summaryrefslogtreecommitdiffstats
path: root/arch/x86
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/include/asm/kvm_emulate.h1
-rw-r--r--arch/x86/include/asm/kvm_host.h7
-rw-r--r--arch/x86/include/asm/traps.h5
-rw-r--r--arch/x86/kernel/kvm.c2
-rw-r--r--arch/x86/kvm/cpuid.c11
-rw-r--r--arch/x86/kvm/cpuid.h7
-rw-r--r--arch/x86/kvm/emulate.c93
-rw-r--r--arch/x86/kvm/irq.c1
-rw-r--r--arch/x86/kvm/lapic.c62
-rw-r--r--arch/x86/kvm/mmu.c84
-rw-r--r--arch/x86/kvm/mmu.h33
-rw-r--r--arch/x86/kvm/paging_tmpl.h7
-rw-r--r--arch/x86/kvm/pmu.c7
-rw-r--r--arch/x86/kvm/svm.c63
-rw-r--r--arch/x86/kvm/trace.h20
-rw-r--r--arch/x86/kvm/vmx.c333
-rw-r--r--arch/x86/kvm/x86.c61
17 files changed, 505 insertions, 292 deletions
diff --git a/arch/x86/include/asm/kvm_emulate.h b/arch/x86/include/asm/kvm_emulate.h
index 24ec1216596e..a04fe4eb237d 100644
--- a/arch/x86/include/asm/kvm_emulate.h
+++ b/arch/x86/include/asm/kvm_emulate.h
@@ -189,7 +189,6 @@ struct x86_emulate_ops {
void (*set_idt)(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt);
ulong (*get_cr)(struct x86_emulate_ctxt *ctxt, int cr);
int (*set_cr)(struct x86_emulate_ctxt *ctxt, int cr, ulong val);
- void (*set_rflags)(struct x86_emulate_ctxt *ctxt, ulong val);
int (*cpl)(struct x86_emulate_ctxt *ctxt);
int (*get_dr)(struct x86_emulate_ctxt *ctxt, int dr, ulong *dest);
int (*set_dr)(struct x86_emulate_ctxt *ctxt, int dr, ulong value);
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index 7de069afb382..49314155b66c 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -50,11 +50,7 @@
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
-#define CR3_PAE_RESERVED_BITS ((X86_CR3_PWT | X86_CR3_PCD) - 1)
-#define CR3_NONPAE_RESERVED_BITS ((PAGE_SIZE-1) & ~(X86_CR3_PWT | X86_CR3_PCD))
-#define CR3_PCID_ENABLED_RESERVED_BITS 0xFFFFFF0000000000ULL
-#define CR3_L_MODE_RESERVED_BITS (CR3_NONPAE_RESERVED_BITS | \
- 0xFFFFFF0000000000ULL)
+#define CR3_L_MODE_RESERVED_BITS 0xFFFFFF0000000000ULL
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
@@ -134,7 +130,6 @@ enum kvm_reg_ex {
VCPU_EXREG_PDPTR = NR_VCPU_REGS,
VCPU_EXREG_CR3,
VCPU_EXREG_RFLAGS,
- VCPU_EXREG_CPL,
VCPU_EXREG_SEGMENTS,
};
diff --git a/arch/x86/include/asm/traps.h b/arch/x86/include/asm/traps.h
index 58d66fe06b61..8ba18842c48e 100644
--- a/arch/x86/include/asm/traps.h
+++ b/arch/x86/include/asm/traps.h
@@ -74,6 +74,11 @@ dotraplinkage void do_general_protection(struct pt_regs *, long);
dotraplinkage void do_page_fault(struct pt_regs *, unsigned long);
#ifdef CONFIG_TRACING
dotraplinkage void trace_do_page_fault(struct pt_regs *, unsigned long);
+#else
+static inline void trace_do_page_fault(struct pt_regs *regs, unsigned long error)
+{
+ do_page_fault(regs, error);
+}
#endif
dotraplinkage void do_spurious_interrupt_bug(struct pt_regs *, long);
dotraplinkage void do_coprocessor_error(struct pt_regs *, long);
diff --git a/arch/x86/kernel/kvm.c b/arch/x86/kernel/kvm.c
index 0331cb389d68..7e97371387fd 100644
--- a/arch/x86/kernel/kvm.c
+++ b/arch/x86/kernel/kvm.c
@@ -259,7 +259,7 @@ do_async_page_fault(struct pt_regs *regs, unsigned long error_code)
switch (kvm_read_and_reset_pf_reason()) {
default:
- do_page_fault(regs, error_code);
+ trace_do_page_fault(regs, error_code);
break;
case KVM_PV_REASON_PAGE_NOT_PRESENT:
/* page is swapped out by the host. */
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index f47a104a749c..38a0afe83c6b 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -283,6 +283,8 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
/* cpuid 1.ecx */
const u32 kvm_supported_word4_x86_features =
+ /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
+ * but *not* advertised to guests via CPUID ! */
F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
0 /* DS-CPL, VMX, SMX, EST */ |
0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
@@ -495,6 +497,13 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
entry->ecx &= kvm_supported_word6_x86_features;
cpuid_mask(&entry->ecx, 6);
break;
+ case 0x80000007: /* Advanced power management */
+ /* invariant TSC is CPUID.80000007H:EDX[8] */
+ entry->edx &= (1 << 8);
+ /* mask against host */
+ entry->edx &= boot_cpu_data.x86_power;
+ entry->eax = entry->ebx = entry->ecx = 0;
+ break;
case 0x80000008: {
unsigned g_phys_as = (entry->eax >> 16) & 0xff;
unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
@@ -525,7 +534,6 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
case 3: /* Processor serial number */
case 5: /* MONITOR/MWAIT */
case 6: /* Thermal management */
- case 0x80000007: /* Advanced power management */
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
@@ -726,6 +734,7 @@ int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
not_found:
return 36;
}
+EXPORT_SYMBOL_GPL(cpuid_maxphyaddr);
/*
* If no match is found, check whether we exceed the vCPU's limit
diff --git a/arch/x86/kvm/cpuid.h b/arch/x86/kvm/cpuid.h
index eeecbed26ac7..f9087315e0cd 100644
--- a/arch/x86/kvm/cpuid.h
+++ b/arch/x86/kvm/cpuid.h
