summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/i8254.c
blob: febca334c32068943294cb5ff5c5113cf72f7d16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/*
 * 8253/8254 interval timer emulation
 *
 * Copyright (c) 2003-2004 Fabrice Bellard
 * Copyright (c) 2006 Intel Corporation
 * Copyright (c) 2007 Keir Fraser, XenSource Inc
 * Copyright (c) 2008 Intel Corporation
 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * Authors:
 *   Sheng Yang <sheng.yang@intel.com>
 *   Based on QEMU and Xen.
 */

#define pr_fmt(fmt) "pit: " fmt

#include <linux/kvm_host.h>
#include <linux/slab.h>

#include "ioapic.h"
#include "irq.h"
#include "i8254.h"
#include "x86.h"

#ifndef CONFIG_X86_64
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
#else
#define mod_64(x, y) ((x) % (y))
#endif

#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4

static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
{
	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];

	switch (c->mode) {
	default:
	case 0:
	case 4:
		/* XXX: just disable/enable counting */
		break;
	case 1:
	case 2:
	case 3:
	case 5:
		/* Restart counting on rising edge. */
		if (c->gate < val)
			c->count_load_time = ktime_get();
		break;
	}

	c->gate = val;
}

static int pit_get_gate(struct kvm_pit *pit, int channel)
{
	return pit->pit_state.channels[channel].gate;
}

static s64 __kpit_elapsed(struct kvm_pit *pit)
{
	s64 elapsed;
	ktime_t remaining;
	struct kvm_kpit_state *ps = &pit->pit_state;

	if (!ps->period)
		return 0;

	/*
	 * The Counter does not stop when it reaches zero. In
	 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
	 * the highest count, either FFFF hex for binary counting
	 * or 9999 for BCD counting, and continues counting.
	 * Modes 2 and 3 are periodic; the Counter reloads
	 * itself with the initial count and continues counting
	 * from there.
	 */
	remaining = hrtimer_get_remaining(&ps->timer);
	elapsed = ps->period - ktime_to_ns(remaining);

	return elapsed;
}

static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
			int channel)
{
	if (channel == 0)
		return __kpit_elapsed(pit);

	return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
}

static int pit_get_count(struct kvm_pit *pit, int channel)
{
	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
	s64 d, t;
	int counter;

	t = kpit_elapsed(pit, c, channel);
	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);

	switch (c->mode) {
	case 0:
	case 1:
	case 4:
	case 5:
		counter = (c->count - d) & 0xffff;
		break;
	case 3:
		/* XXX: may be incorrect for odd counts */
		counter = c->count - (mod_64((2 * d), c->count));
		break;
	default:
		counter = c->count - mod_64(d, c->count);
		break;
	}
	return counter;
}

static int pit_get_out(struct kvm_pit *pit, int channel)
{
	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
	s64 d, t;
	int out;

	t = kpit_elapsed(pit, c, channel);
	d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);

	switch (c->mode) {
	default:
	case 0:
		out = (d >= c->count);
		break;
	case 1:
		out = (d < c->count);
		break;
	case 2:
		out = ((mod_64(d, c->count) == 0) && (d != 0));
		break;
	case 3:
		out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
		break;
	case 4:
	case 5:
		out = (d == c->count);
		break;
	}

	return out;
}

static void pit_latch_count(struct kvm_pit *pit, int channel)
{
	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];

	if (!c->count_latched) {
		c->latched_count = pit_get_count(pit, channel);
		c->count_latched = c->rw_mode;
	}
}

static void pit_latch_status(struct kvm_pit *pit, int channel)
{
	struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];

	if (!c->status_latched) {
		/* TODO: Return NULL COUNT (bit 6). */
		c->status = ((pit_get_out(pit, channel) << 7) |
				(c->rw_mode << 4) |
				(c->mode << 1) |
				c->bcd);
		c->status_latched = 1;
	}
}

static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
{
	return container_of(ps, struct kvm_pit, pit_state);
}

static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
{
	struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
						 irq_ack_notifier);
	struct kvm_pit *pit = pit_state_to_pit(ps);

	atomic_set(&ps->irq_ack, 1);
	/* irq_ack should be set before pending is read.  Order accesses with
	 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
	 */
	smp_mb();
	if (atomic_dec_if_positive(&ps->pending) > 0)
		kthread_queue_work(pit->worker, &pit->expired);
}

void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
{
	struct kvm_pit *pit = vcpu->kvm->arch.vpit;
	struct hrtimer *timer;

	if (!kvm_vcpu_is_bsp(vcpu) || !pit)
		return;

	timer = &pit->pit_state.timer;
	mutex_lock(&pit->pit_state.lock);
	if (hrtimer_cancel(timer))
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
	mutex_unlock(&pit->pit_state.lock);
}

static void destroy_pit_timer(struct kvm_pit *pit)
{
	hrtimer_cancel(&pit->pit_state.timer);
	kthread_flush_work(&pit->expired);
}

static void pit_do_work(struct kthread_work *work)
{
	struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
	struct kvm *kvm = pit->kvm;
	struct kvm_vcpu *vcpu;
	int i;
	struct kvm_kpit_state *ps = &pit->pit_state;

	if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
		return;

	kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
	kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);

