1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __ASM_MMU_H
#define __ASM_MMU_H
#include <asm/cputype.h>
#define MMCF_AARCH32 0x1 /* mm context flag for AArch32 executables */
#define USER_ASID_BIT 48
#define USER_ASID_FLAG (UL(1) << USER_ASID_BIT)
#define TTBR_ASID_MASK (UL(0xffff) << 48)
#ifndef __ASSEMBLY__
#include <linux/refcount.h>
#include <asm/cpufeature.h>
typedef struct {
atomic64_t id;
#ifdef CONFIG_COMPAT
void *sigpage;
#endif
refcount_t pinned;
void *vdso;
unsigned long flags;
u8 pkey_allocation_map;
} mm_context_t;
/*
* We use atomic64_read() here because the ASID for an 'mm_struct' can
* be reallocated when scheduling one of its threads following a
* rollover event (see new_context() and flush_context()). In this case,
* a concurrent TLBI (e.g. via try_to_unmap_one() and ptep_clear_flush())
* may use a stale ASID. This is fine in principle as the new ASID is
* guaranteed to be clean in the TLB, but the TLBI routines have to take
* care to handle the following race:
*
* CPU 0 CPU 1 CPU 2
*
* // ptep_clear_flush(mm)
* xchg_relaxed(pte, 0)
* DSB ISHST
* old = ASID(mm)
* | <rollover>
* | new = new_context(mm)
* \-----------------> atomic_set(mm->context.id, new)
* cpu_switch_mm(mm)
* // Hardware walk of pte using new ASID
* TLBI(old)
*
* In this scenario, the barrier on CPU 0 and the dependency on CPU 1
* ensure that the page-table walker on CPU 1 *must* see the invalid PTE
* written by CPU 0.
*/
#define ASID(mm) (atomic64_read(&(mm)->context.id) & 0xffff)
static inline bool arm64_kernel_unmapped_at_el0(void)
{
return alternative_has_cap_unlikely(ARM64_UNMAP_KERNEL_AT_EL0);
}
extern void arm64_memblock_init(void);
extern void paging_init(void);
extern void bootmem_init(void);
extern void create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot);
extern void create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
unsigned long virt, phys_addr_t size,
pgprot_t prot, bool page_mappings_only);
extern void *fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot);
extern void mark_linear_text_alias_ro(void);
/*
* This check is triggered during the early boot before the cpufeature
* is initialised. Checking the status on the local CPU allows the boot
* CPU to detect the need for non-global mappings and thus avoiding a
* pagetable re-write after all the CPUs are booted. This check will be
* anyway run on individual CPUs, allowing us to get the consistent
* state once the SMP CPUs are up and thus make the switch to non-global
* mappings if required.
*/
static inline bool kaslr_requires_kpti(void)
{
/*
* E0PD does a similar job to KPTI so can be used instead
* where available.
*/
if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
if (cpuid_feature_extract_unsigned_field(mmfr2,
ID_AA64MMFR2_EL1_E0PD_SHIFT))
return false;
}
/*
* Systems affected by Cavium erratum 24756 are incompatible
* with KPTI.
*/
if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
extern const struct midr_range cavium_erratum_27456_cpus[];
if (is_midr_in_range_list(read_cpuid_id(),
cavium_erratum_27456_cpus))
return false;
}
return true;
}
#define INIT_MM_CONTEXT(name) \
.pgd = swapper_pg_dir,
#endif /* !__ASSEMBLY__ */
#endif
|