@@ -88,4 +88,11 @@ static inline bool guest_cpuid_has_x2apic(struct kvm_vcpu *vcpu)
return best && (best->ecx & bit(X86_FEATURE_X2APIC));
}
+static inline bool guest_cpuid_has_gbpages(struct kvm_vcpu *vcpu)
+{
+ struct kvm_cpuid_entry2 *best;
+
+ best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
+ return best && (best->edx & bit(X86_FEATURE_GBPAGES));
+}
#endif
diff --git a/arch/x86/kvm/emulate.c b/arch/x86/kvm/emulate.c
index 205b17eed93c..e4e833d3d7d7 100644
--- a/arch/x86/kvm/emulate.c
+++ b/arch/x86/kvm/emulate.c
@@ -161,6 +161,7 @@
#define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
#define NoWrite ((u64)1 << 45) /* No writeback */
#define SrcWrite ((u64)1 << 46) /* Write back src operand */
+#define NoMod ((u64)1 << 47) /* Mod field is ignored */
#define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
@@ -1077,7 +1078,7 @@ static int decode_modrm(struct x86_emulate_ctxt *ctxt,
ctxt->modrm_rm |= (ctxt->modrm & 0x07);
ctxt->modrm_seg = VCPU_SREG_DS;
- if (ctxt->modrm_mod == 3) {
+ if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
op->type = OP_REG;
op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
@@ -1324,7 +1325,8 @@ static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
rc->end = n * size;
}
- if (ctxt->rep_prefix && !(ctxt->eflags & EFLG_DF)) {
+ if (ctxt->rep_prefix && (ctxt->d & String) &&
+ !(ctxt->eflags & EFLG_DF)) {
ctxt->dst.data = rc->data + rc->pos;
ctxt->dst.type = OP_MEM_STR;
ctxt->dst.count = (rc->end - rc->pos) / size;
@@ -1409,11 +1411,11 @@ static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
}
/* Does not support long mode */
-static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
- u16 selector, int seg)
+static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, int seg, u8 cpl, bool in_task_switch)
{
struct desc_struct seg_desc, old_desc;
- u8 dpl, rpl, cpl;
+ u8 dpl, rpl;
unsigned err_vec = GP_VECTOR;
u32 err_code = 0;
bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
@@ -1441,7 +1443,6 @@ static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
}
rpl = selector & 3;
- cpl = ctxt->ops->cpl(ctxt);
/* NULL selector is not valid for TR, CS and SS (except for long mode) */
if ((seg == VCPU_SREG_CS
@@ -1486,6 +1487,9 @@ static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
goto exception;
break;
case VCPU_SREG_CS:
+ if (in_task_switch && rpl != dpl)
+ goto exception;
+
if (!(seg_desc.type & 8))
goto exception;
@@ -1543,6 +1547,13 @@ exception:
return X86EMUL_PROPAGATE_FAULT;
}
+static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
+ u16 selector, int seg)
+{
+ u8 cpl = ctxt->ops->cpl(ctxt);
+ return __load_segment_descriptor(ctxt, selector, seg, cpl, false);
+}
+
static void write_register_operand(struct operand *op)
{
/* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
@@ -2404,6 +2415,7 @@ static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
struct tss_segment_16 *tss)
{
int ret;
+ u8 cpl;
ctxt->_eip = tss->ip;
ctxt->eflags = tss->flag | 2;
@@ -2426,23 +2438,25 @@ static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
+ cpl = tss->cs & 3;
+
/*
* Now load segment descriptors. If fault happens at this stage
* it is handled in a context of new task
*/
- ret = load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR);
+ ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
+ ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
+ ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
+ ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
+ ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2496,7 +2510,7 @@ static int task_switch_16(struct x86_emulate_ctxt *ctxt,
static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
struct tss_segment_32 *tss)
{
- tss->cr3 = ctxt->ops->get_cr(ctxt, 3);
+ /* CR3 and ldt selector are not saved intentionally */
tss->eip = ctxt->_eip;
tss->eflags = ctxt->eflags;
tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
@@ -2514,13 +2528,13 @@ static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
- tss->ldt_selector = get_segment_selector(ctxt, VCPU_SREG_LDTR);
}
static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
struct tss_segment_32 *tss)
{
int ret;
+ u8 cpl;
if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
return emulate_gp(ctxt, 0);
@@ -2539,7 +2553,8 @@ static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
/*
* SDM says that segment selectors are loaded before segment
- * descriptors
+ * descriptors. This is important because CPL checks will
+ * use CS.RPL.
*/
set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
@@ -2553,43 +2568,38 @@ static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
* If we're switching between Protected Mode and VM86, we need to make
* sure to update the mode before loading the segment descriptors so
* that the selectors are interpreted correctly.
- *
- * Need to get rflags to the vcpu struct immediately because it
- * influences the CPL which is checked at least when loading the segment
- * descriptors and when pushing an error code to the new kernel stack.
