1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AMD Processor P-state Frequency Driver Unit Test
*
* Copyright (C) 2022 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Meng Li <li.meng@amd.com>
*
* The AMD P-State Unit Test is a test module for testing the amd-pstate
* driver. 1) It can help all users to verify their processor support
* (SBIOS/Firmware or Hardware). 2) Kernel can have a basic function
* test to avoid the kernel regression during the update. 3) We can
* introduce more functional or performance tests to align the result
* together, it will benefit power and performance scale optimization.
*
* This driver implements basic framework with plans to enhance it with
* additional test cases to improve the depth and coverage of the test.
*
* See Documentation/admin-guide/pm/amd-pstate.rst Unit Tests for
* amd-pstate to get more detail.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/fs.h>
#include <linux/amd-pstate.h>
#include <acpi/cppc_acpi.h>
/*
* Abbreviations:
* amd_pstate_ut: used as a shortform for AMD P-State unit test.
* It helps to keep variable names smaller, simpler
*/
enum amd_pstate_ut_result {
AMD_PSTATE_UT_RESULT_PASS,
AMD_PSTATE_UT_RESULT_FAIL,
};
struct amd_pstate_ut_struct {
const char *name;
void (*func)(u32 index);
enum amd_pstate_ut_result result;
};
/*
* Kernel module for testing the AMD P-State unit test
*/
static void amd_pstate_ut_acpi_cpc_valid(u32 index);
static void amd_pstate_ut_check_enabled(u32 index);
static void amd_pstate_ut_check_perf(u32 index);
static void amd_pstate_ut_check_freq(u32 index);
static struct amd_pstate_ut_struct amd_pstate_ut_cases[] = {
{"amd_pstate_ut_acpi_cpc_valid", amd_pstate_ut_acpi_cpc_valid },
{"amd_pstate_ut_check_enabled", amd_pstate_ut_check_enabled },
{"amd_pstate_ut_check_perf", amd_pstate_ut_check_perf },
{"amd_pstate_ut_check_freq", amd_pstate_ut_check_freq }
};
static bool get_shared_mem(void)
{
bool result = false;
char path[] = "/sys/module/amd_pstate/parameters/shared_mem";
char buf[5] = {0};
struct file *filp = NULL;
loff_t pos = 0;
ssize_t ret;
if (!boot_cpu_has(X86_FEATURE_CPPC)) {
filp = filp_open(path, O_RDONLY, 0);
if (IS_ERR(filp))
pr_err("%s unable to open %s file!\n", __func__, path);
else {
ret = kernel_read(filp, &buf, sizeof(buf), &pos);
if (ret < 0)
pr_err("%s read %s file fail ret=%ld!\n",
__func__, path, (long)ret);
filp_close(filp, NULL);
}
if ('Y' == *buf)
result = true;
}
return result;
}
/*
* check the _CPC object is present in SBIOS.
*/
static void amd_pstate_ut_acpi_cpc_valid(u32 index)
{
if (acpi_cpc_valid())
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
else {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s the _CPC object is not present in SBIOS!\n", __func__);
}
}
static void amd_pstate_ut_pstate_enable(u32 index)
{
int ret = 0;
u64 cppc_enable = 0;
ret = rdmsrl_safe(MSR_AMD_CPPC_ENABLE, &cppc_enable);
if (ret) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s rdmsrl_safe MSR_AMD_CPPC_ENABLE ret=%d error!\n", __func__, ret);
return;
}
if (cppc_enable)
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
else {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s amd pstate must be enabled!\n", __func__);
}
}
/*
* check if amd pstate is enabled
*/
static void amd_pstate_ut_check_enabled(u32 index)
{
if (get_shared_mem())
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
else
amd_pstate_ut_pstate_enable(index);
}
/*
* check if performance values are reasonable.