	/*
	 * Provides NMI watchdog support via Virtual Wire mode.
	 * The route is: PIT -> LVT0 in NMI mode.
	 *
	 * Note: Our Virtual Wire implementation does not follow
	 * the MP specification.  We propagate a PIT interrupt to all
	 * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
	 * also be simultaneously delivered through PIC and IOAPIC.
	 */
	if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvm_apic_nmi_wd_deliver(vcpu);
}

static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
	struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
	struct kvm_pit *pt = pit_state_to_pit(ps);

	if (atomic_read(&ps->reinject))
		atomic_inc(&ps->pending);

	kthread_queue_work(pt->worker, &pt->expired);

	if (ps->is_periodic) {
		hrtimer_add_expires_ns(&ps->timer, ps->period);
		return HRTIMER_RESTART;
	} else
		return HRTIMER_NORESTART;
}

static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
{
	atomic_set(&pit->pit_state.pending, 0);
	atomic_set(&pit->pit_state.irq_ack, 1);
}

void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
{
	struct kvm_kpit_state *ps = &pit->pit_state;
	struct kvm *kvm = pit->kvm;

	if (atomic_read(&ps->reinject) == reinject)
		return;

	/*
	 * AMD SVM AVIC accelerates EOI write and does not trap.
	 * This cause in-kernel PIT re-inject mode to fail
	 * since it checks ps->irq_ack before kvm_set_irq()
	 * and relies on the ack notifier to timely queue
	 * the pt->worker work iterm and reinject the missed tick.
	 * So, deactivate APICv when PIT is in reinject mode.
	 */
	if (reinject) {
		kvm_request_apicv_update(kvm, false,
					 APICV_INHIBIT_REASON_PIT_REINJ);
		/* The initial state is preserved while ps->reinject == 0. */
		kvm_pit_reset_reinject(pit);
		kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
		kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
	} else {
		kvm_request_apicv_update(kvm, true,
					 APICV_INHIBIT_REASON_PIT_REINJ);
		kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
		kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
	}

	atomic_set(&ps->reinject, reinject);
}

static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
{
	struct kvm_kpit_state *ps = &pit->pit_state;
	struct kvm *kvm = pit->kvm;
	s64 interval;

	if (!ioapic_in_kernel(kvm) ||
	    ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
		return;

	interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);

	pr_debug("create pit timer, interval is %llu nsec\n", interval);

	/* TODO The new value only affected after the retriggered */
	hrtimer_cancel(&ps->timer);
	kthread_flush_work(&pit->expired);
	ps->period = interval;
	ps->is_periodic = is_period;

	kvm_pit_reset_reinject(pit);

	/*
	 * Do not allow the guest to program periodic timers with small
	 * interval, since the hrtimers are not throttled by the host
	 * scheduler.
	 */
	if (ps->is_periodic) {
		s64 min_period = min_timer_period_us * 1000LL;

		if (ps->period < min_period) {
			pr_info_ratelimited(
			    "kvm: requested %lld ns "
			    "i8254 timer period limited to %lld ns\n",
			    ps->period, min_period);
			ps->period = min_period;
		}
	}

	hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
		      HRTIMER_MODE_ABS);
}

static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
{
	struct kvm_kpit_state *ps = &pit->pit_state;

	pr_debug("load_count val is %u, channel is %d\n", val, channel);

	/*
	 * The largest possible initial count is 0; this is equivalent
	 * to 216 for binary counting and 104 for BCD counting.
	 */
	if (val == 0)
		val = 0x10000;

	ps->channels[channel].count = val;

	if (channel != 0) {
		ps->channels[channel].count_load_time = ktime_get();
		return;
	}

	/* Two types of timer
	 * mode 1 is one shot, mode 2 is period, otherwise del timer */
	switch (ps->channels[0].mode) {
	case 0:
	case 1:
        /* FIXME: enhance mode 4 precision */
	case 4:
		create_pit_timer(pit, val, 0);
		break;
	case 2:
	case 3:
		create_pit_timer(pit, val, 1);
		break;
	default:
		destroy_pit_timer(pit);
	}
}

void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
		int hpet_legacy_start)
{
	u8 saved_mode;

	WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));

	if (hpet_legacy_start) {
		/* save existing mode for later reenablement */
		WARN_ON(channel != 0);
		saved_mode = pit->pit_state.channels[0].mode;
		pit->pit_state.channels[0].mode = 0xff; /* disable timer */
		pit_load_count(pit, channel, val);
		pit->pit_state.channels[0].mode = saved_mode;
	} else {
		pit_load_count(pit, channel, val);
	}
}

static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
{
	return container_of(dev, struct kvm_pit, dev);
}

static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
{
	return container_of(dev, struct kvm_pit, speaker_dev);
}

static inline int pit_in_range(gpa_t addr)
{
	return ((addr >= KVM_PIT_BASE_ADDRESS) &&
		(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
}

static int pit_ioport_write(struct kvm_vcpu *vcpu,
				struct kvm_io_device *this,
			    gpa_t addr, int len, const void *data)
{
	struct kvm_pit *pit = dev_to_pit(this);
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	int channel, access;
	struct kvm_kpit_channel_state *s;
	u32 val = *(u32 *) data;
	if (!pit_in_range(addr))
		return -EOPNOTSUPP;

	val  &= 0xff;
	addr &= KVM_PIT_CHANNEL_MASK;

	mutex_lock(&pit_state->lock);

	if (val != 0)
		pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
			 (unsigned int)addr, len, val);

	if (addr == 3) {
		channel = val >> 6;
		if (channel == 3) {
			/* Read-Back Command. */
			for (channel = 0; channel < 3; channel++) {
				s = &pit_state->channels[channel];
				if (val & (2 << channel)) {
					if (!(val & 0x20))
						pit_latch_count(pit, channel);
					if (!(val & 0x10))
						pit_latch_status(pit, channel);
				}
			}
		} else {
			/* Select Counter <channel>. */
			s = &pit_state->channels[channel];
			access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
			if (access == 0) {
				pit_latch_count(pit, channel);
			} else {
				s->rw_mode = access;
				s->read_state = access;
				s->write_state = access;
				s->mode = (val >> 1) & 7;
				if (s->mode > 5)
					s->mode -= 4;
				s->bcd = val & 1;
			}
		}
	} else {
		/* Write Count. */
		s = &pit_state->channels[addr];
		switch (s->write_state) {
		default:
		case RW_STATE_LSB:
			pit_load_count(pit, addr, val);
			break;
		case RW_STATE_MSB:
			pit_load_count(pit, addr, val << 8);
			break;
		case RW_STATE_WORD0:
			s->write_latch = val;
			s->write_state = RW_STATE_WORD1;
			break;
		case RW_STATE_WORD1:
			pit_load_count(pit, addr, s->write_latch | (val << 8));
			s->write_state = RW_STATE_WORD0;
			break;
		}
	}

	mutex_unlock(&pit_state->lock);
	return 0;
}

static int pit_ioport_read(struct kvm_vcpu *vcpu,
			   struct kvm_io_device *this,
			   gpa_t addr, int len, void *data)
{
	struct kvm_pit *pit = dev_to_pit(this);
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	int ret, count;
	struct kvm_kpit_channel_state *s;
	if (!pit_in_range(addr))
		return -EOPNOTSUPP;

	addr &= KVM_PIT_CHANNEL_MASK;
	if (addr == 3)
		return 0;

	s = &pit_state->channels[addr];

	mutex_lock(&pit_state->lock);

	if (s->status_latched) {
		s->status_latched = 0;
		ret = s->status;
	} else if (s->count_latched) {
		switch (s->count_latched) {
		default:
		case RW_STATE_LSB:
			ret = s->latched_count & 0xff;
			s->count_latched = 0;
			break;
		case RW_STATE_MSB:
			ret = s->latched_count >> 8;
			s->count_latched = 0;
			break;
		case RW_STATE_WORD0:
			ret = s->latched_count & 0xff;
			s->count_latched = RW_STATE_MSB;
			break;
		}
	} else {
		switch (s->read_state) {
		default:
		case RW_STATE_LSB:
			count = pit_get_count(pit, addr);
			ret = count & 0xff;
			break;
		case RW_STATE_MSB:
			count = pit_get_count(pit, addr);
			ret = (count >> 8) & 0xff;
			break;
		case RW_STATE_WORD0:
			count = pit_get_count(pit, addr);
			ret = count & 0xff;
			s->read_state = RW_STATE_WORD1;
			break;
		case RW_STATE_WORD1:
			count = pit_get_count(pit, addr);
			ret = (count >> 8) & 0xff;
			s->read_state = RW_STATE_WORD0;
			break;
		}
	}

	if (len > sizeof(ret))
		len = sizeof(ret);
	memcpy(data, (char *)&ret, len);