- *
- * TODO Introduce a separate ctxt->ops->set_cpl callback
*/
- if (ctxt->eflags & X86_EFLAGS_VM)
+ if (ctxt->eflags & X86_EFLAGS_VM) {
ctxt->mode = X86EMUL_MODE_VM86;
- else
+ cpl = 3;
+ } else {
ctxt->mode = X86EMUL_MODE_PROT32;
-
- ctxt->ops->set_rflags(ctxt, ctxt->eflags);
+ cpl = tss->cs & 3;
+ }
/*
* Now load segment descriptors. If fault happenes at this stage
* it is handled in a context of new task
*/
- ret = load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
+ ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
+ ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
+ ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
+ ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
+ ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS);
+ ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
- ret = load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS);
+ ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl, true);
if (ret != X86EMUL_CONTINUE)
return ret;
@@ -2604,6 +2614,8 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt,
struct tss_segment_32 tss_seg;
int ret;
u32 new_tss_base = get_desc_base(new_desc);
+ u32 eip_offset = offsetof(struct tss_segment_32, eip);
+ u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
&ctxt->exception);
@@ -2613,8 +2625,9 @@ static int task_switch_32(struct x86_emulate_ctxt *ctxt,
save_state_to_tss32(ctxt, &tss_seg);
- ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
- &ctxt->exception);
+ /* Only GP registers and segment selectors are saved */
+ ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
+ ldt_sel_offset - eip_offset, &ctxt->exception);
if (ret != X86EMUL_CONTINUE)
/* FIXME: need to provide precise fault address */
return ret;
@@ -3386,10 +3399,6 @@ static int check_cr_write(struct x86_emulate_ctxt *ctxt)
ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
if (efer & EFER_LMA)
rsvd = CR3_L_MODE_RESERVED_BITS;
- else if (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_PAE)
- rsvd = CR3_PAE_RESERVED_BITS;
- else if (ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PG)
- rsvd = CR3_NONPAE_RESERVED_BITS;
if (new_val & rsvd)
return emulate_gp(ctxt, 0);
@@ -3869,10 +3878,12 @@ static const struct opcode twobyte_table[256] = {
N, N, N, N, N, N, N, N,
D(ImplicitOps | ModRM), N, N, N, N, N, N, D(ImplicitOps | ModRM),
/* 0x20 - 0x2F */
- DIP(ModRM | DstMem | Priv | Op3264, cr_read, check_cr_read),
- DIP(ModRM | DstMem | Priv | Op3264, dr_read, check_dr_read),
- IIP(ModRM | SrcMem | Priv | Op3264, em_cr_write, cr_write, check_cr_write),
- IIP(ModRM | SrcMem | Priv | Op3264, em_dr_write, dr_write, check_dr_write),
+ DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
+ DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
+ IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
+ check_cr_write),
+ IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
+ check_dr_write),
N, N, N, N,
GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
diff --git a/arch/x86/kvm/irq.c b/arch/x86/kvm/irq.c
index 484bc874688b..bd0da433e6d7 100644
--- a/arch/x86/kvm/irq.c
+++ b/arch/x86/kvm/irq.c
@@ -113,6 +113,7 @@ int kvm_cpu_get_interrupt(struct kvm_vcpu *v)
return kvm_get_apic_interrupt(v); /* APIC */
}
+EXPORT_SYMBOL_GPL(kvm_cpu_get_interrupt);
void kvm_inject_pending_timer_irqs(struct kvm_vcpu *vcpu)
{
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index 9736529ade08..006911858174 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -360,6 +360,8 @@ static inline void apic_clear_irr(int vec, struct kvm_lapic *apic)
static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
{
+ /* Note that we never get here with APIC virtualization enabled. */
+
if (!__apic_test_and_set_vector(vec, apic->regs + APIC_ISR))
++apic->isr_count;
BUG_ON(apic->isr_count > MAX_APIC_VECTOR);
@@ -371,12 +373,48 @@ static inline void apic_set_isr(int vec, struct kvm_lapic *apic)
apic->highest_isr_cache = vec;
}
+static inline int apic_find_highest_isr(struct kvm_lapic *apic)
+{
+ int result;
+
+ /*
+ * Note that isr_count is always 1, and highest_isr_cache
+ * is always -1, with APIC virtualization enabled.
+ */
+ if (!apic->isr_count)
+ return -1;
+ if (likely(apic->highest_isr_cache != -1))
+ return apic->highest_isr_cache;
+
+ result = find_highest_vector(apic->regs + APIC_ISR);
+ ASSERT(result == -1 || result >= 16);
+
+ return result;
+}
+
static inline void apic_clear_isr(int vec, struct kvm_lapic *apic)
{
- if (__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
+ struct kvm_vcpu *vcpu;
+ if (!__apic_test_and_clear_vector(vec, apic->regs + APIC_ISR))
+ return;
+
+ vcpu = apic->vcpu;
+
+ /*
+ * We do get here for APIC virtualization enabled if the guest
+ * uses the Hyper-V APIC enlightenment. In this case we may need
+ * to trigger a new interrupt delivery by writing the SVI field;
+ * on the other hand isr_count and highest_isr_cache are unused
+ * and must be left alone.
+ */
+ if (unlikely(kvm_apic_vid_enabled(vcpu->kvm)))
+ kvm_x86_ops->hwapic_isr_update(vcpu->kvm,
+ apic_find_highest_isr(apic));
+ else {
--apic->isr_count;
- BUG_ON(apic->isr_count < 0);
- apic->highest_isr_cache = -1;
+ BUG_ON(apic->isr_count < 0);
+ apic->highest_isr_cache = -1;
+ }
}
int kvm_lapic_find_highest_irr(struct kvm_vcpu *vcpu)
@@ -456,22 +494,6 @@ static void pv_eoi_clr_pending(struct kvm_vcpu *vcpu)
__clear_bit(KVM_APIC_PV_EOI_PENDING, &vcpu->arch.apic_attention);
}
-static inline int apic_find_highest_isr(struct kvm_lapic *apic)
-{
- int result;
-
- /* Note that isr_count is always 1 with vid enabled */
- if (!apic->isr_count)
- return -1;
- if (likely(apic->highest_isr_cache != -1))
- return apic->highest_isr_cache;
-
- result = find_highest_vector(apic->regs + APIC_ISR);
- ASSERT(result == -1 || result >= 16);
-
- return result;
-}
-
void kvm_apic_update_tmr(struct kvm_vcpu *vcpu, u32 *tmr)
{
struct kvm_lapic *apic = vcpu->arch.apic;
@@ -1605,6 +1627,8 @@ int kvm_get_apic_interrupt(struct kvm_vcpu *vcpu)
int vector = kvm_apic_has_interrupt(vcpu);
struct kvm_lapic *apic = vcpu->arch.apic;
+ /* Note that we never get here with APIC virtualization enabled. */
+
if (vector == -1)
return -1;
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 813d31038b93..931467881da7 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -22,6 +22,7 @@
#include "mmu.h"
#include "x86.h"
#include "kvm_cache_regs.h"
+#include "cpuid.h"
#include <linux/kvm_host.h>
#include <linux/types.h>
@@ -595,7 +596,8 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
* we always atomicly update it, see the comments in
* spte_has_volatile_bits().
*/
- if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
+ if (spte_is_locklessly_modifiable(old_spte) &&
+ !is_writable_pte(new_spte))
ret = true;
if (!shadow_accessed_mask)
@@ -1176,8 +1178,7 @@ static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
/*
* Write-protect on the specified @sptep, @pt_protect indicates whether
- * spte writ-protection is caused by protecting shadow page table.
- * @flush indicates whether tlb need be flushed.
