summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu/microcode/amd.c
blob: 3a35dec3ec55006422835ce61a15087bb29fb7a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  AMD CPU Microcode Update Driver for Linux
 *
 *  This driver allows to upgrade microcode on F10h AMD
 *  CPUs and later.
 *
 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
 *	          2013-2018 Borislav Petkov <bp@alien8.de>
 *
 *  Author: Peter Oruba <peter.oruba@amd.com>
 *
 *  Based on work by:
 *  Tigran Aivazian <aivazian.tigran@gmail.com>
 *
 *  early loader:
 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
 *
 *  Author: Jacob Shin <jacob.shin@amd.com>
 *  Fixes: Borislav Petkov <bp@suse.de>
 */
#define pr_fmt(fmt) "microcode: " fmt

#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/pci.h>

#include <asm/microcode_amd.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/cpu.h>
#include <asm/msr.h>

static struct equiv_cpu_table {
	unsigned int num_entries;
	struct equiv_cpu_entry *entry;
} equiv_table;

/*
 * This points to the current valid container of microcode patches which we will
 * save from the initrd/builtin before jettisoning its contents. @mc is the
 * microcode patch we found to match.
 */
struct cont_desc {
	struct microcode_amd *mc;
	u32		     cpuid_1_eax;
	u32		     psize;
	u8		     *data;
	size_t		     size;
};

static u32 ucode_new_rev;
static u8 amd_ucode_patch[PATCH_MAX_SIZE];

/*
 * Microcode patch container file is prepended to the initrd in cpio
 * format. See Documentation/x86/microcode.rst
 */
static const char
ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";

static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
{
	unsigned int i;

	if (!et || !et->num_entries)
		return 0;

	for (i = 0; i < et->num_entries; i++) {
		struct equiv_cpu_entry *e = &et->entry[i];

		if (sig == e->installed_cpu)
			return e->equiv_cpu;

		e++;
	}
	return 0;
}

/*
 * Check whether there is a valid microcode container file at the beginning
 * of @buf of size @buf_size. Set @early to use this function in the early path.
 */
static bool verify_container(const u8 *buf, size_t buf_size, bool early)
{
	u32 cont_magic;

	if (buf_size <= CONTAINER_HDR_SZ) {
		if (!early)
			pr_debug("Truncated microcode container header.\n");

		return false;
	}

	cont_magic = *(const u32 *)buf;
	if (cont_magic != UCODE_MAGIC) {
		if (!early)
			pr_debug("Invalid magic value (0x%08x).\n", cont_magic);

		return false;
	}

	return true;
}

/*
 * Check whether there is a valid, non-truncated CPU equivalence table at the
 * beginning of @buf of size @buf_size. Set @early to use this function in the
 * early path.
 */
static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
{
	const u32 *hdr = (const u32 *)buf;
	u32 cont_type, equiv_tbl_len;

	if (!verify_container(buf, buf_size, early))
		return false;

	cont_type = hdr[1];
	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
		if (!early)
			pr_debug("Wrong microcode container equivalence table type: %u.\n",
			       cont_type);

		return false;
	}

	buf_size -= CONTAINER_HDR_SZ;

	equiv_tbl_len = hdr[2];
	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
	    buf_size < equiv_tbl_len) {
		if (!early)
			pr_debug("Truncated equivalence table.\n");

		return false;
	}

	return true;
}

/*
 * Check whether there is a valid, non-truncated microcode patch section at the
 * beginning of @buf of size @buf_size. Set @early to use this function in the
 * early path.
 *
 * On success, @sh_psize returns the patch size according to the section header,
 * to the caller.
 */
static bool
__verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
{
	u32 p_type, p_size;
	const u32 *hdr;

	if (buf_size < SECTION_HDR_SIZE) {
		if (!early)
			pr_debug("Truncated patch section.\n");

		return false;
	}

	hdr = (const u32 *)buf;
	p_type = hdr[0];
	p_size = hdr[1];

	if (p_type != UCODE_UCODE_TYPE) {
		if (!early)
			pr_debug("Invalid type field (0x%x) in container file section header.\n",
				p_type);

		return false;
	}

	if (p_size < sizeof(struct microcode_header_amd)) {
		if (!early)
			pr_debug("Patch of size %u too short.\n", p_size);

		return false;
	}

	*sh_psize = p_size;

	return true;
}

/*
 * Check whether the passed remaining file @buf_size is large enough to contain
 * a patch of the indicated @sh_psize (and also whether this size does not
 * exceed the per-family maximum). @sh_psize is the size read from the section
 * header.
 */
static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
{
	u32 max_size;

	if (family >= 0x15)
		return min_t(u32, sh_psize, buf_size);

