diff options
Diffstat (limited to 'arch/arm64/kvm/nested.c')
-rw-r--r-- | arch/arm64/kvm/nested.c | 1130 |
1 files changed, 1016 insertions, 114 deletions
diff --git a/arch/arm64/kvm/nested.c b/arch/arm64/kvm/nested.c index ced30c90521a..4a3fc11f7ecf 100644 --- a/arch/arm64/kvm/nested.c +++ b/arch/arm64/kvm/nested.c @@ -4,17 +4,802 @@ * Author: Jintack Lim <jintack.lim@linaro.org> */ +#include <linux/bitfield.h> #include <linux/kvm.h> #include <linux/kvm_host.h> +#include <asm/kvm_arm.h> #include <asm/kvm_emulate.h> +#include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/sysreg.h> #include "sys_regs.h" -/* Protection against the sysreg repainting madness... */ -#define NV_FTR(r, f) ID_AA64##r##_EL1_##f +/* + * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between + * memory usage and potential number of different sets of S2 PTs in + * the guests. Running out of S2 MMUs only affects performance (we + * will invalidate them more often). + */ +#define S2_MMU_PER_VCPU 2 + +void kvm_init_nested(struct kvm *kvm) +{ + kvm->arch.nested_mmus = NULL; + kvm->arch.nested_mmus_size = 0; +} + +static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) +{ + /* + * We only initialise the IPA range on the canonical MMU, which + * defines the contract between KVM and userspace on where the + * "hardware" is in the IPA space. This affects the validity of MMIO + * exits forwarded to userspace, for example. + * + * For nested S2s, we use the PARange as exposed to the guest, as it + * is allowed to use it at will to expose whatever memory map it + * wants to its own guests as it would be on real HW. + */ + return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); +} + +int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_s2_mmu *tmp; + int num_mmus, ret = 0; + + if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features) && + !cpus_have_final_cap(ARM64_HAS_HCR_NV1)) + return -EINVAL; + + /* + * Let's treat memory allocation failures as benign: If we fail to + * allocate anything, return an error and keep the allocated array + * alive. Userspace may try to recover by intializing the vcpu + * again, and there is no reason to affect the whole VM for this. + */ + num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; + tmp = kvrealloc(kvm->arch.nested_mmus, + size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), + GFP_KERNEL_ACCOUNT | __GFP_ZERO); + if (!tmp) + return -ENOMEM; + + swap(kvm->arch.nested_mmus, tmp); + + /* + * If we went through a realocation, adjust the MMU back-pointers in + * the previously initialised kvm_pgtable structures. + */ + if (kvm->arch.nested_mmus != tmp) + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) + kvm->arch.nested_mmus[i].pgt->mmu = &kvm->arch.nested_mmus[i]; + + for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) + ret = init_nested_s2_mmu(kvm, &kvm->arch.nested_mmus[i]); + + if (ret) { + for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) + kvm_free_stage2_pgd(&kvm->arch.nested_mmus[i]); + + return ret; + } + + kvm->arch.nested_mmus_size = num_mmus; + + return 0; +} + +struct s2_walk_info { + int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); + void *data; + u64 baddr; + unsigned int max_oa_bits; + unsigned int pgshift; + unsigned int sl; + unsigned int t0sz; + bool be; +}; + +static u32 compute_fsc(int level, u32 fsc) +{ + return fsc | (level & 0x3); +} + +static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) +{ + u32 esr; + + esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; + esr |= compute_fsc(level, fsc); + return esr; +} + +static int get_ia_size(struct s2_walk_info *wi) +{ + return 64 - wi->t0sz; +} + +static int check_base_s2_limits(struct s2_walk_info *wi, + int level, int input_size, int stride) +{ + int start_size, ia_size; + + ia_size = get_ia_size(wi); + + /* Check translation limits */ + switch (BIT(wi->pgshift)) { + case SZ_64K: + if (level == 0 || (level == 1 && ia_size <= 42)) + return -EFAULT; + break; + case SZ_16K: + if (level == 0 || (level == 1 && ia_size <= 40)) + return -EFAULT; + break; + case SZ_4K: + if (level < 0 || (level == 0 && ia_size <= 42)) + return -EFAULT; + break; + } + + /* Check input size limits */ + if (input_size > ia_size) + return -EFAULT; + + /* Check number of entries in starting level table */ + start_size = input_size - ((3 - level) * stride + wi->pgshift); + if (start_size < 1 || start_size > stride + 4) + return -EFAULT; + + return 0; +} + +/* Check if output is within boundaries */ +static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) +{ + unsigned int output_size = wi->max_oa_bits; + + if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) + return -1; + + return 0; +} + +/* + * This is essentially a C-version of the pseudo code from the ARM ARM + * AArch64.TranslationTableWalk function. I strongly recommend looking at + * that pseudocode in trying to understand this. + * + * Must be called with the kvm->srcu read lock held + */ +static int walk_nested_s2_pgd(phys_addr_t ipa, + struct s2_walk_info *wi, struct kvm_s2_trans *out) +{ + int first_block_level, level, stride, input_size, base_lower_bound; + phys_addr_t base_addr; + unsigned int addr_top, addr_bottom; + u64 desc; /* page table entry */ + int ret; + phys_addr_t paddr; + + switch (BIT(wi->pgshift)) { + default: + case SZ_64K: + case SZ_16K: + level = 3 - wi->sl; + first_block_level = 2; + break; + case SZ_4K: + level = 2 - wi->sl; + first_block_level = 1; + break; + } + + stride = wi->pgshift - 3; + input_size = get_ia_size(wi); + if (input_size > 48 || input_size < 25) + return -EFAULT; + + ret = check_base_s2_limits(wi, level, input_size, stride); + if (WARN_ON(ret)) + return ret; + + base_lower_bound = 3 + input_size - ((3 - level) * stride + + wi->pgshift); + base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); + + if (check_output_size(wi, base_addr)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + return 1; + } + + addr_top = input_size - 1; + + while (1) { + phys_addr_t index; + + addr_bottom = (3 - level) * stride + wi->pgshift; + index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) + >> (addr_bottom - 3); + + paddr = base_addr | index; + ret = wi->read_desc(paddr, &desc, wi->data); + if (ret < 0) + return ret; + + /* + * Handle reversedescriptors if endianness differs between the + * host and the guest hypervisor. + */ + if (wi->be) + desc = be64_to_cpu((__force __be64)desc); + else + desc = le64_to_cpu((__force __le64)desc); + + /* Check for valid descriptor at this point */ + if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); + out->desc = desc; + return 1; + } + + /* We're at the final level or block translation level */ + if ((desc & 3) == 1 || level == 3) + break; + + if (check_output_size(wi, desc)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + out->desc = desc; + return 1; + } + + base_addr = desc & GENMASK_ULL(47, wi->pgshift); + + level += 1; + addr_top = addr_bottom - 1; + } + + if (level < first_block_level) { + out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); + out->desc = desc; + return 1; + } + + if (check_output_size(wi, desc)) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); + out->desc = desc; + return 1; + } + + if (!(desc & BIT(10))) { + out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); + out->desc = desc; + return 1; + } + + addr_bottom += contiguous_bit_shift(desc, wi, level); + + /* Calculate and return the result */ + paddr = (desc & GENMASK_ULL(47, addr_bottom)) | + (ipa & GENMASK_ULL(addr_bottom - 1, 0)); + out->output = paddr; + out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); + out->readable = desc & (0b01 << 6); + out->writable = desc & (0b10 << 6); + out->level = level; + out->desc = desc; + return 0; +} + +static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) +{ + struct kvm_vcpu *vcpu = data; + + return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); +} + +static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) +{ + wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; + + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + wi->pgshift = 12; break; + case VTCR_EL2_TG0_16K: + wi->pgshift = 14; break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + wi->pgshift = 16; break; + } + + wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); + /* Global limit for now, should eventually be per-VM */ + wi->max_oa_bits = min(get_kvm_ipa_limit(), + ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); +} + +int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, + struct kvm_s2_trans *result) +{ + u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + struct s2_walk_info wi; + int ret; + + result->esr = 0; + + if (!vcpu_has_nv(vcpu)) + return 0; + + wi.read_desc = read_guest_s2_desc; + wi.data = vcpu; + wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); + + vtcr_to_walk_info(vtcr, &wi); + + wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; + + ret = walk_nested_s2_pgd(gipa, &wi, result); + if (ret) + result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); + + return ret; +} + +static unsigned int ttl_to_size(u8 ttl) +{ + int level = ttl & 3; + int gran = (ttl >> 2) & 3; + unsigned int max_size = 0; + + switch (gran) { + case TLBI_TTL_TG_4K: + switch (level) { + case 0: + break; + case 1: + max_size = SZ_1G; + break; + case 2: + max_size = SZ_2M; + break; + case 3: + max_size = SZ_4K; + break; + } + break; + case TLBI_TTL_TG_16K: + switch (level) { + case 0: + case 1: + break; + case 2: + max_size = SZ_32M; + break; + case 3: + max_size = SZ_16K; + break; + } + break; + case TLBI_TTL_TG_64K: + switch (level) { + case 0: + case 1: + /* No 52bit IPA support */ + break; + case 2: + max_size = SZ_512M; + break; + case 3: + max_size = SZ_64K; + break; + } + break; + default: /* No size information */ + break; + } + + return max_size; +} + +/* + * Compute the equivalent of the TTL field by parsing the shadow PT. The + * granule size is extracted from the cached VTCR_EL2.TG0 while the level is + * retrieved from first entry carrying the level as a tag. + */ +static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) +{ + u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; + kvm_pte_t pte; + u8 ttl, level; + + lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); + + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + ttl = (TLBI_TTL_TG_4K << 2); + break; + case VTCR_EL2_TG0_16K: + ttl = (TLBI_TTL_TG_16K << 2); + break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + ttl = (TLBI_TTL_TG_64K << 2); + break; + } + + tmp = addr; + +again: + /* Iteratively compute the block sizes for a particular granule size */ + switch (vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + if (sz < SZ_4K) sz = SZ_4K; + else if (sz < SZ_2M) sz = SZ_2M; + else if (sz < SZ_1G) sz = SZ_1G; + else sz = 0; + break; + case VTCR_EL2_TG0_16K: + if (sz < SZ_16K) sz = SZ_16K; + else if (sz < SZ_32M) sz = SZ_32M; + else sz = 0; + break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + if (sz < SZ_64K) sz = SZ_64K; + else if (sz < SZ_512M) sz = SZ_512M; + else sz = 0; + break; + } + + if (sz == 0) + return 0; + + tmp &= ~(sz - 1); + if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) + goto again; + if (!(pte & PTE_VALID)) + goto again; + level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); + if (!level) + goto again; + + ttl |= level; + + /* + * We now have found some level information in the shadow S2. Check + * that the resulting range is actually including the original IPA. + */ + sz = ttl_to_size(ttl); + if (addr < (tmp + sz)) + return ttl; + + return 0; +} + +unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) +{ + struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); + unsigned long max_size; + u8 ttl; + + ttl = FIELD_GET(TLBI_TTL_MASK, val); + + if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { + /* No TTL, check the shadow S2 for a hint */ + u64 addr = (val & GENMASK_ULL(35, 0)) << 12; + ttl = get_guest_mapping_ttl(mmu, addr); + } + + max_size = ttl_to_size(ttl); + + if (!max_size) { + /* Compute the maximum extent of the invalidation */ + switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { + case VTCR_EL2_TG0_4K: + max_size = SZ_1G; + break; + case VTCR_EL2_TG0_16K: + max_size = SZ_32M; + break; + case VTCR_EL2_TG0_64K: + default: /* IMPDEF: treat any other value as 64k */ + /* + * No, we do not support 52bit IPA in nested yet. Once + * we do, this should be 4TB. + */ + max_size = SZ_512M; + break; + } + } + + WARN_ON(!max_size); + return max_size; +} + +/* + * We can have multiple *different* MMU contexts with the same VMID: + * + * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit + * + * - Multiple vcpus using private S2s (huh huh...), hence differing by the + * VBBTR_EL2.BADDR address + * + * - A combination of the above... + * + * We can always identify which MMU context to pick at run-time. However, + * TLB