+ * spte write-protection is caused by protecting shadow page table.
*
* Note: write protection is difference between drity logging and spte
* protection:
@@ -1186,10 +1187,9 @@ static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
* - for spte protection, the spte can be writable only after unsync-ing
* shadow page.
*
- * Return true if the spte is dropped.
+ * Return true if tlb need be flushed.
*/
-static bool
-spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
+static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
{
u64 spte = *sptep;
@@ -1199,17 +1199,11 @@ spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
- if (__drop_large_spte(kvm, sptep)) {
- *flush |= true;
- return true;
- }
-
if (pt_protect)
spte &= ~SPTE_MMU_WRITEABLE;
spte = spte & ~PT_WRITABLE_MASK;
- *flush |= mmu_spte_update(sptep, spte);
- return false;
+ return mmu_spte_update(sptep, spte);
}
static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
@@ -1221,11 +1215,8 @@ static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
BUG_ON(!(*sptep & PT_PRESENT_MASK));
- if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
- sptep = rmap_get_first(*rmapp, &iter);
- continue;
- }
+ flush |= spte_write_protect(kvm, sptep, pt_protect);
sptep = rmap_get_next(&iter);
}
@@ -2802,9 +2793,9 @@ static bool page_fault_can_be_fast(u32 error_code)
}
static bool
-fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
+fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
+ u64 *sptep, u64 spte)
{
- struct kvm_mmu_page *sp = page_header(__pa(sptep));
gfn_t gfn;
WARN_ON(!sp->role.direct);
@@ -2830,6 +2821,7 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
u32 error_code)
{
struct kvm_shadow_walk_iterator iterator;
+ struct kvm_mmu_page *sp;
bool ret = false;
u64 spte = 0ull;
@@ -2853,7 +2845,8 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
goto exit;
}
- if (!is_last_spte(spte, level))
+ sp = page_header(__pa(iterator.sptep));
+ if (!is_last_spte(spte, sp->role.level))
goto exit;
/*
@@ -2875,11 +2868,24 @@ static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
goto exit;
/*
+ * Do not fix write-permission on the large spte since we only dirty
+ * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
+ * that means other pages are missed if its slot is dirty-logged.
+ *
+ * Instead, we let the slow page fault path create a normal spte to
+ * fix the access.
+ *
+ * See the comments in kvm_arch_commit_memory_region().
+ */
+ if (sp->role.level > PT_PAGE_TABLE_LEVEL)
+ goto exit;
+
+ /*
* Currently, fast page fault only works for direct mapping since
* the gfn is not stable for indirect shadow page.
* See Documentation/virtual/kvm/locking.txt to get more detail.
*/
- ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
+ ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
exit:
trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
spte, ret);
@@ -3511,11 +3517,14 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
{
int maxphyaddr = cpuid_maxphyaddr(vcpu);
u64 exb_bit_rsvd = 0;
+ u64 gbpages_bit_rsvd = 0;
context->bad_mt_xwr = 0;
if (!context->nx)
exb_bit_rsvd = rsvd_bits(63, 63);
+ if (!guest_cpuid_has_gbpages(vcpu))
+ gbpages_bit_rsvd = rsvd_bits(7, 7);
switch (context->root_level) {
case PT32_ROOT_LEVEL:
/* no rsvd bits for 2 level 4K page table entries */
@@ -3538,7 +3547,7 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
case PT32E_ROOT_LEVEL:
context->rsvd_bits_mask[0][2] =
rsvd_bits(maxphyaddr, 63) |
- rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
+ rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 62); /* PDE */
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
@@ -3550,16 +3559,16 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
break;
case PT64_ROOT_LEVEL:
context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
+ rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
+ gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51) |
+ gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
rsvd_bits(13, 29);
context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51) |
@@ -4304,15 +4313,32 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
if (*rmapp)
__rmap_write_protect(kvm, rmapp, false);
- if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
- kvm_flush_remote_tlbs(kvm);
+ if (need_resched() || spin_needbreak(&kvm->mmu_lock))
cond_resched_lock(&kvm->mmu_lock);
- }
}
}
- kvm_flush_remote_tlbs(kvm);
spin_unlock(&kvm->mmu_lock);
+
+ /*
+ * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
+ * which do tlb flush out of mmu-lock should be serialized by
+ * kvm->slots_lock otherwise tlb flush would be missed.
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /*
+ * We can flush all the TLBs out of the mmu lock without TLB
+ * corruption since we just change the spte from writable to
+ * readonly so that we only need to care the case of changing
+ * spte from present to present (changing the spte from present
+ * to nonpresent will flush all the TLBs immediately), in other
+ * words, the only case we care is mmu_spte_update() where we
+ * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+ * instead of PT_WRITABLE_MASK, that means it does not depend
+ * on PT_WRITABLE_MASK anymore.
+ */
+ kvm_flush_remote_tlbs(kvm);
}
#define BATCH_ZAP_PAGES 10
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h
index 3842e70bdb7c..b982112d2ca5 100644
--- a/arch/x86/kvm/mmu.h
+++ b/arch/x86/kvm/mmu.h
@@ -104,6 +104,39 @@ static inline int is_present_gpte(unsigned long pte)
return pte & PT_PRESENT_MASK;
}
+/*
+ * Currently, we have two sorts of write-protection, a) the first one
+ * write-protects guest page to sync the guest modification, b) another one is
+ * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
+ * between these two sorts are:
+ * 1) the first case clears SPTE_MMU_WRITEABLE bit.
+ * 2) the first case requires flushing tlb immediately avoiding corrupting
+ * shadow page table between all vcpus so it should be in the protection of
+ * mmu-lock. And the another case does not need to flush tlb until returning
+ * the dirty bitmap to userspace since it only write-protects the page
+ * logged in the bitmap, that means the page in the dirty bitmap is not
+ * missed, so it can flush tlb out of mmu-lock.
+ *
+ * So, there is the problem: the first case can meet the corrupted tlb caused
+ * by another case which write-protects pages but without flush tlb
+ * immediately. In order to making the first case be aware this problem we let
+ * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
+ * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
+ *
+ * Anyway, whenever a spte is updated (only permission and status bits are
+ * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
+ * readonly, if that happens, we need to flush tlb. Fortunately,
+ * mmu_spte_update() has already handled it perfectly.