* highest_perf >= nominal_perf > lowest_nonlinear_perf > lowest_perf > 0
*/
static void amd_pstate_ut_check_perf(u32 index)
{
int cpu = 0, ret = 0;
u32 highest_perf = 0, nominal_perf = 0, lowest_nonlinear_perf = 0, lowest_perf = 0;
u64 cap1 = 0;
struct cppc_perf_caps cppc_perf;
struct cpufreq_policy *policy = NULL;
struct amd_cpudata *cpudata = NULL;
highest_perf = amd_get_highest_perf();
for_each_possible_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (!policy)
break;
cpudata = policy->driver_data;
if (get_shared_mem()) {
ret = cppc_get_perf_caps(cpu, &cppc_perf);
if (ret) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cppc_get_perf_caps ret=%d error!\n", __func__, ret);
return;
}
nominal_perf = cppc_perf.nominal_perf;
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
lowest_perf = cppc_perf.lowest_perf;
} else {
ret = rdmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_CAP1, &cap1);
if (ret) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s read CPPC_CAP1 ret=%d error!\n", __func__, ret);
return;
}
nominal_perf = AMD_CPPC_NOMINAL_PERF(cap1);
lowest_nonlinear_perf = AMD_CPPC_LOWNONLIN_PERF(cap1);
lowest_perf = AMD_CPPC_LOWEST_PERF(cap1);
}
if ((highest_perf != READ_ONCE(cpudata->highest_perf)) ||
(nominal_perf != READ_ONCE(cpudata->nominal_perf)) ||
(lowest_nonlinear_perf != READ_ONCE(cpudata->lowest_nonlinear_perf)) ||
(lowest_perf != READ_ONCE(cpudata->lowest_perf))) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d highest=%d %d nominal=%d %d lowest_nonlinear=%d %d lowest=%d %d, they should be equal!\n",
__func__, cpu, highest_perf, cpudata->highest_perf,
nominal_perf, cpudata->nominal_perf,
lowest_nonlinear_perf, cpudata->lowest_nonlinear_perf,
lowest_perf, cpudata->lowest_perf);
return;
}
if (!((highest_perf >= nominal_perf) &&
(nominal_perf > lowest_nonlinear_perf) &&
(lowest_nonlinear_perf > lowest_perf) &&
(lowest_perf > 0))) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d highest=%d >= nominal=%d > lowest_nonlinear=%d > lowest=%d > 0, the formula is incorrect!\n",
__func__, cpu, highest_perf, nominal_perf,
lowest_nonlinear_perf, lowest_perf);
return;
}
}
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
}
/*
* Check if frequency values are reasonable.
* max_freq >= nominal_freq > lowest_nonlinear_freq > min_freq > 0
* check max freq when set support boost mode.
*/
static void amd_pstate_ut_check_freq(u32 index)
{
int cpu = 0;
struct cpufreq_policy *policy = NULL;
struct amd_cpudata *cpudata = NULL;
for_each_possible_cpu(cpu) {
policy = cpufreq_cpu_get(cpu);
if (!policy)
break;
cpudata = policy->driver_data;
if (!((cpudata->max_freq >= cpudata->nominal_freq) &&
(cpudata->nominal_freq > cpudata->lowest_nonlinear_freq) &&
(cpudata->lowest_nonlinear_freq > cpudata->min_freq) &&
(cpudata->min_freq > 0))) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d max=%d >= nominal=%d > lowest_nonlinear=%d > min=%d > 0, the formula is incorrect!\n",
__func__, cpu, cpudata->max_freq, cpudata->nominal_freq,
cpudata->lowest_nonlinear_freq, cpudata->min_freq);
return;
}
if (cpudata->min_freq != policy->min) {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d cpudata_min_freq=%d policy_min=%d, they should be equal!\n",
__func__, cpu, cpudata->min_freq, policy->min);
return;
}
if (cpudata->boost_supported) {
if ((policy->max == cpudata->max_freq) ||
(policy->max == cpudata->nominal_freq))
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
else {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d policy_max=%d should be equal cpu_max=%d or cpu_nominal=%d !\n",
__func__, cpu, policy->max, cpudata->max_freq,
cpudata->nominal_freq);
return;
}
} else {
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_FAIL;
pr_err("%s cpu%d must support boost!\n", __func__, cpu);
return;
}
}
amd_pstate_ut_cases[index].result = AMD_PSTATE_UT_RESULT_PASS;
}
static int __init amd_pstate_ut_init(void)
{
u32 i = 0, arr_size = ARRAY_SIZE(amd_pstate_ut_cases);
for (i = 0; i < arr_size; i++) {
amd_pstate_ut_cases[i].func(i);
switch (amd_pstate_ut_cases[i].result) {
case AMD_PSTATE_UT_RESULT_PASS:
pr_info("%-4d %-20s\t success!\n", i+1, amd_pstate_ut_cases[i].name);
break;
case AMD_PSTATE_UT_RESULT_FAIL:
default:
pr_info("%-4d %-20s\t fail!\n", i+1, amd_pstate_ut_cases[i].name);
break;
}
}
return 0;
}
static void __exit amd_pstate_ut_exit(void)
{
}
module_init(amd_pstate_ut_init);
module_exit(amd_pstate_ut_exit);
MODULE_AUTHOR("Meng Li <li.meng@amd.com>");
MODULE_DESCRIPTION("AMD P-state driver Test module");
MODULE_LICENSE("GPL");
|