summaryrefslogtreecommitdiffstats
path: root/arch/arm64/include/asm/vectors.h
Commit message (Collapse)AuthorAgeFilesLines
* arm64: Avoid cpus_have_const_cap() for ARM64_UNMAP_KERNEL_AT_EL0Mark Rutland2023-10-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In arm64_kernel_unmapped_at_el0() we use cpus_have_const_cap() to check for ARM64_UNMAP_KERNEL_AT_EL0, but this is only necessary so that arm64_get_bp_hardening_vector() and this_cpu_set_vectors() can run prior to alternatives being patched. Otherwise this is not necessary and alternative_has_cap_*() would be preferable. For historical reasons, cpus_have_const_cap() is more complicated than it needs to be. Before cpucaps are finalized, it will perform a bitmap test of the system_cpucaps bitmap, and once cpucaps are finalized it will use an alternative branch. This used to be necessary to handle some race conditions in the window between cpucap detection and the subsequent patching of alternatives and static branches, where different branches could be out-of-sync with one another (or w.r.t. alternative sequences). Now that we use alternative branches instead of static branches, these are all patched atomically w.r.t. one another, and there are only a handful of cases that need special care in the window between cpucap detection and alternative patching. Due to the above, it would be nice to remove cpus_have_const_cap(), and migrate callers over to alternative_has_cap_*(), cpus_have_final_cap(), or cpus_have_cap() depending on when their requirements. This will remove redundant instructions and improve code generation, and will make it easier to determine how each callsite will behave before, during, and after alternative patching. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is a system-wide feature that is detected and patched before any translation tables are created for userspace. In the window between detecting the ARM64_UNMAP_KERNEL_AT_EL0 cpucap and patching alternatives, most users of arm64_kernel_unmapped_at_el0() do not need to know that the cpucap has been detected: * As KVM is initialized after cpucaps are finalized, no usaef of arm64_kernel_unmapped_at_el0() in the KVM code is reachable during this window. * The arm64_mm_context_get() function in arch/arm64/mm/context.c is only called after the SMMU driver is brought up after alternatives have been patched. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly the asids_update_limit() function is called after alternatives have been patched as an arch_initcall, and this can safely use cpus_have_final_cap() or alternative_has_cap_*(). Similarly we do not expect an ASID rollover to occur between cpucaps being detected and patching alternatives. Thus set_reserved_asid_bits() can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The __tlbi_user() and __tlbi_user_level() macros are not used during this window, and only need to invalidate additional entries once userspace translation tables have been active on a CPU. Thus these can safely use alternative_has_cap_*(). * The xen_kernel_unmapped_at_usr() function is not used during this window as it is only used in a late_initcall. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The arm64_get_meltdown_state() function is not used during this window. It only used by arm64_get_meltdown_state() and KVM code, both of which are only used after cpucaps have been finalized. Thus this can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The tls_thread_switch() uses arm64_kernel_unmapped_at_el0() as an optimization to avoid zeroing tpidrro_el0 when KPTI is enabled and this will be trampled by the KPTI trampoline. It doesn't matter if this continues to zero the register during the window between detecting the cpucap and patching alternatives, so this can safely use alternative_has_cap_*(). * The sdei_arch_get_entry_point() and do_sdei_event() functions aren't reachable at this time as the SDEI driver is registered later by acpi_init() -> acpi_ghes_init() -> sdei_init(), where acpi_init is a subsys_initcall. Thus these can safely use cpus_have_final_cap() or alternative_has_cap_*(). * The uses under drivers/ aren't reachable at this time as the drivers are registered later: - TRBE is registered via module_init() - SMMUv3 is registred via module_driver() - SPE is registred via module_init() * The arm64_get_bp_hardening_vector() and this_cpu_set_vectors() functions need to run on boot CPUs prior to patching alternatives. As these are only called during the onlining of a CPU, it's fine to perform a system_cpucaps bitmap test using cpus_have_cap(). This patch modifies this_cpu_set_vectors() to use cpus_have_cap(), and replaced all other use of cpus_have_const_cap() with alternative_has_cap_unlikely(), which will avoid generating code to test the system_cpucaps bitmap and should be better for all subsequent calls at runtime. The ARM64_UNMAP_KERNEL_AT_EL0 cpucap is added to cpucap_is_possible() so that code can be elided entirely when this is not possible. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: James Morse <james.morse@arm.com> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: fix clang warning about TRAMP_VALIASArnd Bergmann2022-03-181-2/+2