+ *
+ * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
+ * - if we want to see if it has writable tlb entry or if the spte can be
+ * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
+ * case, otherwise
+ * - if we fix page fault on the spte or do write-protection by dirty logging,
+ * check PT_WRITABLE_MASK.
+ *
+ * TODO: introduce APIs to split these two cases.
+ */
static inline int is_writable_pte(unsigned long pte)
{
return pte & PT_WRITABLE_MASK;
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
index 123efd3ec29f..410776528265 100644
--- a/arch/x86/kvm/paging_tmpl.h
+++ b/arch/x86/kvm/paging_tmpl.h
@@ -913,8 +913,7 @@ static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
* and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
* used by guest then tlbs are not flushed, so guest is allowed to access the
* freed pages.
- * We set tlbs_dirty to let the notifier know this change and delay the flush
- * until such a case actually happens.
+ * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
*/
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
@@ -943,7 +942,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
return -EINVAL;
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
- vcpu->kvm->tlbs_dirty = true;
+ vcpu->kvm->tlbs_dirty++;
continue;
}
@@ -958,7 +957,7 @@ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
if (gfn != sp->gfns[i]) {
drop_spte(vcpu->kvm, &sp->spt[i]);
- vcpu->kvm->tlbs_dirty = true;
+ vcpu->kvm->tlbs_dirty++;
continue;
}
diff --git a/arch/x86/kvm/pmu.c b/arch/x86/kvm/pmu.c
index 5c4f63151b4d..cbecaa90399c 100644
--- a/arch/x86/kvm/pmu.c
+++ b/arch/x86/kvm/pmu.c
@@ -108,7 +108,10 @@ static void kvm_perf_overflow(struct perf_event *perf_event,
{
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
- __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
+ if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) {
+ __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
+ kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
+ }
}
static void kvm_perf_overflow_intr(struct perf_event *perf_event,
@@ -117,7 +120,7 @@ static void kvm_perf_overflow_intr(struct perf_event *perf_event,
struct kvm_pmc *pmc = perf_event->overflow_handler_context;
struct kvm_pmu *pmu = &pmc->vcpu->arch.pmu;
if (!test_and_set_bit(pmc->idx, (unsigned long *)&pmu->reprogram_pmi)) {
- kvm_perf_overflow(perf_event, data, regs);
+ __set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
/*
* Inject PMI. If vcpu was in a guest mode during NMI PMI
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c
index 7f4f9c2badae..ec8366c5cfea 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm.c
@@ -1338,21 +1338,6 @@ static void svm_vcpu_put(struct kvm_vcpu *vcpu)
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}
-static void svm_update_cpl(struct kvm_vcpu *vcpu)
-{
- struct vcpu_svm *svm = to_svm(vcpu);
- int cpl;
-
- if (!is_protmode(vcpu))
- cpl = 0;
- else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
- cpl = 3;
- else
- cpl = svm->vmcb->save.cs.selector & 0x3;
-
- svm->vmcb->save.cpl = cpl;
-}
-
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
return to_svm(vcpu)->vmcb->save.rflags;
@@ -1360,11 +1345,12 @@ static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
- unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
-
+ /*
+ * Any change of EFLAGS.VM is accompained by a reload of SS
+ * (caused by either a task switch or an inter-privilege IRET),
+ * so we do not need to update the CPL here.
+ */
to_svm(vcpu)->vmcb->save.rflags = rflags;
- if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
- svm_update_cpl(vcpu);
}
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
@@ -1631,8 +1617,15 @@ static void svm_set_segment(struct kvm_vcpu *vcpu,
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
}
- if (seg == VCPU_SREG_CS)
- svm_update_cpl(vcpu);
+
+ /*
+ * This is always accurate, except if SYSRET returned to a segment
+ * with SS.DPL != 3. Intel does not have this quirk, and always
+ * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
+ * would entail passing the CPL to userspace and back.
+ */
+ if (seg == VCPU_SREG_SS)
+ svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
mark_dirty(svm->vmcb, VMCB_SEG);
}
@@ -2770,12 +2763,6 @@ static int xsetbv_interception(struct vcpu_svm *svm)
return 1;
}
-static int invalid_op_interception(struct vcpu_svm *svm)
-{
- kvm_queue_exception(&svm->vcpu, UD_VECTOR);
- return 1;
-}
-
static int task_switch_interception(struct vcpu_svm *svm)
{
u16 tss_selector;
@@ -3287,6 +3274,24 @@ static int pause_interception(struct vcpu_svm *svm)
return 1;
}
+static int nop_interception(struct vcpu_svm *svm)
+{
+ skip_emulated_instruction(&(svm->vcpu));
+ return 1;
+}
+
+static int monitor_interception(struct vcpu_svm *svm)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return nop_interception(svm);
+}
+
+static int mwait_interception(struct vcpu_svm *svm)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return nop_interception(svm);
+}
+
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_READ_CR0] = cr_interception,
[SVM_EXIT_READ_CR3] = cr_interception,
@@ -3344,8 +3349,8 @@ static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
[SVM_EXIT_CLGI] = clgi_interception,
[SVM_EXIT_SKINIT] = skinit_interception,
[SVM_EXIT_WBINVD] = emulate_on_interception,
- [SVM_EXIT_MONITOR] = invalid_op_interception,
- [SVM_EXIT_MWAIT] = invalid_op_interception,
+ [SVM_EXIT_MONITOR] = monitor_interception,
+ [SVM_EXIT_MWAIT] = mwait_interception,
[SVM_EXIT_XSETBV] = xsetbv_interception,
[SVM_EXIT_NPF] = pf_interception,
};
diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h
index 545245d7cc63..33574c95220d 100644
--- a/arch/x86/kvm/trace.h
+++ b/arch/x86/kvm/trace.h
@@ -91,16 +91,21 @@ TRACE_EVENT(kvm_hv_hypercall,
/*
* Tracepoint for PIO.