invalidation involving a VMID must take action on all the TLBs using + * this particular VMID. This translates into applying the same invalidation + * operation to all the contexts that are using this VMID. Moar phun! + */ +void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, + const union tlbi_info *info, + void (*tlbi_callback)(struct kvm_s2_mmu *, + const union tlbi_info *)) +{ + write_lock(&kvm->mmu_lock); + + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!kvm_s2_mmu_valid(mmu)) + continue; + + if (vmid == get_vmid(mmu->tlb_vttbr)) + tlbi_callback(mmu, info); + } + + write_unlock(&kvm->mmu_lock); +} + +struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + bool nested_stage2_enabled; + u64 vttbr, vtcr, hcr; + + lockdep_assert_held_write(&kvm->mmu_lock); + + vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); + vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); + + nested_stage2_enabled = hcr & HCR_VM; + + /* Don't consider the CnP bit for the vttbr match */ + vttbr &= ~VTTBR_CNP_BIT; + + /* + * Two possibilities when looking up a S2 MMU context: + * + * - either S2 is enabled in the guest, and we need a context that is + * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, + * which makes it safe from a TLB conflict perspective (a broken + * guest won't be able to generate them), + * + * - or S2 is disabled, and we need a context that is S2-disabled + * and matches the VMID only, as all TLBs are tagged by VMID even + * if S2 translation is disabled. + */ + for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!kvm_s2_mmu_valid(mmu)) + continue; + + if (nested_stage2_enabled && + mmu->nested_stage2_enabled && + vttbr == mmu->tlb_vttbr && + vtcr == mmu->tlb_vtcr) + return mmu; + + if (!nested_stage2_enabled && + !mmu->nested_stage2_enabled && + get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) + return mmu; + } + return NULL; +} + +static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_s2_mmu *s2_mmu; + int i; + + lockdep_assert_held_write(&vcpu->kvm->mmu_lock); + + s2_mmu = lookup_s2_mmu(vcpu); + if (s2_mmu) + goto out; + + /* + * Make sure we don't always search from the same point, or we + * will always reuse a potentially active context, leaving + * free contexts unused. + */ + for (i = kvm->arch.nested_mmus_next; + i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); + i++) { + s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; + + if (atomic_read(&s2_mmu->refcnt) == 0) + break; + } + BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ + + /* Set the scene for the next search */ + kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; + + /* Make sure we don't forget to do the laundry */ + if (kvm_s2_mmu_valid(s2_mmu)) + s2_mmu->pending_unmap = true; + + /* + * The virtual VMID (modulo CnP) will be used as a key when matching + * an existing kvm_s2_mmu. + * + * We cache VTCR at allocation time, once and for all. It'd be great + * if the guest didn't screw that one up, as this is not very + * forgiving... + */ + s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; + s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); + s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; + +out: + atomic_inc(&s2_mmu->refcnt); + + /* + * Set the vCPU request to perform an unmap, even if the pending unmap + * originates from another vCPU. This guarantees that the MMU has been + * completely unmapped before any vCPU actually uses it, and allows + * multiple vCPUs to lend a hand with completing the unmap. + */ + if (s2_mmu->pending_unmap) + kvm_make_request(KVM_REQ_NESTED_S2_UNMAP, vcpu); + + return s2_mmu; +} + +void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) +{ + /* CnP being set denotes an invalid entry */ + mmu->tlb_vttbr = VTTBR_CNP_BIT; + mmu->nested_stage2_enabled = false; + atomic_set(&mmu->refcnt, 0); +} + +void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) +{ + /* + * The vCPU kept its reference on the MMU after the last put, keep + * rolling with it. + */ + if (vcpu->arch.hw_mmu) + return; + + if (is_hyp_ctxt(vcpu)) { + vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; + } else { + write_lock(&vcpu->kvm->mmu_lock); + vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); + write_unlock(&vcpu->kvm->mmu_lock); + } +} + +void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) +{ + /* + * Keep a reference on the associated stage-2 MMU if the vCPU is + * scheduling out and not in WFI emulation, suggesting it is likely to + * reuse the MMU sometime soon. + */ + if (vcpu->scheduled_out && !vcpu_get_flag(vcpu, IN_WFI)) + return; + + if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) + atomic_dec(&vcpu->arch.hw_mmu->refcnt); + + vcpu->arch.hw_mmu = NULL; +} + +/* + * Returns non-zero if permission fault is handled by injecting it to the next + * level hypervisor. + */ +int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) +{ + bool forward_fault = false; + + trans->esr = 0; + + if (!kvm_vcpu_trap_is_permission_fault(vcpu)) + return 0; + + if (kvm_vcpu_trap_is_iabt(vcpu)) { + forward_fault = !kvm_s2_trans_executable(trans); + } else { + bool write_fault = kvm_is_write_fault(vcpu); + + forward_fault = ((write_fault && !trans->writable) || + (!write_fault && !trans->readable)); + } + + if (forward_fault) + trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); + + return forward_fault; +} + +int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) +{ + vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); + vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); + + return kvm_inject_nested_sync(vcpu, esr_el2); +} + +void kvm_nested_s2_wp(struct kvm *kvm) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); + } +} + +void kvm_nested_s2_unmap(struct kvm *kvm, bool may_block) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), may_block); + } +} + +void kvm_nested_s2_flush(struct kvm *kvm) +{ + int i; + + lockdep_assert_held_write(&kvm->mmu_lock); + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (kvm_s2_mmu_valid(mmu)) + kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); + } +} + +void kvm_arch_flush_shadow_all(struct kvm *kvm) +{ + int i; + + for (i = 0; i < kvm->arch.nested_mmus_size; i++) { + struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; + + if (!WARN_ON(atomic_read(&mmu->refcnt))) + kvm_free_stage2_pgd(mmu); + } + kvfree(kvm->arch.nested_mmus); + kvm->arch.nested_mmus = NULL; + kvm->arch.nested_mmus_size = 0; + kvm_uninit_stage2_mmu(kvm); +} /* * Our emulated CPU doesn't support all the possible features. For the @@ -23,156 +808,162 @@ * This list should get updated as new features get added to the NV * support, and new extension to the architecture. */ -static u64 limit_nv_id_reg(u32 id, u64 val) +u64 limit_nv_id_reg(struct kvm *kvm, u32 reg, u64 val) { - u64 tmp; - - switch (id) { + switch (reg) { case SYS_ID_AA64ISAR0_EL1: - /* Support everything but TME, O.S. and Range TLBIs */ - val &= ~(NV_FTR(ISAR0, TLB) | - NV_FTR(ISAR0, TME)); + /* Support everything but TME */ + val &= ~ID_AA64ISAR0_EL1_TME; break; case SYS_ID_AA64ISAR1_EL1: - /* Support everything but PtrAuth and Spec Invalidation */ - val &= ~(GENMASK_ULL(63, 56) | - NV_FTR(ISAR1, SPECRES) | - NV_FTR(ISAR1, GPI) | - NV_FTR(ISAR1, GPA) | - NV_FTR(ISAR1, API) | - NV_FTR(ISAR1, APA)); + /* Support everything but LS64 and Spec Invalidation */ + val &= ~(ID_AA64ISAR1_EL1_LS64 | + ID_AA64ISAR1_EL1_SPECRES); break; case SYS_ID_AA64PFR0_EL1: - /* No AMU, MPAM, S-EL2, RAS or SVE */ - val &= ~(GENMASK_ULL(55, 52) | - NV_FTR(PFR0, AMU) | - NV_FTR(PFR0, MPAM) | - NV_FTR(PFR0, SEL2) | - NV_FTR(PFR0, RAS) | - NV_FTR(PFR0, SVE) | - NV_FTR(PFR0, EL3) | - NV_FTR(PFR0, EL2) | - NV_FTR(PFR0, EL1)); - /* 64bit EL1/EL2/EL3 only */ - val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); - val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); - val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); + /* No RME, AMU, MPAM, S-EL2, or RAS */ + val &= ~(ID_AA64PFR0_EL1_RME | + ID_AA64PFR0_EL1_AMU | + ID_AA64PFR0_EL1_MPAM | + ID_AA64PFR0_EL1_SEL2 | + ID_AA64PFR0_EL1_RAS | + ID_AA64PFR0_EL1_EL3 | + ID_AA64PFR0_EL1_EL2 | + ID_AA64PFR0_EL1_EL1 | + ID_AA64PFR0_EL1_EL0); + /* 64bit only at any EL */ + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL0, IMP); + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL1, IMP); + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL2, IMP); + val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, EL3, IMP); break; case SYS_ID_AA64PFR1_EL1: - /* Only support SSBS */ - val &= NV_FTR(PFR1, SSBS); + /* Only support BTI, SSBS, CSV2_frac */ + val &= (ID_AA64PFR1_EL1_BT | + ID_AA64PFR1_EL1_SSBS | + ID_AA64PFR1_EL1_CSV2_frac); break; case SYS_ID_AA64MMFR0_EL1: - /* Hide ECV, ExS, Secure Memory */ - val &= ~(NV_FTR(MMFR0, ECV) | - NV_FTR(MMFR0, EXS) | - NV_FTR(MMFR0, TGRAN4_2) | - NV_FTR(MMFR0, TGRAN16_2) | - NV_FTR(MMFR0, TGRAN64_2) | - NV_FTR(MMFR0, SNSMEM)); + /* Hide ExS, Secure Memory */ + val &= ~(ID_AA64MMFR0_EL1_EXS | + ID_AA64MMFR0_EL1_TGRAN4_2 | + ID_AA64MMFR0_EL1_TGRAN16_2 | + ID_AA64MMFR0_EL1_TGRAN64_2 | + ID_AA64MMFR0_EL1_SNSMEM); + + /* Hide CNTPOFF if present */ + val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, ECV, IMP); /* Disallow unsupported S2 page sizes */ switch (PAGE_SIZE) { case SZ_64K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, NI); fallthrough; case SZ_16K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, NI); fallthrough; case SZ_4K: /* Support everything */ break; } + /* - * Since we can't support a guest S2 page size smaller than - * the host's own page size (due to KVM only populating its - * own S2 using the kernel's page size), advertise the - * limitation using FEAT_GTG. + * Since we can't support a guest S2 page size smaller + * than the host's own page size (due to KVM only + * populating its own S2 using the kernel's page + * size), advertise the limitation using FEAT_GTG. */ switch (PAGE_SIZE) { case SZ_4K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN4_2, IMP); fallthrough; case SZ_16K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN16_2, IMP); fallthrough; case SZ_64K: - val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR0_EL1, TGRAN64_2, IMP); break; } + /* Cap PARange to 48bits */ - tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); - if (tmp > 0b0101) { - val &= ~NV_FTR(MMFR0, PARANGE); - val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); - } + val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64MMFR0_EL1, PARANGE, 48); break; case SYS_ID_AA64MMFR1_EL1: - val &= (NV_FTR(MMFR1, HCX) | - NV_FTR(MMFR1, PAN) | - NV_FTR(MMFR1, LO) | - NV_FTR(MMFR1, HPDS) | - NV_FTR(MMFR1, VH) | - NV_FTR(MMFR1, VMIDBits)); + val &= (ID_AA64MMFR1_EL1_HCX | + ID_AA64MMFR1_EL1_PAN | + ID_AA64MMFR1_EL1_LO | + ID_AA64MMFR1_EL1_HPDS | + ID_AA64MMFR1_EL1_VH | + ID_AA64MMFR1_EL1_VMIDBits); + /* FEAT_E2H0 implies no VHE */ + if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) + val &= ~ID_AA64MMFR1_EL1_VH; break; case SYS_ID_AA64MMFR2_EL1: - val &= ~(NV_FTR(MMFR2, BBM) | - NV_FTR(MMFR2, TTL) | + val &= ~(ID_AA64MMFR2_EL1_BBM | + ID_AA64MMFR2_EL1_TTL | GENMASK_ULL(47, 44) | - NV_FTR(MMFR2, ST) | - NV_FTR(MMFR2, CCIDX) | - NV_FTR(MMFR2, VARange)); + ID_AA64MMFR2_EL1_ST | + ID_AA64MMFR2_EL1_CCIDX | + ID_AA64MMFR2_EL1_VARange); /* Force TTL support */ - val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR2_EL1, TTL, IMP); break; case SYS_ID_AA64MMFR4_EL1: - val = 0; - if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) - val |= FIELD_PREP(NV_FTR(MMFR4, E2H0), - ID_AA64MMFR4_EL1_E2H0_NI_NV1); + /* + * You get EITHER + * + * - FEAT_VHE without FEAT_E2H0 + * - FEAT_NV limited to FEAT_NV2 + * - HCR_EL2.NV1 being RES0 + * + * OR + * + * - FEAT_E2H0 without FEAT_VHE nor FEAT_NV + * + * Life is too short for anything else. + */ + if (test_bit(KVM_ARM_VCPU_HAS_EL2_E2H0, kvm->arch.vcpu_features)) { + val = 0; + } else { + val = SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY); + val |= SYS_FIELD_PREP_ENUM(ID_AA64MMFR4_EL1, E2H0, NI_NV1); + } break; case SYS_ID_AA64DFR0_EL1: - /* Only limited support for PMU, Debug, BPs and WPs */ - val &= (NV_FTR(DFR0, PMUVer) | - NV_FTR(DFR0, WRPs) | - NV_FTR(DFR0, BRPs) | - NV_FTR(DFR0, DebugVer)); + /* Only limited support for PMU, Debug, BPs, WPs, and HPMN0 */ + val &= (ID_AA64DFR0_EL1_PMUVer | + ID_AA64DFR0_EL1_WRPs | + ID_AA64DFR0_EL1_BRPs | + ID_AA64DFR0_EL1_DebugVer| + ID_AA64DFR0_EL1_HPMN0); /* Cap Debug to ARMv8.1 */ - tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); - if (tmp > 0b0111) { - val &= ~NV_FTR(DFR0, DebugVer); - val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); - } - break; - - default: - /* Unknown register, just wipe it clean */ - val = 0; + val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, VHE); break; } return val; } -u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr) +u64 kvm_vcpu_apply_reg_masks(const struct kvm_vcpu *vcpu, + enum vcpu_sysreg sr, u64 v) { - u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr); struct kvm_sysreg_masks *masks; masks = vcpu->kvm->arch.sysreg_masks; if (masks) { - sr -= __VNCR_START__; + sr -= __SANITISED_REG_START__; v &= ~masks->mask[sr].res0; v |= masks->mask[sr].res1; @@ -181,34 +972,32 @@ u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr) return v; } -static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) +static __always_inline void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) { - int i = sr - __VNCR_START__; + int i = sr - __SANITISED_REG_START__; + + BUILD_BUG_ON(!