#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824

	switch (family) {
	case 0x10 ... 0x12:
		max_size = F1XH_MPB_MAX_SIZE;
		break;
	case 0x14:
		max_size = F14H_MPB_MAX_SIZE;
		break;
	default:
		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
		return 0;
	}

	if (sh_psize > min_t(u32, buf_size, max_size))
		return 0;

	return sh_psize;
}

/*
 * Verify the patch in @buf.
 *
 * Returns:
 * negative: on error
 * positive: patch is not for this family, skip it
 * 0: success
 */
static int
verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
{
	struct microcode_header_amd *mc_hdr;
	unsigned int ret;
	u32 sh_psize;
	u16 proc_id;
	u8 patch_fam;

	if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
		return -1;

	/*
	 * The section header length is not included in this indicated size
	 * but is present in the leftover file length so we need to subtract
	 * it before passing this value to the function below.
	 */
	buf_size -= SECTION_HDR_SIZE;

	/*
	 * Check if the remaining buffer is big enough to contain a patch of
	 * size sh_psize, as the section claims.
	 */
	if (buf_size < sh_psize) {
		if (!early)
			pr_debug("Patch of size %u truncated.\n", sh_psize);

		return -1;
	}

	ret = __verify_patch_size(family, sh_psize, buf_size);
	if (!ret) {
		if (!early)
			pr_debug("Per-family patch size mismatch.\n");
		return -1;
	}

	*patch_size = sh_psize;

	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
		if (!early)
			pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
		return -1;
	}

	proc_id	= mc_hdr->processor_rev_id;
	patch_fam = 0xf + (proc_id >> 12);
	if (patch_fam != family)
		return 1;

	return 0;
}

/*
 * This scans the ucode blob for the proper container as we can have multiple
 * containers glued together. Returns the equivalence ID from the equivalence
 * table or 0 if none found.
 * Returns the amount of bytes consumed while scanning. @desc contains all the
 * data we're going to use in later stages of the application.
 */
static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
{
	struct equiv_cpu_table table;
	size_t orig_size = size;
	u32 *hdr = (u32 *)ucode;
	u16 eq_id;
	u8 *buf;

	if (!verify_equivalence_table(ucode, size, true))
		return 0;

	buf = ucode;

	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);

	/*
	 * Find the equivalence ID of our CPU in this table. Even if this table
	 * doesn't contain a patch for the CPU, scan through the whole container
	 * so that it can be skipped in case there are other containers appended.
	 */
	eq_id = find_equiv_id(&table, desc->cpuid_1_eax);

	buf  += hdr[2] + CONTAINER_HDR_SZ;
	size -= hdr[2] + CONTAINER_HDR_SZ;

	/*
	 * Scan through the rest of the container to find where it ends. We do
	 * some basic sanity-checking too.
	 */
	while (size > 0) {
		struct microcode_amd *mc;
		u32 patch_size;
		int ret;

		ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
		if (ret < 0) {
			/*
			 * Patch verification failed, skip to the next
			 * container, if there's one:
			 */
			goto out;
		} else if (ret > 0) {
			goto skip;
		}

		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
		if (eq_id == mc->hdr.processor_rev_id) {
			desc->psize = patch_size;
			desc->mc = mc;
		}

skip:
		/* Skip patch section header too: */
		buf  += patch_size + SECTION_HDR_SIZE;
		size -= patch_size + SECTION_HDR_SIZE;
	}

	/*
	 * If we have found a patch (desc->mc), it means we're looking at the
	 * container which has a patch for this CPU so return 0 to mean, @ucode
	 * already points to the proper container. Otherwise, we return the size
	 * we scanned so that we can advance to the next container in the
	 * buffer.
	 */
	if (desc->mc) {
		desc->data = ucode;
		desc->size = orig_size - size;

		return 0;
	}

out:
	return orig_size - size;
}

/*
 * Scan the ucode blob for the proper container as we can have multiple
 * containers glued together.
 */
static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
{
	while (size) {
		size_t s = parse_container(ucode, size, desc);
		if (!s)
			return;

