summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/hyp/nvhe/tlb.c
blob: ca3c09df8d7c96a3c7e0479cd2d7bbc366e0b97d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 */

#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/tlbflush.h>

#include <nvhe/mem_protect.h>

struct tlb_inv_context {
	struct kvm_s2_mmu	*mmu;
	u64			tcr;
	u64			sctlr;
};

static void enter_vmid_context(struct kvm_s2_mmu *mmu,
			       struct tlb_inv_context *cxt,
			       bool nsh)
{
	struct kvm_s2_mmu *host_s2_mmu = &host_mmu.arch.mmu;
	struct kvm_cpu_context *host_ctxt;
	struct kvm_vcpu *vcpu;

	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
	vcpu = host_ctxt->__hyp_running_vcpu;
	cxt->mmu = NULL;

	/*
	 * We have two requirements:
	 *
	 * - ensure that the page table updates are visible to all
	 *   CPUs, for which a dsb(DOMAIN-st) is what we need, DOMAIN
	 *   being either ish or nsh, depending on the invalidation
	 *   type.
	 *
	 * - complete any speculative page table walk started before
	 *   we trapped to EL2 so that we can mess with the MM
	 *   registers out of context, for which dsb(nsh) is enough
	 *
	 * The composition of these two barriers is a dsb(DOMAIN), and
	 * the 'nsh' parameter tracks the distinction between
	 * Inner-Shareable and Non-Shareable, as specified by the
	 * callers.
	 */
	if (nsh)
		dsb(nsh);
	else
		dsb(ish);

	/*
	 * If we're already in the desired context, then there's nothing to do.
	 */
	if (vcpu) {
		/*
		 * We're in guest context. However, for this to work, this needs
		 * to be called from within __kvm_vcpu_run(), which ensures that
		 * __hyp_running_vcpu is set to the current guest vcpu.
		 */
		if (mmu == vcpu->arch.hw_mmu || WARN_ON(mmu != host_s2_mmu))
			return;

		cxt->mmu = vcpu->arch.hw_mmu;
	} else {
		/* We're in host context. */
		if (mmu == host_s2_mmu)
			return;

		cxt->mmu = host_s2_mmu;
	}

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		u64 val;

		/*
		 * For CPUs that are affected by ARM 1319367, we need to
		 * avoid a Stage-1 walk with the old VMID while we have
		 * the new VMID set in the VTTBR in order to invalidate TLBs.
		 * We're guaranteed that the host S1 MMU is enabled, so
		 * we can simply set the EPD bits to avoid any further
		 * TLB fill. For guests, we ensure that the S1 MMU is
		 * temporarily enabled in the next context.
		 */
		val = cxt->tcr = read_sysreg_el1(SYS_TCR);
		val |= TCR_EPD1_MASK | TCR_EPD0_MASK;
		write_sysreg_el1(val, SYS_TCR);
		isb();

		if (vcpu) {
			val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR);
			if (!(val & SCTLR_ELx_M)) {
				val |= SCTLR_ELx_M;
				write_sysreg_el1(val, SYS_SCTLR);
				isb();
			}
		} else {
			/* The host S1 MMU is always enabled. */
			cxt->sctlr = SCTLR_ELx_M;
		}
	}

	/*
	 * __load_stage2() includes an ISB only when the AT
	 * workaround is applied. Take care of the opposite condition,
	 * ensuring that we always have an ISB, but not two ISBs back
	 * to back.
	 */
	if (vcpu)
		__load_host_stage2();
	else
		__load_stage2(mmu, kern_hyp_va(mmu->arch));

	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
}

static void exit_vmid_context(struct tlb_inv_context *cxt)
{
	struct kvm_s2_mmu *mmu = cxt->mmu;
	struct kvm_cpu_context *host_ctxt;
	struct kvm_vcpu *vcpu;

	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
	vcpu = host_ctxt->__hyp_running_vcpu;

	if (!mmu)
		return;

	if (vcpu)
		__load_stage2(mmu, kern_hyp_va(mmu->arch));
	else
		__load_host_stage2();

	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
		/* Ensure write of the old VMID */
		isb();

		if (!(cxt->sctlr & SCTLR_ELx_M)) {
			write_sysreg_el1(cxt->sctlr, SYS_SCTLR);
			isb();
		}

		write_sysreg_el1(cxt->tcr, SYS_TCR);
	}
}

void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu,
			      phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt, false);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1is, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu,
				  phys_addr_t ipa, int level)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt, true);

	/*
	 * We could do so much better if we had the VA as well.
	 * Instead, we invalidate Stage-2 for this IPA, and the
	 * whole of Stage-1. Weep...
	 */
	ipa >>= 12;
	__tlbi_level(ipas2e1, ipa, level);

	/*
	 * We have to ensure completion of the invalidation at Stage-2,
	 * since a table walk on another CPU could refill a TLB with a
	 * complete (S1 + S2) walk based on the old Stage-2 mapping if
	 * the Stage-1 invalidation happened first.
	 */
	dsb(nsh);
	__tlbi(vmalle1);
	dsb(nsh);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
				phys_addr_t start, unsigned long pages)
{
	struct tlb_inv_context cxt;
	unsigned long stride;

	/*
	 * Since the range of addresses may not be mapped at
	 * the same level, assume the worst case as PAGE_SIZE
	 */
	stride = PAGE_SIZE;
	start = round_down(start, stride);

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt, false);

	__flush_s2_tlb_range_op(ipas2e1is, start, pages, stride,
				TLBI_TTL_UNKNOWN);

	dsb(ish);
	__tlbi(vmalle1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt, false);

	__tlbi(vmalls12e1is);
	dsb(ish);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu)
{
	struct tlb_inv_context cxt;

	/* Switch to requested VMID */
	enter_vmid_context(mmu, &cxt, false);

	__tlbi(vmalle1);
	asm volatile("ic iallu");
	dsb(nsh);
	isb();

	exit_vmid_context(&cxt);
}

void __kvm_flush_vm_context(void)
{
	/* Same remark as in enter_vmid_context() */
	dsb(ish);
	__tlbi(alle1is);
	dsb(ish);
}