*/
+
+#define KVM_PIO_IN 0
+#define KVM_PIO_OUT 1
+
TRACE_EVENT(kvm_pio,
TP_PROTO(unsigned int rw, unsigned int port, unsigned int size,
- unsigned int count),
- TP_ARGS(rw, port, size, count),
+ unsigned int count, void *data),
+ TP_ARGS(rw, port, size, count, data),
TP_STRUCT__entry(
__field( unsigned int, rw )
__field( unsigned int, port )
__field( unsigned int, size )
__field( unsigned int, count )
+ __field( unsigned int, val )
),
TP_fast_assign(
@@ -108,11 +113,18 @@ TRACE_EVENT(kvm_pio,
__entry->port = port;
__entry->size = size;
__entry->count = count;
+ if (size == 1)
+ __entry->val = *(unsigned char *)data;
+ else if (size == 2)
+ __entry->val = *(unsigned short *)data;
+ else
+ __entry->val = *(unsigned int *)data;
),
- TP_printk("pio_%s at 0x%x size %d count %d",
+ TP_printk("pio_%s at 0x%x size %d count %d val 0x%x %s",
__entry->rw ? "write" : "read",
- __entry->port, __entry->size, __entry->count)
+ __entry->port, __entry->size, __entry->count, __entry->val,
+ __entry->count > 1 ? "(...)" : "")
);
/*
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
index 138ceffc6377..801332edefc3 100644
--- a/arch/x86/kvm/vmx.c
+++ b/arch/x86/kvm/vmx.c
@@ -354,6 +354,7 @@ struct vmcs02_list {
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
+ gpa_t vmxon_ptr;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
@@ -413,7 +414,6 @@ struct vcpu_vmx {
struct kvm_vcpu vcpu;
unsigned long host_rsp;
u8 fail;
- u8 cpl;
bool nmi_known_unmasked;
u32 exit_intr_info;
u32 idt_vectoring_info;
@@ -2283,7 +2283,7 @@ static __init void nested_vmx_setup_ctls_msrs(void)
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
- /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
+
nested_vmx_exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
@@ -2291,7 +2291,8 @@ static __init void nested_vmx_setup_ctls_msrs(void)
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
if (vmx_mpx_supported())
nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
@@ -2353,12 +2354,11 @@ static __init void nested_vmx_setup_ctls_msrs(void)
VMX_EPT_INVEPT_BIT;
nested_vmx_ept_caps &= vmx_capability.ept;
/*
- * Since invept is completely emulated we support both global
- * and context invalidation independent of what host cpu
- * supports
+ * For nested guests, we don't do anything specific
+ * for single context invalidation. Hence, only advertise
+ * support for global context invalidation.
*/
- nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
- VMX_EPT_EXTENT_CONTEXT_BIT;
+ nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
} else
nested_vmx_ept_caps = 0;
@@ -3186,10 +3186,6 @@ static void enter_pmode(struct kvm_vcpu *vcpu)
fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
-
- /* CPL is always 0 when CPU enters protected mode */
- __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
- vmx->cpl = 0;
}
static void fix_rmode_seg(int seg, struct kvm_segment *save)
@@ -3591,22 +3587,14 @@ static int vmx_get_cpl(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- if (!is_protmode(vcpu))
+ if (unlikely(vmx->rmode.vm86_active))
return 0;
-
- if (!is_long_mode(vcpu)
- && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
- return 3;
-
- if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
- __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
- vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
+ else {
+ int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+ return AR_DPL(ar);
}
-
- return vmx->cpl;
}
-
static u32 vmx_segment_access_rights(struct kvm_segment *var)
{
u32 ar;
@@ -3634,8 +3622,6 @@ static void vmx_set_segment(struct kvm_vcpu *vcpu,
const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
vmx_segment_cache_clear(vmx);
- if (seg == VCPU_SREG_CS)
- __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
vmx->rmode.segs[seg] = *var;
@@ -4564,6 +4550,16 @@ static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
PIN_BASED_EXT_INTR_MASK;
}
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->vm_exit_controls &
+ VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->pin_based_vm_exec_control &
@@ -4878,6 +4874,9 @@ static int handle_exception(struct kvm_vcpu *vcpu)
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
vcpu->arch.dr6 &= ~15;
vcpu->arch.dr6 |= dr6;
+ if (!(dr6 & ~DR6_RESERVED)) /* icebp */
+ skip_emulated_instruction(vcpu);
+
kvm_queue_exception(vcpu, DB_VECTOR);
return 1;
}
@@ -5166,7 +5165,7 @@ static int handle_dr(struct kvm_vcpu *vcpu)
return 1;
kvm_register_write(vcpu, reg, val);
} else
- if (kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]))
+ if (kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)))
return 1;
skip_emulated_instruction(vcpu);
@@ -5439,7 +5438,7 @@ static int handle_task_switch(struct kvm_vcpu *vcpu)
}
/* clear all local breakpoint enable flags */
- vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
+ vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
/*
* TODO: What about debug traps on tss switch?
@@ -5565,6 +5564,10 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
gpa_t gpa;
gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
ret = handle_mmio_page_fault_common(vcpu, gpa, true);
if (likely(ret == RET_MMIO_PF_EMULATE))
@@ -5669,12 +5672,24 @@ static int handle_pause(struct kvm_vcpu *vcpu)
return 1;
}
-static int handle_invalid_op(struct kvm_vcpu *vcpu)
+static int handle_nop(struct kvm_vcpu *vcpu)
{
- kvm_queue_exception(vcpu, UD_VECTOR);
+ skip_emulated_instruction(vcpu);
return 1;
}
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
/*
* To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
* We could reuse a single VMCS for all the L2 guests, but we also want the
@@ -5812,6 +5827,154 @@ static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
}
/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
+ unsigned long exit_qualification,
+ u32 vmx_instruction_info, gva_t *ret)
+{
+ /*
+ * According to Vol. 3B, "Information for VM Exits Due to Instruction
+ * Execution", on an exit, vmx_instruction_info holds most of the
+ * addressing components of the operand. Only the displacement part
+ * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+ * For how an actual address is calculated from all these components,
+ * refer to Vol. 1, "Operand Addressing".