		/* catch wraparound */
		if (size >= s) {
			ucode += s;
			size  -= s;
		} else {
			return;
		}
	}
}

static int __apply_microcode_amd(struct microcode_amd *mc)
{
	u32 rev, dummy;

	native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);

	/* verify patch application was successful */
	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
	if (rev != mc->hdr.patch_id)
		return -1;

	return 0;
}

/*
 * Early load occurs before we can vmalloc(). So we look for the microcode
 * patch container file in initrd, traverse equivalent cpu table, look for a
 * matching microcode patch, and update, all in initrd memory in place.
 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 * kernel heap memory.
 *
 * Returns true if container found (sets @desc), false otherwise.
 */
static bool
apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
{
	struct cont_desc desc = { 0 };
	u8 (*patch)[PATCH_MAX_SIZE];
	struct microcode_amd *mc;
	u32 rev, dummy, *new_rev;
	bool ret = false;

#ifdef CONFIG_X86_32
	new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	patch	= (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
	new_rev = &ucode_new_rev;
	patch	= &amd_ucode_patch;
#endif

	desc.cpuid_1_eax = cpuid_1_eax;

	scan_containers(ucode, size, &desc);

	mc = desc.mc;
	if (!mc)
		return ret;

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);

	/*
	 * Allow application of the same revision to pick up SMT-specific
	 * changes even if the revision of the other SMT thread is already
	 * up-to-date.
	 */
	if (rev > mc->hdr.patch_id)
		return ret;

	if (!__apply_microcode_amd(mc)) {
		*new_rev = mc->hdr.patch_id;
		ret      = true;

		if (save_patch)
			memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
	}

	return ret;
}

static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
{
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct firmware fw;

	if (IS_ENABLED(CONFIG_X86_32))
		return false;

	if (family >= 0x15)
		snprintf(fw_name, sizeof(fw_name),
			 "amd-ucode/microcode_amd_fam%.2xh.bin", family);

	if (firmware_request_builtin(&fw, fw_name)) {
		cp->size = fw.size;
		cp->data = (void *)fw.data;
		return true;
	}

	return false;
}

static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
{
	struct ucode_cpu_info *uci;
	struct cpio_data cp;
	const char *path;
	bool use_pa;

	if (IS_ENABLED(CONFIG_X86_32)) {
		uci	= (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
		path	= (const char *)__pa_nodebug(ucode_path);
		use_pa	= true;
	} else {
		uci     = ucode_cpu_info;
		path	= ucode_path;
		use_pa	= false;
	}

	if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
		cp = find_microcode_in_initrd(path, use_pa);

	/* Needed in load_microcode_amd() */
	uci->cpu_sig.sig = cpuid_1_eax;

	*ret = cp;
}

void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
{
	struct cpio_data cp = { };

	__load_ucode_amd(cpuid_1_eax, &cp);
	if (!(cp.data && cp.size))
		return;

	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
}

void load_ucode_amd_ap(unsigned int cpuid_1_eax)
{
	struct microcode_amd *mc;
	struct cpio_data cp;
	u32 *new_rev, rev, dummy;

	if (IS_ENABLED(CONFIG_X86_32)) {
		mc	= (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
		new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
	} else {
		mc	= (struct microcode_amd *)amd_ucode_patch;
		new_rev = &ucode_new_rev;
	}

	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);

	/*
	 * Check whether a new patch has been saved already. Also, allow application of
	 * the same revision in order to pick up SMT-thread-specific configuration even
	 * if the sibling SMT thread already has an up-to-date revision.
	 */
	if (*new_rev && rev <= mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			*new_rev = mc->hdr.patch_id;
			return;
		}
	}

	__load_ucode_amd(cpuid_1_eax, &cp);
	if (!(cp.data && cp.size))
		return;

	apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
}

static enum ucode_state
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);

int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
{
	struct cont_desc desc = { 0 };
	enum ucode_state ret;
	struct cpio_data cp;

	cp = find_microcode_in_initrd(ucode_path, false);
	if (!(cp.data && cp.size))
		return -EINVAL;

	desc.cpuid_1_eax = cpuid_1_eax;

	scan_containers(cp.data, cp.size, &desc);
	if (!desc.mc)
		return -EINVAL;

	ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
	if (ret > UCODE_UPDATED)
		return -EINVAL;

	return 0;
}

void reload_ucode_amd(void)
{
	struct microcode_amd *mc;
	u32 rev, dummy __always_unused;

	mc = (struct microcode_amd *)amd_ucode_patch;

	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);

	if (rev < mc->hdr.patch_id) {
		if (!__apply_microcode_amd(mc)) {
			ucode_new_rev = mc->hdr.patch_id;
			pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
		}
	}
}
static u16 __find_equiv_id(unsigned int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
}

/*
 * a small, trivial cache of per-family ucode patches
 */
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &microcode_cache, plist)
		if (p->equiv_cpu == equiv_cpu)
			return p;
	return NULL;
}

static void update_cache(struct ucode_patch *new_patch)
{
	struct ucode_patch *p;

	list_for_each_entry(p, &microcode_cache, plist) {
		if (p->equiv_cpu == new_patch->equiv_cpu) {
			if (p->patch_id >= new_patch->patch_id) {
				/* we already have the latest patch */
				kfree(new_patch->data);
				kfree(new_patch);
				return;
			}

			list_replace(&p->plist, &new_patch->plist);
			kfree(p->data);
			kfree(p);
			return;
		}
	}
	/* no patch found, add it */
	list_add_tail(&new_patch->plist, &microcode_cache);
}

static void free_cache(void)
{
	struct ucode_patch *p, *tmp;

	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
		__list_del(p->plist.prev, p->plist.next);
		kfree(p->data);
		kfree(p);
	}
}

static struct ucode_patch *find_patch(unsigned int cpu)
{
	u16 equiv_id;

	equiv_id = __find_equiv_id(cpu);
	if (!equiv_id)
		return NULL;

	return cache_find_patch(equiv_id);
}

static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
{
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
	struct ucode_patch *p;

	csig->sig = cpuid_eax(0x00000001);
	csig->rev = c->microcode;

	/*
	 * a patch could have been loaded early, set uci->mc so that
	 * mc_bp_resume() can call apply_microcode()
	 */
	p = find_patch(cpu);
	if (p && (p->patch_id == csig->rev))
		uci->mc = p->data;

	pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);

	return 0;
}

static enum ucode_state apply_microcode_amd(int cpu)
{
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	struct microcode_amd *mc_amd;
	struct ucode_cpu_info *uci;
	struct ucode_patch *p;
	enum ucode_state ret;
	u32 rev, dummy __always_unused;

	BUG_ON(raw_smp_processor_id() != cpu);

	uci = ucode_cpu_info + cpu;

	p = find_patch(cpu);
	if (!p)
		return UCODE_NFOUND;

	mc_amd  = p->data;
	uci->mc = p->data;

	rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);

	/* need to apply patch? */
	if (rev >= mc_amd->hdr.patch_id) {
		ret = UCODE_OK;
		goto out;
	}

	if (__apply_microcode_amd(mc_amd)) {
		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
			cpu, mc_amd->hdr.patch_id);
		return UCODE_ERROR;
	}

	rev = mc_amd->hdr.patch_id;
	ret = UCODE_UPDATED;

	pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);

out:
	uci->cpu_sig.rev = rev;
	c->microcode	 = rev;

	/* Update boot_cpu_data's revision too, if we're on the BSP: */
	if (c->cpu_index == boot_cpu_data.cpu_index)
		boot_cpu_data.microcode = rev;

	return ret;
}

static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
{
	u32 equiv_tbl_len;
	const u32 *hdr;

	if (!verify_equivalence_table(buf, buf_size, false))
		return 0;

	hdr = (const u32 *)buf;
	equiv_tbl_len = hdr[2];

	equiv_table.entry = vmalloc(equiv_tbl_len);
	if (!equiv_table.entry) {
		pr_err("failed to allocate equivalent CPU table\n");
		return 0;
	}

	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);

	/* add header length */
	return equiv_tbl_len + CONTAINER_HDR_SZ;
}

static void free_equiv_cpu_table(void)
{
	vfree(equiv_table.entry);
	memset(&equiv_table, 0, sizeof(equiv_table));
}

static void cleanup(void)
{
	free_equiv_cpu_table();
	free_cache();
}

/*
 * Return a non-negative value even if some of the checks failed so that
 * we can skip over the next patch. If we return a negative value, we
 * signal a grave error like a memory allocation has failed and the
 * driver cannot continue functioning normally. In such cases, we tear
 * down everything we've used up so far and exit.
 */
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
				unsigned int *patch_size)
{
	struct microcode_header_amd *mc_hdr;
	struct ucode_patch *patch;
	u16 proc_id;
	int ret;

	ret = verify_patch(family, fw, leftover, patch_size, false);
	if (ret)
		return ret;