	mutex_unlock(&pit_state->lock);
	return 0;
}

static int speaker_ioport_write(struct kvm_vcpu *vcpu,
				struct kvm_io_device *this,
				gpa_t addr, int len, const void *data)
{
	struct kvm_pit *pit = speaker_to_pit(this);
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	u32 val = *(u32 *) data;
	if (addr != KVM_SPEAKER_BASE_ADDRESS)
		return -EOPNOTSUPP;

	mutex_lock(&pit_state->lock);
	pit_state->speaker_data_on = (val >> 1) & 1;
	pit_set_gate(pit, 2, val & 1);
	mutex_unlock(&pit_state->lock);
	return 0;
}

static int speaker_ioport_read(struct kvm_vcpu *vcpu,
				   struct kvm_io_device *this,
				   gpa_t addr, int len, void *data)
{
	struct kvm_pit *pit = speaker_to_pit(this);
	struct kvm_kpit_state *pit_state = &pit->pit_state;
	unsigned int refresh_clock;
	int ret;
	if (addr != KVM_SPEAKER_BASE_ADDRESS)
		return -EOPNOTSUPP;

	/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
	refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;

	mutex_lock(&pit_state->lock);
	ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
		(pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
	if (len > sizeof(ret))
		len = sizeof(ret);
	memcpy(data, (char *)&ret, len);
	mutex_unlock(&pit_state->lock);
	return 0;
}

static void kvm_pit_reset(struct kvm_pit *pit)
{
	int i;
	struct kvm_kpit_channel_state *c;

	pit->pit_state.flags = 0;
	for (i = 0; i < 3; i++) {
		c = &pit->pit_state.channels[i];
		c->mode = 0xff;
		c->gate = (i != 2);
		pit_load_count(pit, i, 0);
	}

	kvm_pit_reset_reinject(pit);
}

static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
{
	struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);

	if (!mask)
		kvm_pit_reset_reinject(pit);
}

static const struct kvm_io_device_ops pit_dev_ops = {
	.read     = pit_ioport_read,
	.write    = pit_ioport_write,
};

static const struct kvm_io_device_ops speaker_dev_ops = {
	.read     = speaker_ioport_read,
	.write    = speaker_ioport_write,
};

struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
{
	struct kvm_pit *pit;
	struct kvm_kpit_state *pit_state;
	struct pid *pid;
	pid_t pid_nr;
	int ret;

	pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
	if (!pit)
		return NULL;

	pit->irq_source_id = kvm_request_irq_source_id(kvm);
	if (pit->irq_source_id < 0)
		goto fail_request;

	mutex_init(&pit->pit_state.lock);

	pid = get_pid(task_tgid(current));
	pid_nr = pid_vnr(pid);
	put_pid(pid);

	pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
	if (IS_ERR(pit->worker))
		goto fail_kthread;

	kthread_init_work(&pit->expired, pit_do_work);

	pit->kvm = kvm;

	pit_state = &pit->pit_state;
	hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	pit_state->timer.function = pit_timer_fn;

	pit_state->irq_ack_notifier.gsi = 0;
	pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
	pit->mask_notifier.func = pit_mask_notifer;

	kvm_pit_reset(pit);

	kvm_pit_set_reinject(pit, true);

	mutex_lock(&kvm->slots_lock);
	kvm_iodevice_init(&pit->dev, &pit_dev_ops);
	ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
				      KVM_PIT_MEM_LENGTH, &pit->dev);
	if (ret < 0)
		goto fail_register_pit;

	if (flags & KVM_PIT_SPEAKER_DUMMY) {
		kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
		ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
					      KVM_SPEAKER_BASE_ADDRESS, 4,
					      &pit->speaker_dev);
		if (ret < 0)
			goto fail_register_speaker;
	}
	mutex_unlock(&kvm->slots_lock);

	return pit;

fail_register_speaker:
	kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
fail_register_pit:
	mutex_unlock(&kvm->slots_lock);
	kvm_pit_set_reinject(pit, false);
	kthread_destroy_worker(pit->worker);
fail_kthread:
	kvm_free_irq_source_id(kvm, pit->irq_source_id);
fail_request:
	kfree(pit);
	return NULL;
}

void kvm_free_pit(struct kvm *kvm)
{
	struct kvm_pit *pit = kvm->arch.vpit;

	if (pit) {
		mutex_lock(&kvm->slots_lock);
		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
		kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
		mutex_unlock(&kvm->slots_lock);
		kvm_pit_set_reinject(pit, false);
		hrtimer_cancel(&pit->pit_state.timer);
		kthread_destroy_worker(pit->worker);
		kvm_free_irq_source_id(kvm, pit->irq_source_id);
		kfree(pit);
	}
}