summaryrefslogtreecommitdiffstats
path: root/drivers/crypto/mediatek/mtk-aes.c
blob: b658cb9fb6a2bdb287ec9e052087c1e37ad96251 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/*
 * Cryptographic API.
 *
 * Driver for EIP97 AES acceleration.
 *
 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * Some ideas are from atmel-aes.c drivers.
 */

#include <crypto/aes.h>
#include "mtk-platform.h"

#define AES_QUEUE_SIZE		512
#define AES_BUF_ORDER		2
#define AES_BUF_SIZE		((PAGE_SIZE << AES_BUF_ORDER) \
				& ~(AES_BLOCK_SIZE - 1))

/* AES command token size */
#define AES_CT_SIZE_ECB		2
#define AES_CT_SIZE_CBC		3
#define AES_CT_CTRL_HDR		cpu_to_le32(0x00220000)
/* AES-CBC/ECB command token */
#define AES_CMD0		cpu_to_le32(0x05000000)
#define AES_CMD1		cpu_to_le32(0x2d060000)
#define AES_CMD2		cpu_to_le32(0xe4a63806)

/* AES transform information word 0 fields */
#define AES_TFM_BASIC_OUT	cpu_to_le32(0x4 << 0)
#define AES_TFM_BASIC_IN	cpu_to_le32(0x5 << 0)
#define AES_TFM_SIZE(x)		cpu_to_le32((x) << 8)
#define AES_TFM_128BITS		cpu_to_le32(0xb << 16)
#define AES_TFM_192BITS		cpu_to_le32(0xd << 16)
#define AES_TFM_256BITS		cpu_to_le32(0xf << 16)
/* AES transform information word 1 fields */
#define AES_TFM_ECB		cpu_to_le32(0x0 << 0)
#define AES_TFM_CBC		cpu_to_le32(0x1 << 0)
#define AES_TFM_FULL_IV		cpu_to_le32(0xf << 5)

/* AES flags */
#define AES_FLAGS_MODE_MSK	0x7
#define AES_FLAGS_ECB		BIT(0)
#define AES_FLAGS_CBC		BIT(1)
#define AES_FLAGS_ENCRYPT	BIT(2)
#define AES_FLAGS_BUSY		BIT(3)

/**
 * Command token(CT) is a set of hardware instructions that
 * are used to control engine's processing flow of AES.
 *
 * Transform information(TFM) is used to define AES state and
 * contains all keys and initial vectors.
 *
 * The engine requires CT and TFM to do:
 * - Commands decoding and control of the engine's data path.
 * - Coordinating hardware data fetch and store operations.
 * - Result token construction and output.
 */
struct mtk_aes_ct {
	__le32 cmd[AES_CT_SIZE_CBC];
};

struct mtk_aes_tfm {
	__le32 ctrl[2];
	__le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE)];
};

struct mtk_aes_reqctx {
	u64 mode;
};

struct mtk_aes_ctx {
	struct mtk_cryp *cryp;
	u32 keylen;

	struct mtk_aes_ct ct;
	dma_addr_t ct_dma;
	struct mtk_aes_tfm tfm;
	dma_addr_t tfm_dma;

	__le32 ct_hdr;
	u32 ct_size;
};

struct mtk_aes_drv {
	struct list_head dev_list;
	/* Device list lock */
	spinlock_t lock;
};

static struct mtk_aes_drv mtk_aes = {
	.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
	.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
};

static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
{
	return readl_relaxed(cryp->base + offset);
}

static inline void mtk_aes_write(struct mtk_cryp *cryp,
				 u32 offset, u32 value)
{
	writel_relaxed(value, cryp->base + offset);
}

static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_ctx *ctx)
{
	struct mtk_cryp *cryp = NULL;
	struct mtk_cryp *tmp;

	spin_lock_bh(&mtk_aes.lock);
	if (!ctx->cryp) {
		list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
			cryp = tmp;
			break;
		}
		ctx->cryp = cryp;
	} else {
		cryp = ctx->cryp;
	}
	spin_unlock_bh(&mtk_aes.lock);

	return cryp;
}

static inline size_t mtk_aes_padlen(size_t len)
{
	len &= AES_BLOCK_SIZE - 1;
	return len ? AES_BLOCK_SIZE - len : 0;
}

static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
				  struct mtk_aes_dma *dma)
{
	int nents;

	if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
		return false;

	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
			return false;

		if (len <= sg->length) {
			if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
				return false;

			dma->nents = nents + 1;
			dma->remainder = sg->length - len;
			sg->length = len;
			return true;
		}

		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
			return false;

		len -= sg->length;
	}

	return false;
}

/* Initialize and map transform information of AES */
static int mtk_aes_info_map(struct mtk_cryp *cryp,
			    struct mtk_aes_rec *aes,
			    size_t len)
{
	struct mtk_aes_ctx *ctx = aes->ctx;