| | | | | | | | | | | | | | | | The newly introduced TRAMP_VALIAS definition causes a build warning with clang-14: arch/arm64/include/asm/vectors.h:66:31: error: arithmetic on a null pointer treated as a cast from integer to pointer is a GNU extension [-Werror,-Wnull-pointer-arithmetic] return (char *)TRAMP_VALIAS + SZ_2K * slot; Change the addition to something clang does not complain about. Fixes: bd09128d16fa ("arm64: Add percpu vectors for EL1") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: James Morse <james.morse@arm.com> Link: https://lore.kernel.org/r/20220316183833.1563139-1-arnd@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* arm64: Use the clearbhb instruction in mitigationsJames Morse2022-02-241-0/+7
| | | | | | | | | | | | | | Future CPUs may implement a clearbhb instruction that is sufficient to mitigate SpectreBHB. CPUs that implement this instruction, but not CSV2.3 must be affected by Spectre-BHB. Add support to use this instruction as the BHB mitigation on CPUs that support it. The instruction is in the hint space, so it will be treated by a NOP as older CPUs. Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: James Morse <james.morse@arm.com>
* arm64: Mitigate spectre style branch history side channelsJames Morse2022-02-241-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | Speculation attacks against some high-performance processors can make use of branch history to influence future speculation. When taking an exception from user-space, a sequence of branches or a firmware call overwrites or invalidates the branch history. The sequence of branches is added to the vectors, and should appear before the first indirect branch. For systems using KPTI the sequence is added to the kpti trampoline where it has a free register as the exit from the trampoline is via a 'ret'. For systems not using KPTI, the same register tricks are used to free up a register in the vectors. For the firmware call, arch-workaround-3 clobbers 4 registers, so there is no choice but to save them to the EL1 stack. This only happens for entry from EL0, so if we take an exception due to the stack access, it will not become re-entrant. For KVM, the existing branch-predictor-hardening vectors are used. When a spectre version of these vectors is in use, the firmware call is sufficient to mitigate against Spectre-BHB. For the non-spectre versions, the sequence of branches is added to the indirect vector. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: James Morse <james.morse@arm.com>
* arm64: Add percpu vectors for EL1James Morse2022-02-161-1/+28
| | | | | | | | | | | | | | | | | | The Spectre-BHB workaround adds a firmware call to the vectors. This is needed on some CPUs, but not others. To avoid the unaffected CPU in a big/little pair from making the firmware call, create per cpu vectors. The per-cpu vectors only apply when returning from EL0. Systems using KPTI can use the canonical 'full-fat' vectors directly at EL1, the trampoline exit code will switch to this_cpu_vector on exit to EL0. Systems not using KPTI should always use this_cpu_vector. this_cpu_vector will point at a vector in tramp_vecs or __bp_harden_el1_vectors, depending on whether KPTI is in use. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: James Morse <james.morse@arm.com>
* arm64: entry: Add vectors that have the bhb mitigation sequencesJames Morse2022-02-161-0/+34
Some CPUs affected by Spectre-BHB need a sequence of branches, or a firmware call to be run before any indirect branch. This needs to go in the vectors. No CPU needs both. While this can be patched in, it would run on all CPUs as there is a single set of vectors. If only one part of a big/little combination is affected, the unaffected CPUs have to run the mitigation too. Create extra vectors that include the sequence. Subsequent patches will allow affected CPUs to select this set of vectors. Later patches will modify the loop count to match what the CPU requires. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: James Morse <james.morse@arm.com>