+ */
+ int scaling = vmx_instruction_info & 3;
+ int addr_size = (vmx_instruction_info >> 7) & 7;
+ bool is_reg = vmx_instruction_info & (1u << 10);
+ int seg_reg = (vmx_instruction_info >> 15) & 7;
+ int index_reg = (vmx_instruction_info >> 18) & 0xf;
+ bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+ int base_reg = (vmx_instruction_info >> 23) & 0xf;
+ bool base_is_valid = !(vmx_instruction_info & (1u << 27));
+
+ if (is_reg) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* Addr = segment_base + offset */
+ /* offset = base + [index * scale] + displacement */
+ *ret = vmx_get_segment_base(vcpu, seg_reg);
+ if (base_is_valid)
+ *ret += kvm_register_read(vcpu, base_reg);
+ if (index_is_valid)
+ *ret += kvm_register_read(vcpu, index_reg)<<scaling;
+ *ret += exit_qualification; /* holds the displacement */
+
+ if (addr_size == 1) /* 32 bit */
+ *ret &= 0xffffffff;
+
+ /*
+ * TODO: throw #GP (and return 1) in various cases that the VM*
+ * instructions require it - e.g., offset beyond segment limit,
+ * unusable or unreadable/unwritable segment, non-canonical 64-bit
+ * address, and so on. Currently these are not checked.
+ */
+ return 0;
+}
+
+/*
+ * This function performs the various checks including
+ * - if it's 4KB aligned
+ * - No bits beyond the physical address width are set
+ * - Returns 0 on success or else 1
+ * (Intel SDM Section 30.3)
+ */
+static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
+ gpa_t *vmpointer)
+{
+ gva_t gva;
+ gpa_t vmptr;
+ struct x86_exception e;
+ struct page *page;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
+ sizeof(vmptr), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (exit_reason) {
+ case EXIT_REASON_VMON:
+ /*
+ * SDM 3: 24.11.5
+ * The first 4 bytes of VMXON region contain the supported
+ * VMCS revision identifier
+ *
+ * Note - IA32_VMX_BASIC[48] will never be 1
+ * for the nested case;
+ * which replaces physical address width with 32
+ *
+ */
+ if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failInvalid(vcpu);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ page = nested_get_page(vcpu, vmptr);
+ if (page == NULL ||
+ *(u32 *)kmap(page) != VMCS12_REVISION) {
+ nested_vmx_failInvalid(vcpu);
+ kunmap(page);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ kunmap(page);
+ vmx->nested.vmxon_ptr = vmptr;
+ break;
+ case EXIT_REASON_VMCLEAR:
+ if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmptr == vmx->nested.vmxon_ptr) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ break;
+ case EXIT_REASON_VMPTRLD:
+ if (!IS_ALIGNED(vmptr, PAGE_SIZE) || (vmptr >> maxphyaddr)) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INVALID_ADDRESS);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+
+ if (vmptr == vmx->nested.vmxon_ptr) {
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+ skip_emulated_instruction(vcpu);
+ return 1;
+ }
+ break;
+ default:
+ return 1; /* shouldn't happen */
+ }
+
+ if (vmpointer)
+ *vmpointer = vmptr;
+ return 0;
+}
+
+/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
@@ -5849,6 +6012,10 @@ static int handle_vmon(struct kvm_vcpu *vcpu)
kvm_inject_gp(vcpu, 0);
return 1;
}
+
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
+ return 1;
+
if (vmx->nested.vmxon) {
nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
skip_emulated_instruction(vcpu);
@@ -5971,87 +6138,19 @@ static int handle_vmoff(struct kvm_vcpu *vcpu)
return 1;
}
-/*
- * Decode the memory-address operand of a vmx instruction, as recorded on an
- * exit caused by such an instruction (run by a guest hypervisor).
- * On success, returns 0. When the operand is invalid, returns 1 and throws
- * #UD or #GP.
- */
-static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
- unsigned long exit_qualification,
- u32 vmx_instruction_info, gva_t *ret)
-{
- /*
- * According to Vol. 3B, "Information for VM Exits Due to Instruction
- * Execution", on an exit, vmx_instruction_info holds most of the
- * addressing components of the operand. Only the displacement part
- * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
- * For how an actual address is calculated from all these components,
- * refer to Vol. 1, "Operand Addressing".
- */
- int scaling = vmx_instruction_info & 3;
- int addr_size = (vmx_instruction_info >> 7) & 7;
- bool is_reg = vmx_instruction_info & (1u << 10);
- int seg_reg = (vmx_instruction_info >> 15) & 7;
- int index_reg = (vmx_instruction_info >> 18) & 0xf;
- bool index_is_valid = !(vmx_instruction_info & (1u << 22));
- int base_reg = (vmx_instruction_info >> 23) & 0xf;
- bool base_is_valid = !(vmx_instruction_info & (1u << 27));
-
- if (is_reg) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- /* Addr = segment_base + offset */
- /* offset = base + [index * scale] + displacement */
- *ret = vmx_get_segment_base(vcpu, seg_reg);
- if (base_is_valid)
- *ret += kvm_register_read(vcpu, base_reg);
- if (index_is_valid)
- *ret += kvm_register_read(vcpu, index_reg)<<scaling;
- *ret += exit_qualification; /* holds the displacement */
-
- if (addr_size == 1) /* 32 bit */
- *ret &= 0xffffffff;
-
- /*
- * TODO: throw #GP (and return 1) in various cases that the VM*
- * instructions require it - e.g., offset beyond segment limit,
- * unusable or unreadable/unwritable segment, non-canonical 64-bit
- * address, and so on. Currently these are not checked.
