1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
|
.. SPDX-License-Identifier: (GPL-2.0+ OR MIT)
=========
Task List
=========
Tasks may have the following fields:
- ``Complexity``: Describes the required familiarity with Rust and / or the
corresponding kernel APIs or subsystems. There are four different complexities,
``Beginner``, ``Intermediate``, ``Advanced`` and ``Expert``.
- ``Reference``: References to other tasks.
- ``Link``: Links to external resources.
- ``Contact``: The person that can be contacted for further information about
the task.
Enablement (Rust)
=================
Tasks that are not directly related to nova-core, but are preconditions in terms
of required APIs.
FromPrimitive API
-----------------
Sometimes the need arises to convert a number to a value of an enum or a
structure.
A good example from nova-core would be the ``Chipset`` enum type, which defines
the value ``AD102``. When probing the GPU the value ``0x192`` can be read from a
certain register indication the chipset AD102. Hence, the enum value ``AD102``
should be derived from the number ``0x192``. Currently, nova-core uses a custom
implementation (``Chipset::from_u32`` for this.
Instead, it would be desirable to have something like the ``FromPrimitive``
trait [1] from the num crate.
Having this generalization also helps with implementing a generic macro that
automatically generates the corresponding mappings between a value and a number.
| Complexity: Beginner
| Link: https://docs.rs/num/latest/num/trait.FromPrimitive.html
Generic register abstraction
----------------------------
Work out how register constants and structures can be automatically generated
through generalized macros.
Example:
.. code-block:: rust
register!(BOOT0, 0x0, u32, pci::Bar<SIZE>, Fields [
MINOR_REVISION(3:0, RO),
MAJOR_REVISION(7:4, RO),
REVISION(7:0, RO), // Virtual register combining major and minor rev.
])
This could expand to something like:
.. code-block:: rust
const BOOT0_OFFSET: usize = 0x00000000;
const BOOT0_MINOR_REVISION_SHIFT: u8 = 0;
const BOOT0_MINOR_REVISION_MASK: u32 = 0x0000000f;
const BOOT0_MAJOR_REVISION_SHIFT: u8 = 4;
const BOOT0_MAJOR_REVISION_MASK: u32 = 0x000000f0;
const BOOT0_REVISION_SHIFT: u8 = BOOT0_MINOR_REVISION_SHIFT;
const BOOT0_REVISION_MASK: u32 = BOOT0_MINOR_REVISION_MASK | BOOT0_MAJOR_REVISION_MASK;
struct Boot0(u32);
impl Boot0 {
#[inline]
fn read(bar: &RevocableGuard<'_, pci::Bar<SIZE>>) -> Self {
Self(bar.readl(BOOT0_OFFSET))
}
#[inline]
fn minor_revision(&self) -> u32 {
(self.0 & BOOT0_MINOR_REVISION_MASK) >> BOOT0_MINOR_REVISION_SHIFT
}
#[inline]
fn major_revision(&self) -> u32 {
(self.0 & BOOT0_MAJOR_REVISION_MASK) >> BOOT0_MAJOR_REVISION_SHIFT
}
#[inline]
fn revision(&self) -> u32 {
(self.0 & BOOT0_REVISION_MASK) >> BOOT0_REVISION_SHIFT
}
}
Usage:
.. code-block:: rust
let bar = bar.try_access().ok_or(ENXIO)?;
let boot0 = Boot0::read(&bar);
pr_info!("Revision: {}\n", boot0.revision());
| Complexity: Advanced
Delay / Sleep abstractions
--------------------------
Rust abstractions for the kernel's delay() and sleep() functions.
FUJITA Tomonori plans to work on abstractions for read_poll_timeout_atomic()
(and friends) [1].
| Complexity: Beginner
| Link: https://lore.kernel.org/netdev/20250228.080550.354359820929821928.fujita.tomonori@gmail.com/ [1]
IRQ abstractions
----------------
Rust abstractions for IRQ handling.
There is active ongoing work from Daniel Almeida [1] for the "core" abstractions
to request IRQs.
Besides optional review and testing work, the required ``pci::Device`` code
around those core abstractions needs to be worked out.
| Complexity: Intermediate
| Link: https://lore.kernel.org/lkml/20250122163932.46697-1-daniel.almeida@collabora.com/ [1]
| Contact: Daniel Almeida
Page abstraction for foreign pages
----------------------------------
Rust abstractions for pages not created by the Rust page abstraction without
direct ownership.
There is active onging work from Abdiel Janulgue [1] and Lina [2].
| Complexity: Advanced
| Link: https://lore.kernel.org/linux-mm/20241119112408.779243-1-abdiel.janulgue@gmail.com/ [1]
| Link: https://lore.kernel.org/rust-for-linux/20250202-rust-page-v1-0-e3170d7fe55e@asahilina.net/ [2]
Scatterlist / sg_table abstractions
-----------------------------------
Rust abstractions for scatterlist / sg_table.
There is preceding work from Abdiel Janulgue, which hasn't made it to the
mailing list yet.
| Complexity: Intermediate
| Contact: Abdiel Janulgue
ELF utils
---------
Rust implementation of ELF header representation to retrieve section header
tables, names, and data from an ELF-formatted images.
There is preceding work from Abdiel Janulgue, which hasn't made it to the
mailing list yet.
| Complexity: Beginner
| Contact: Abdiel Janulgue
PCI MISC APIs
-------------
Extend the existing PCI device / driver abstractions by SR-IOV, config space,
capability, MSI API abstractions.
| Complexity: Beginner
Auxiliary bus abstractions
--------------------------
Rust abstraction for the auxiliary bus APIs.