	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
	if (!patch) {
		pr_err("Patch allocation failure.\n");
		return -EINVAL;
	}

	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
	if (!patch->data) {
		pr_err("Patch data allocation failure.\n");
		kfree(patch);
		return -EINVAL;
	}
	patch->size = *patch_size;

	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
	proc_id     = mc_hdr->processor_rev_id;

	INIT_LIST_HEAD(&patch->plist);
	patch->patch_id  = mc_hdr->patch_id;
	patch->equiv_cpu = proc_id;

	pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
		 __func__, patch->patch_id, proc_id);

	/* ... and add to cache. */
	update_cache(patch);

	return 0;
}

static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
					     size_t size)
{
	u8 *fw = (u8 *)data;
	size_t offset;

	offset = install_equiv_cpu_table(data, size);
	if (!offset)
		return UCODE_ERROR;

	fw   += offset;
	size -= offset;

	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
		pr_err("invalid type field in container file section header\n");
		free_equiv_cpu_table();
		return UCODE_ERROR;
	}

	while (size > 0) {
		unsigned int crnt_size = 0;
		int ret;

		ret = verify_and_add_patch(family, fw, size, &crnt_size);
		if (ret < 0)
			return UCODE_ERROR;

		fw   +=  crnt_size + SECTION_HDR_SIZE;
		size -= (crnt_size + SECTION_HDR_SIZE);
	}

	return UCODE_OK;
}

static enum ucode_state
load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
{
	struct ucode_patch *p;
	enum ucode_state ret;

	/* free old equiv table */
	free_equiv_cpu_table();

	ret = __load_microcode_amd(family, data, size);
	if (ret != UCODE_OK) {
		cleanup();
		return ret;
	}

	p = find_patch(0);
	if (!p) {
		return ret;
	} else {
		if (boot_cpu_data.microcode >= p->patch_id)
			return ret;

		ret = UCODE_NEW;
	}

	/* save BSP's matching patch for early load */
	if (!save)
		return ret;

	memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
	memcpy(amd_ucode_patch, p->data, min_t(u32, p->size, PATCH_MAX_SIZE));

	return ret;
}

/*
 * AMD microcode firmware naming convention, up to family 15h they are in
 * the legacy file:
 *
 *    amd-ucode/microcode_amd.bin
 *
 * This legacy file is always smaller than 2K in size.
 *
 * Beginning with family 15h, they are in family-specific firmware files:
 *
 *    amd-ucode/microcode_amd_fam15h.bin
 *    amd-ucode/microcode_amd_fam16h.bin
 *    ...
 *
 * These might be larger than 2K.
 */
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
					      bool refresh_fw)
{
	char fw_name[36] = "amd-ucode/microcode_amd.bin";
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
	enum ucode_state ret = UCODE_NFOUND;
	const struct firmware *fw;

	/* reload ucode container only on the boot cpu */
	if (!refresh_fw || !bsp)
		return UCODE_OK;

	if (c->x86 >= 0x15)
		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);

	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
		pr_debug("failed to load file %s\n", fw_name);
		goto out;
	}

	ret = UCODE_ERROR;
	if (!verify_container(fw->data, fw->size, false))
		goto fw_release;

	ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);

 fw_release:
	release_firmware(fw);

 out:
	return ret;
}

static void microcode_fini_cpu_amd(int cpu)
{
	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;

	uci->mc = NULL;
}

static struct microcode_ops microcode_amd_ops = {
	.request_microcode_fw             = request_microcode_amd,
	.collect_cpu_info                 = collect_cpu_info_amd,
	.apply_microcode                  = apply_microcode_amd,
	.microcode_fini_cpu               = microcode_fini_cpu_amd,
};

struct microcode_ops * __init init_amd_microcode(void)
{
	struct cpuinfo_x86 *c = &boot_cpu_data;

	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
		return NULL;
	}

	if (ucode_new_rev)
		pr_info_once("microcode updated early to new patch_level=0x%08x\n",
			     ucode_new_rev);

	return &microcode_amd_ops;
}

void __exit exit_amd_microcode(void)
{
	cleanup();
}