- */
- return 0;
-}
-
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- gva_t gva;
gpa_t vmptr;
struct vmcs12 *vmcs12;
struct page *page;
- struct x86_exception e;
if (!nested_vmx_check_permission(vcpu))
return 1;
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
- return 1;
-
- if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
- sizeof(vmptr), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
- nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
- skip_emulated_instruction(vcpu);
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
return 1;
- }
if (vmptr == vmx->nested.current_vmptr) {
nested_release_vmcs12(vmx);
@@ -6372,29 +6471,14 @@ static int handle_vmwrite(struct kvm_vcpu *vcpu)
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
- gva_t gva;
gpa_t vmptr;
- struct x86_exception e;
u32 exec_control;
if (!nested_vmx_check_permission(vcpu))
return 1;
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
- return 1;
-
- if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
- sizeof(vmptr), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
- nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
- skip_emulated_instruction(vcpu);
+ if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
return 1;
- }
if (vmx->nested.current_vmptr != vmptr) {
struct vmcs12 *new_vmcs12;
@@ -6471,7 +6555,6 @@ static int handle_invept(struct kvm_vcpu *vcpu)
struct {
u64 eptp, gpa;
} operand;
- u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
!(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
@@ -6511,16 +6594,13 @@ static int handle_invept(struct kvm_vcpu *vcpu)
}
switch (type) {
- case VMX_EPT_EXTENT_CONTEXT:
- if ((operand.eptp & eptp_mask) !=
- (nested_ept_get_cr3(vcpu) & eptp_mask))
- break;
case VMX_EPT_EXTENT_GLOBAL:
kvm_mmu_sync_roots(vcpu);
kvm_mmu_flush_tlb(vcpu);
nested_vmx_succeed(vcpu);
break;
default:
+ /* Trap single context invalidation invept calls */
BUG_ON(1);
break;
}
@@ -6571,8 +6651,8 @@ static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
[EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
[EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
[EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
- [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
- [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
+ [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
+ [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
[EXIT_REASON_INVEPT] = handle_invept,
};
@@ -7413,7 +7493,6 @@ static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
| (1 << VCPU_EXREG_RFLAGS)
- | (1 << VCPU_EXREG_CPL)
| (1 << VCPU_EXREG_PDPTR)
| (1 << VCPU_EXREG_SEGMENTS)
| (1 << VCPU_EXREG_CR3));
@@ -8601,6 +8680,14 @@ static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
exit_qualification);
+ if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
+ && nested_exit_intr_ack_set(vcpu)) {
+ int irq = kvm_cpu_get_interrupt(vcpu);
+ WARN_ON(irq < 0);
+ vmcs12->vm_exit_intr_info = irq |
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+ }
+
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
vmcs12->idt_vectoring_info_field,
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index 20316c67b824..f32a02578c0d 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -704,25 +704,11 @@ int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
}
if (is_long_mode(vcpu)) {
- if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
- if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
- return 1;
- } else
- if (cr3 & CR3_L_MODE_RESERVED_BITS)
- return 1;
- } else {
- if (is_pae(vcpu)) {
- if (cr3 & CR3_PAE_RESERVED_BITS)
- return 1;
- if (is_paging(vcpu) &&
- !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
- return 1;
- }
- /*
- * We don't check reserved bits in nonpae mode, because
- * this isn't enforced, and VMware depends on this.
- */
- }
+ if (cr3 & CR3_L_MODE_RESERVED_BITS)
+ return 1;
+ } else if (is_pae(vcpu) && is_paging(vcpu) &&
+ !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
+ return 1;
vcpu->arch.cr3 = cr3;
__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
@@ -1935,6 +1921,8 @@ static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
vcpu->arch.hv_vapic = data;
+ if (kvm_lapic_enable_pv_eoi(vcpu, 0))
+ return 1;
break;
}
gfn = data >> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT;
@@ -1945,6 +1933,8 @@ static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
return 1;
vcpu->arch.hv_vapic = data;
mark_page_dirty(vcpu->kvm, gfn);
+ if (kvm_lapic_enable_pv_eoi(vcpu, gfn_to_gpa(gfn) | KVM_MSR_ENABLED))
+ return 1;
break;
}
case HV_X64_MSR_EOI:
@@ -2647,6 +2637,7 @@ int kvm_dev_ioctl_check_extension(long ext)
case KVM_CAP_IRQ_INJECT_STATUS:
case KVM_CAP_IRQFD:
case KVM_CAP_IOEVENTFD:
+ case KVM_CAP_IOEVENTFD_NO_LENGTH:
case KVM_CAP_PIT2:
case KVM_CAP_PIT_STATE2:
case KVM_CAP_SET_IDENTITY_MAP_ADDR:
@@ -3649,11 +3640,19 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
offset = i * BITS_PER_LONG;
kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
}
- if (is_dirty)
- kvm_flush_remote_tlbs(kvm);
spin_unlock(&kvm->mmu_lock);
+ /* See the comments in kvm_mmu_slot_remove_write_access(). */
+ lockdep_assert_held(&kvm->slots_lock);
+
+ /*
+ * All the TLBs can be flushed out of mmu lock, see the comments in
+ * kvm_mmu_slot_remove_write_access().
+ */
+ if (is_dirty)
+ kvm_flush_remote_tlbs(kvm);
+
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
goto out;
@@ -4489,8 +4488,6 @@ static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
unsigned short port, void *val,
unsigned int count, bool in)
{
- trace_kvm_pio(!in, port, size, count);
-
vcpu->arch.pio.port = port;
vcpu->arch.pio.in = in;
vcpu->arch.pio.count = count;
@@ -4525,6 +4522,7 @@ static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
if (ret) {
data_avail:
memcpy(val, vcpu->arch.pio_data, size * count);
+ trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
vcpu->arch.pio.count = 0;
return 1;
}
@@ -4539,6 +4537,7 @@ static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
memcpy(vcpu->arch.pio_data, val, size * count);
+ trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
}
@@ -4650,11 +4649,6 @@ static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
return res;
}
-static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
-{
- kvm_set_rflags(emul_to_vcpu(ctxt), val);
-}
-
static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
{
return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
@@ -4839,7 +4833,6 @@ static const struct x86_emulate_ops emulate_ops = {
.set_idt = emulator_set_idt,
.get_cr = emulator_get_cr,
.set_cr = emulator_set_cr,
- .set_rflags = emulator_set_rflags,
.cpl = emulator_get_cpl,
.get_dr = emulator_get_dr,
.set_dr = emulator_set_dr,
@@ -4905,7 +4898,7 @@ static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
ctxt->eip = kvm_rip_read(vcpu);
ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
(ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
- cs_l ? X86EMUL_MODE_PROT64 :
+ (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
cs_db ? X86EMUL_MODE_PROT32 :
X86EMUL_MODE_PROT16;
ctxt->guest_mode = is_guest_mode(vcpu);
@@ -7333,8 +7326,12 @@ void kvm_arch_commit_memory_region(struct kvm *kvm,
kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
/*
* Write protect all pages for dirty logging.
- * Existing largepage mappings are destroyed here and new ones will
- * not be created until the end of the logging.
+ *
+ * All the sptes including the large sptes which point to this
+ * slot are set to readonly. We can not create any new large
+ * spte on this slot until the end of the logging.
+ *
+ * See the comments in fast_page_fault().
*/
if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
kvm_mmu_slot_remove_write_access(kvm, mem->slot);