__builtin_constant_p(sr)); + BUILD_BUG_ON(sr < __SANITISED_REG_START__); + BUILD_BUG_ON(sr >= NR_SYS_REGS); kvm->arch.sysreg_masks->mask[i].res0 = res0; kvm->arch.sysreg_masks->mask[i].res1 = res1; } -int kvm_init_nv_sysregs(struct kvm *kvm) +int kvm_init_nv_sysregs(struct kvm_vcpu *vcpu) { + struct kvm *kvm = vcpu->kvm; u64 res0, res1; - int ret = 0; - mutex_lock(&kvm->arch.config_lock); + lockdep_assert_held(&kvm->arch.config_lock); if (kvm->arch.sysreg_masks) goto out; kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), - GFP_KERNEL); - if (!kvm->arch.sysreg_masks) { - ret = -ENOMEM; - goto out; - } - - for (int i = 0; i < KVM_ARM_ID_REG_NUM; i++) - kvm->arch.id_regs[i] = limit_nv_id_reg(IDX_IDREG(i), - kvm->arch.id_regs[i]); + GFP_KERNEL_ACCOUNT); + if (!kvm->arch.sysreg_masks) + return -ENOMEM; /* VTTBR_EL2 */ res0 = res1 = 0; @@ -248,12 +1037,13 @@ int kvm_init_nv_sysregs(struct kvm *kvm) res0 |= HCR_FIEN; if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP)) res0 |= HCR_FWB; - if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2)) - res0 |= HCR_NV2; - if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP)) - res0 |= (HCR_AT | HCR_NV1 | HCR_NV); - if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && - __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) + /* Implementation choice: NV2 is the only supported config */ + if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, NV_frac, NV2_ONLY)) + res0 |= (HCR_NV2 | HCR_NV | HCR_AT); + if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, NI)) + res0 |= HCR_NV1; + if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && + kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC))) res0 |= (HCR_API | HCR_APK); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP)) res0 |= BIT(39); @@ -261,6 +1051,8 @@ int kvm_init_nv_sysregs(struct kvm *kvm) res0 |= (HCR_TEA | HCR_TERR); if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP)) res0 |= HCR_TLOR; + if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) + res0 |= HCR_E2H; if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP)) res1 |= HCR_E2H; set_sysreg_masks(kvm, HCR_EL2, res0, res1); @@ -286,7 +1078,7 @@ int kvm_init_nv_sysregs(struct kvm *kvm) res0 |= HCRX_EL2_PTTWI; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP)) res0 |= HCRX_EL2_SCTLR2En; - if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) + if (!kvm_has_tcr2(kvm)) res0 |= HCRX_EL2_TCR2En; if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); @@ -309,8 +1101,8 @@ int kvm_init_nv_sysregs(struct kvm *kvm) /* HFG[RW]TR_EL2 */ res0 = res1 = 0; - if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && - __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) + if (!(kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && + kvm_vcpu_has_feature(kvm, KVM_ARM_VCPU_PTRAUTH_GENERIC))) res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey | HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey | HFGxTR_EL2_APIBKey); @@ -337,9 +1129,9 @@ int kvm_init_nv_sysregs(struct kvm *kvm) res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) res0 |= HFGxTR_EL2_nRCWMASK_EL1; - if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) + if (!kvm_has_s1pie(kvm)) res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1); - if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP)) + if (!kvm_has_s1poe(kvm)) res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1); if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) res0 |= HFGxTR_EL2_nS2POR_EL1; @@ -435,8 +1227,118 @@ int kvm_init_nv_sysregs(struct kvm *kvm) if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1)) res0 |= ~(res0 | res1); set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); + + /* TCR2_EL2 */ + res0 = TCR2_EL2_RES0; + res1 = TCR2_EL2_RES1; + if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP)) + res0 |= (TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1 | TCR2_EL2_D128); + if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, MEC, IMP)) + res0 |= TCR2_EL2_AMEC1 | TCR2_EL2_AMEC0; + if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, HAFDBS, HAFT)) + res0 |= TCR2_EL2_HAFT; + if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) + res0 |= TCR2_EL2_PTTWI | TCR2_EL2_PnCH; + if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP)) + res0 |= TCR2_EL2_AIE; + if (!kvm_has_s1poe(kvm)) + res0 |= TCR2_EL2_POE | TCR2_EL2_E0POE; + if (!kvm_has_s1pie(kvm)) + res0 |= TCR2_EL2_PIE; + if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) + res0 |= (TCR2_EL2_E0POE | TCR2_EL2_D128 | + TCR2_EL2_AMEC1 | TCR2_EL2_DisCH0 | TCR2_EL2_DisCH1); + set_sysreg_masks(kvm, TCR2_EL2, res0, res1); + + /* SCTLR_EL1 */ + res0 = SCTLR_EL1_RES0; + res1 = SCTLR_EL1_RES1; + if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3)) + res0 |= SCTLR_EL1_EPAN; + set_sysreg_masks(kvm, SCTLR_EL1, res0, res1); + + /* MDCR_EL2 */ + res0 = MDCR_EL2_RES0; + res1 = MDCR_EL2_RES1; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) + res0 |= (MDCR_EL2_HPMN | MDCR_EL2_TPMCR | + MDCR_EL2_TPM | MDCR_EL2_HPME); + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) + res0 |= MDCR_EL2_E2PB | MDCR_EL2_TPMS; + if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, SPMU, IMP)) + res0 |= MDCR_EL2_EnSPM; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P1)) + res0 |= MDCR_EL2_HPMD; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP)) + res0 |= MDCR_EL2_TTRF; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P5)) + res0 |= MDCR_EL2_HCCD | MDCR_EL2_HLP; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP)) + res0 |= MDCR_EL2_E2TB; + if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, FGT, IMP)) + res0 |= MDCR_EL2_TDCC; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, MTPMU, IMP) || + kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP)) + res0 |= MDCR_EL2_MTPME; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, V3P7)) + res0 |= MDCR_EL2_HPMFZO; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSS, IMP)) + res0 |= MDCR_EL2_PMSSE; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2)) + res0 |= MDCR_EL2_HPMFZS; + if (!kvm_has_feat(kvm, ID_AA64DFR1_EL1, EBEP, IMP)) + res0 |= MDCR_EL2_PMEE; + if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DebugVer, V8P9)) + res0 |= MDCR_EL2_EBWE; + if (!kvm_has_feat(kvm, ID_AA64DFR2_EL1, STEP, IMP)) + res0 |= MDCR_EL2_EnSTEPOP; + set_sysreg_masks(kvm, MDCR_EL2, res0, res1); + + /* CNTHCTL_EL2 */ + res0 = GENMASK(63, 20); + res1 = 0; + if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RME, IMP)) + res0 |= CNTHCTL_CNTPMASK | CNTHCTL_CNTVMASK; + if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, CNTPOFF)) { + res0 |= CNTHCTL_ECV; + if (!kvm_has_feat(kvm, ID_AA64MMFR0_EL1, ECV, IMP)) + res0 |= (CNTHCTL_EL1TVT | CNTHCTL_EL1TVCT | + CNTHCTL_EL1NVPCT | CNTHCTL_EL1NVVCT); + } + if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, VH, IMP)) + res0 |= GENMASK(11, 8); + set_sysreg_masks(kvm, CNTHCTL_EL2, res0, res1); + + /* ICH_HCR_EL2 */ + res0 = ICH_HCR_EL2_RES0; + res1 = ICH_HCR_EL2_RES1; + if (!(kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_EL2_TDS)) + res0 |= ICH_HCR_EL2_TDIR; + /* No GICv4 is presented to the guest */ + res0 |= ICH_HCR_EL2_DVIM | ICH_HCR_EL2_vSGIEOICount; + set_sysreg_masks(kvm, ICH_HCR_EL2, res0, res1); + out: - mutex_unlock(&kvm->arch.config_lock); + for (enum vcpu_sysreg sr = __SANITISED_REG_START__; sr < NR_SYS_REGS; sr++) + (void)__vcpu_sys_reg(vcpu, sr); - return ret; + return 0; +} + +void check_nested_vcpu_requests(struct kvm_vcpu *vcpu) +{ + if (kvm_check_request(KVM_REQ_NESTED_S2_UNMAP, vcpu)) { + struct kvm_s2_mmu *mmu = vcpu->arch.hw_mmu; + + write_lock(&vcpu->kvm->mmu_lock); + if (mmu->pending_unmap) { + kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu), true); + mmu->pending_unmap = false; + } + write_unlock(&vcpu->kvm->mmu_lock); + } + + /* Must be last, as may switch context! */ + if (kvm_check_request(KVM_REQ_GUEST_HYP_IRQ_PENDING, vcpu)) + kvm_inject_nested_irq(vcpu); } |