_jit_data *)ctx->prog->aux->jit_data;
+
+ if (!jdata) {
+ pr_err("bpf-jit: no jit data for the extra pass.\n");
+ return -EINVAL;
+ }
+
+ ctx->jit.buf = (u8 *)ctx->prog->bpf_func;
+ ctx->jit.len = ctx->prog->jited_len;
+ ctx->bpf_header = jdata->bpf_header;
+ ctx->bpf2insn = (u32 *)jdata->bpf2insn;
+ ctx->bpf2insn_valid = ctx->bpf2insn ? true : false;
+ ctx->jit_data = jdata;
+
+ return 0;
+}
+
+/*
+ * Patch in the new addresses. The instructions of interest are:
+ *
+ * - call
+ * - ld r64, imm64
+ *
+ * For "call"s, it resolves the addresses one more time through the
+ * handle_call().
+ *
+ * For 64-bit immediate loads, it just retranslates them, because the BPF
+ * core in kernel might have changed the value since the normal pass.
+ */
+static int jit_patch_relocations(struct jit_context *ctx)
+{
+ const u8 bpf_opc_call = BPF_JMP | BPF_CALL;
+ const u8 bpf_opc_ldi64 = BPF_LD | BPF_DW | BPF_IMM;
+ const struct bpf_prog *prog = ctx->prog;
+ int ret;
+
+ ctx->emit = true;
+ for (u32 i = 0; i < prog->len; i++) {
+ const struct bpf_insn *insn = &prog->insnsi[i];
+ u8 dummy;
+ /*
+ * Adjust "ctx.jit.index", so "gen_*()" functions below
+ * can use it for their output addresses.
+ */
+ ctx->jit.index = ctx->bpf2insn[i];
+
+ if (insn->code == bpf_opc_call) {
+ CHECK_RET(handle_call(ctx, insn, &dummy));
+ } else if (insn->code == bpf_opc_ldi64) {
+ CHECK_RET(handle_ld_imm64(ctx, insn, &dummy));
+ /* Skip the next instruction. */
+ ++i;
+ }
+ }
+ return 0;
+}
+
+/*
+ * A normal pass that involves a "dry-run" phase, jit_prepare(),
+ * to get the necessary data for the real compilation phase,
+ * jit_compile().
+ */
+static struct bpf_prog *do_normal_pass(struct bpf_prog *prog)
+{
+ struct jit_context ctx;
+
+ /* Bail out if JIT is disabled. */
+ if (!prog->jit_requested)
+ return prog;
+
+ if (jit_ctx_init(&ctx, prog)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ /* Get the lengths and allocate buffer. */
+ if (jit_prepare(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_compile(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_finalize(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ return ctx.prog;
+}
+
+/*
+ * If there are multi-function BPF programs that call each other,
+ * their translated addresses are not known all at once. Therefore,
+ * an extra pass is needed to consult the bpf_jit_get_func_addr()
+ * again to get the newly translated addresses in order to resolve
+ * the "call"s.
+ */
+static struct bpf_prog *do_extra_pass(struct bpf_prog *prog)
+{
+ struct jit_context ctx;
+
+ /* Skip if there's no context to resume from. */
+ if (check_jit_context(prog))
+ return prog;
+
+ if (jit_ctx_init(&ctx, prog)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_resume_context(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_patch_relocations(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ if (jit_finalize(&ctx)) {
+ jit_ctx_cleanup(&ctx);
+ return prog;
+ }
+
+ return ctx.prog;
+}
+
+/*
+ * This function may be invoked twice for the same stream of BPF
+ * instructions. The "extra pass" happens, when there are
+ * (re)locations involved that their addresses are not known
+ * during the first run.
+ */
+struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
+{
+ vm_dump(prog);
+
+ /* Was this program already translated? */
+ if (!prog->jited)
+ return do_normal_pass(prog);
+ else
+ return do_extra_pass(prog);
+
+ return prog;
+}