This is needed to connect nova-core to the nova-drm driver.
| Complexity: Intermediate
Debugfs abstractions
--------------------
Rust abstraction for debugfs APIs.
| Reference: Export GSP log buffers
| Complexity: Intermediate
Vec extensions
--------------
Implement ``Vec::truncate`` and ``Vec::resize``.
Currently this is used for some experimental code to parse the vBIOS.
| Reference vBIOS support
| Complexity: Beginner
GPU (general)
=============
Parse firmware headers
----------------------
Parse ELF headers from the firmware files loaded from the filesystem.
| Reference: ELF utils
| Complexity: Beginner
| Contact: Abdiel Janulgue
Build radix3 page table
-----------------------
Build the radix3 page table to map the firmware.
| Complexity: Intermediate
| Contact: Abdiel Janulgue
vBIOS support
-------------
Parse the vBIOS and probe the structures required for driver initialization.
| Contact: Dave Airlie
| Reference: Vec extensions
| Complexity: Intermediate
Initial Devinit support
-----------------------
Implement BIOS Device Initialization, i.e. memory sizing, waiting, PLL
configuration.
| Contact: Dave Airlie
| Complexity: Beginner
Boot Falcon controller
----------------------
Infrastructure to load and execute falcon (sec2) firmware images; handle the
GSP falcon processor and fwsec loading.
| Complexity: Advanced
| Contact: Dave Airlie
GPU Timer support
-----------------
Support for the GPU's internal timer peripheral.
| Complexity: Beginner
| Contact: Dave Airlie
MMU / PT management
-------------------
Work out the architecture for MMU / page table management.
We need to consider that nova-drm will need rather fine-grained control,
especially in terms of locking, in order to be able to implement asynchronous
Vulkan queues.
While generally sharing the corresponding code is desirable, it needs to be
evaluated how (and if at all) sharing the corresponding code is expedient.
| Complexity: Expert
VRAM memory allocator
---------------------
Investigate options for a VRAM memory allocator.
Some possible options:
- Rust abstractions for
- RB tree (interval tree) / drm_mm
- maple_tree
- native Rust collections
| Complexity: Advanced
Instance Memory
---------------
Implement support for instmem (bar2) used to store page tables.
| Complexity: Intermediate
| Contact: Dave Airlie
GPU System Processor (GSP)
==========================
Export GSP log buffers
----------------------
Recent patches from Timur Tabi [1] added support to expose GSP-RM log buffers
(even after failure to probe the driver) through debugfs.
This is also an interesting feature for nova-core, especially in the early days.
| Link: https://lore.kernel.org/nouveau/20241030202952.694055-2-ttabi@nvidia.com/ [1]
| Reference: Debugfs abstractions
| Complexity: Intermediate
GSP firmware abstraction
------------------------
The GSP-RM firmware API is unstable and may incompatibly change from version to
version, in terms of data structures and semantics.
This problem is one of the big motivations for using Rust for nova-core, since
it turns out that Rust's procedural macro feature provides a rather elegant way
to address this issue:
1. generate Rust structures from the C headers in a separate namespace per version
2. build abstraction structures (within a generic namespace) that implement the
firmware interfaces; annotate the differences in implementation with version
identifiers
3. use a procedural macro to generate the actual per version implementation out
of this abstraction
4. instantiate the correct version type one on runtime (can be sure that all
have the same interface because it's defined by a common trait)
There is a PoC implementation of this pattern, in the context of the nova-core
PoC driver.
This task aims at refining the feature and ideally generalize it, to be usable
by other drivers as well.
| Complexity: Expert
GSP message queue
-----------------
Implement low level GSP message queue (command, status) for communication
between the kernel driver and GSP.
| Complexity: Advanced
| Contact: Dave Airlie
Bootstrap GSP
-------------
Call the boot firmware to boot the GSP processor; execute initial control
messages.
| Complexity: Intermediate
| Contact: Dave Airlie
Client / Device APIs
--------------------
Implement the GSP message interface for client / device allocation and the
corresponding client and device allocation APIs.
| Complexity: Intermediate
| Contact: Dave Airlie
Bar PDE handling
----------------
Synchronize page table handling for BARs between the kernel driver and GSP.
| Complexity: Beginner
| Contact: Dave Airlie
FIFO engine
-----------
Implement support for the FIFO engine, i.e. the corresponding GSP message
interface and provide an API for chid allocation and channel handling.
| Complexity: Advanced
| Contact: Dave Airlie
GR engine
---------
Implement support for the graphics engine, i.e. the corresponding GSP message
interface and provide an API for (golden) context creation and promotion.
| Complexity: Advanced
| Contact: Dave Airlie
CE engine
---------
Implement support for the copy engine, i.e. the corresponding GSP message
interface.
| Complexity: Intermediate
| Contact: Dave Airlie
VFN IRQ controller
------------------
Support for the VFN interrupt controller.
| Complexity: Intermediate
| Contact: Dave Airlie
External APIs
=============
nova-core base API
------------------
Work out the common pieces of the API to connect 2nd level drivers, i.e. vGPU
manager and nova-drm.
| Complexity: Advanced
vGPU manager API
----------------
Work out the API parts required by the vGPU manager, which are not covered by
the base API.
| Complexity: Advanced
nova-core C API
---------------
Implement a C wrapper for the APIs required by the vGPU manager driver.
| Complexity: Intermediate
Testing
=======
CI pipeline
-----------
Investigate option for continuous integration testing.
This can go from as simple as running KUnit tests over running (graphics) CTS to
booting up (multiple) guest VMs to test VFIO use-cases.
It might also be worth to consider the introduction of a new test suite directly
sitting on top of the uAPI for more targeted testing and debugging. There may be
options for collaboration / shared code with the Mesa project.
| Complexity: Advanced
|