summaryrefslogtreecommitdiffstats
path: root/crypto/ecdsa.c
Commit message (Collapse)AuthorAgeFilesLines
* crypto: ecdsa - Register NIST P521 and extend test suiteStefan Berger2024-04-121-0/+31
| | | | | | | | | | | | | Register NIST P521 as an akcipher and extend the testmgr with NIST P521-specific test vectors. Add a module alias so the module gets automatically loaded by the crypto subsystem when the curve is needed. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Rename keylen to bufsize where necessaryStefan Berger2024-04-121-6/+6
| | | | | | | | | | | | | In cases where 'keylen' was referring to the size of the buffer used by a curve's digits, it does not reflect the purpose of the variable anymore once NIST P521 is used. What it refers to then is the size of the buffer, which may be a few bytes larger than the size a coordinate of a key. Therefore, rename keylen to bufsize where appropriate. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Replace ndigits with nbits where precision is neededStefan Berger2024-04-121-1/+1
| | | | | | | | | | | Replace the usage of ndigits with nbits where precise space calculations are needed, such as in ecdsa_max_size where the length of a coordinate is determined. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Extend res.x mod n calculation for NIST P521Stefan Berger2024-04-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | res.x has been calculated by ecc_point_mult_shamir, which uses 'mod curve_prime' on res.x and therefore p > res.x with 'p' being the curve_prime. Further, it is true that for the NIST curves p > n with 'n' being the 'curve_order' and therefore the following may be true as well: p > res.x >= n. If res.x >= n then res.x mod n can be calculated by iteratively sub- tracting n from res.x until res.x < n. For NIST P192/256/384 this can be done in a single subtraction. This can also be done in a single subtraction for NIST P521. The mathematical reason why a single subtraction is sufficient is due to the values of 'p' and 'n' of the NIST curves where the following holds true: note: max(res.x) = p - 1 max(res.x) - n < n p - 1 - n < n p - 1 < 2n => holds true for the NIST curves Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Adjust tests on length of key parametersStefan Berger2024-04-121-1/+1
| | | | | | | | | | | | | | | | | | | | In preparation for support of NIST P521, adjust the basic tests on the length of the provided key parameters to only ensure that the length of the x plus y coordinates parameter array is not an odd number and that each coordinate fits into an array of 'ndigits' digits. Mathematical tests on the key's parameters are then done in ecc_is_pubkey_valid_full rejecting invalid keys. The change is necessary since NIST P521 keys do not have keys with coordinates that each require 'full' digits (= all bits in u64 used). NIST P521 only requires 2 bytes (9 bits) in the most significant digit unlike NIST P192/256/384 that each require multiple 'full' digits. Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Tested-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Convert byte arrays with key coordinates to digitsStefan Berger2024-04-121-5/+9
| | | | | | | | | | | | | | | | | | For NIST P192/256/384 the public key's x and y parameters could be copied directly from a given array since both parameters filled 'ndigits' of digits (a 'digit' is a u64). For support of NIST P521 the key parameters need to have leading zeros prepended to the most significant digit since only 2 bytes of the most significant digit are provided. Therefore, implement ecc_digits_from_bytes to convert a byte array into an array of digits and use this function in ecdsa_set_pub_key where an input byte array needs to be converted into digits. Suggested-by: Lukas Wunner <lukas@wunner.de> Tested-by: Lukas Wunner <lukas@wunner.de> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Fix module auto-load on add-keyStefan Berger2024-04-021-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add module alias with the algorithm cra_name similar to what we have for RSA-related and other algorithms. The kernel attempts to modprobe asymmetric algorithms using the names "crypto-$cra_name" and "crypto-$cra_name-all." However, since these aliases are currently missing, the modules are not loaded. For instance, when using the `add_key` function, the hash algorithm is typically loaded automatically, but the asymmetric algorithm is not. Steps to test: 1. Create certificate openssl req -x509 -sha256 -newkey ec \ -pkeyopt "ec_paramgen_curve:secp384r1" -keyout key.pem -days 365 \ -subj '/CN=test' -nodes -outform der -out nist-p384.der 2. Optionally, trace module requests with: trace-cmd stream -e module & 3. Trigger add_key call for the cert: # keyctl padd asymmetric "" @u < nist-p384.der 641069229 # lsmod | head -2 Module Size Used by ecdsa_generic 16384 0 Fixes: c12d448ba939 ("crypto: ecdsa - Register NIST P384 and extend test suite") Cc: stable@vger.kernel.org Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Reviewed-by: Vitaly Chikunov <vt@altlinux.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: add __init/__exit annotations to init/exit funcsXiu Jianfeng2022-09-241-2/+2
| | | | | | | Add missing __init/__exit annotations to init/exit funcs. Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecc - Move ecc.h to include/crypto/internalDaniele Alessandrelli2021-10-291-1/+1
| | | | | | | | | | | Move ecc.h header file to 'include/crypto/internal' so that it can be easily imported from everywhere in the kernel tree. This change is done to allow crypto device drivers to re-use the symbols exported by 'crypto/ecc.c', thus avoiding code duplication. Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Register NIST P384 and extend test suiteSaulo Alessandre2021-03-261-1/+32
| | | | | | | | | | | | | | | | | | | | | | | Register NIST P384 as an akcipher and extend the testmgr with NIST P384-specific test vectors. Summary of changes: * crypto/ecdsa.c - add ecdsa_nist_p384_init_tfm - register and unregister P384 tfm * crypto/testmgr.c - add test vector for P384 on vector of tests * crypto/testmgr.h - add test vector params for P384(sha1, sha224, sha256, sha384 and sha512) Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br> Tested-by: Stefan Berger <stefanb@linux.ibm.com> Acked-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: ecdsa - Add support for ECDSA signature verificationStefan Berger2021-03-261-0/+345
Add support for parsing the parameters of a NIST P256 or NIST P192 key. Enable signature verification using these keys. The new module is enabled with CONFIG_ECDSA: Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.) is A NIST cryptographic standard algorithm. Only signature verification is implemented. Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-crypto@vger.kernel.org Signed-off-by: Stefan Berger <stefanb@linux.ibm.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>