	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
	ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len);
	ctx->ct.cmd[1] = AES_CMD1;

	if (aes->flags & AES_FLAGS_ENCRYPT)
		ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT;
	else
		ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN;

	if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
		ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
	else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
		ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
	else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_192))
		ctx->tfm.ctrl[0] |= AES_TFM_192BITS;

	if (aes->flags & AES_FLAGS_CBC) {
		const u32 *iv = (const u32 *)aes->req->info;
		u32 *iv_state = ctx->tfm.state + ctx->keylen;
		int i;

		ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
				  SIZE_IN_WORDS(AES_BLOCK_SIZE));
		ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV;

		for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
			iv_state[i] = cpu_to_le32(iv[i]);

		ctx->ct.cmd[2] = AES_CMD2;
		ctx->ct_size  = AES_CT_SIZE_CBC;
	} else if (aes->flags & AES_FLAGS_ECB) {
		ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen);
		ctx->tfm.ctrl[1] = AES_TFM_ECB;

		ctx->ct_size = AES_CT_SIZE_ECB;
	}

	ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct),
				     DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
		return -EINVAL;

	ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm),
				      DMA_TO_DEVICE);
	if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma))) {
		dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
				 DMA_TO_DEVICE);
		return -EINVAL;
	}

	return 0;
}

/*
 * Write descriptors for processing. This will configure the engine, load
 * the transform information and then start the packet processing.
 */
static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_ring *ring = cryp->ring[aes->id];
	struct mtk_desc *cmd = NULL, *res = NULL;
	struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
	u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
	int nents;

	/* Write command descriptors */
	for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
		cmd = ring->cmd_base + ring->cmd_pos;
		cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
		cmd->buf = cpu_to_le32(sg_dma_address(ssg));

		if (nents == 0) {
			cmd->hdr |= MTK_DESC_FIRST |
				    MTK_DESC_CT_LEN(aes->ctx->ct_size);
			cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
			cmd->ct_hdr = aes->ctx->ct_hdr;
			cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
		}

		if (++ring->cmd_pos == MTK_DESC_NUM)
			ring->cmd_pos = 0;
	}
	cmd->hdr |= MTK_DESC_LAST;

	/* Prepare result descriptors */
	for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
		res = ring->res_base + ring->res_pos;
		res->hdr = MTK_DESC_BUF_LEN(dsg->length);
		res->buf = cpu_to_le32(sg_dma_address(dsg));

		if (nents == 0)
			res->hdr |= MTK_DESC_FIRST;

		if (++ring->res_pos == MTK_DESC_NUM)
			ring->res_pos = 0;
	}
	res->hdr |= MTK_DESC_LAST;

	/*
	 * Make sure that all changes to the DMA ring are done before we
	 * start engine.
	 */
	wmb();
	/* Start DMA transfer */
	mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
	mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));

	return -EINPROGRESS;
}

static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
{
	struct scatterlist *sg = dma->sg;
	int nents = dma->nents;

	if (!dma->remainder)
		return;

	while (--nents > 0 && sg)
		sg = sg_next(sg);

	if (!sg)
		return;

	sg->length += dma->remainder;
}

static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct scatterlist *src = aes->req->src;
	struct scatterlist *dst = aes->req->dst;
	size_t len = aes->req->nbytes;
	size_t padlen = 0;
	bool src_aligned, dst_aligned;

	aes->total = len;
	aes->src.sg = src;
	aes->dst.sg = dst;
	aes->real_dst = dst;

	src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
	if (src == dst)
		dst_aligned = src_aligned;
	else
		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);

	if (!src_aligned || !dst_aligned) {
		padlen = mtk_aes_padlen(len);

		if (len + padlen > AES_BUF_SIZE)
			return -ENOMEM;

		if (!src_aligned) {
			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
			aes->src.sg = &aes->aligned_sg;
			aes->src.nents = 1;
			aes->src.remainder = 0;
		}

		if (!dst_aligned) {
			aes->dst.sg = &aes->aligned_sg;
			aes->dst.nents = 1;
			aes->dst.remainder = 0;
		}

		sg_init_table(&aes->aligned_sg, 1);
		sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
	}

	if (aes->src.sg == aes->dst.sg) {
		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
				aes->src.nents, DMA_BIDIRECTIONAL);
		aes->dst.sg_len = aes->src.sg_len;
		if (unlikely(!aes->src.sg_len))
			return -EFAULT;
	} else {
		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
				aes->src.nents, DMA_TO_DEVICE);
		if (unlikely(!aes->src.sg_len))
			return -EFAULT;

		aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
				aes->dst.nents, DMA_FROM_DEVICE);
		if (unlikely(!aes->dst.sg_len)) {
			dma_unmap_sg(cryp->dev, aes->src.sg,
				     aes->src.nents, DMA_TO_DEVICE);
			return -EFAULT;
		}
	}

	return mtk_aes_info_map(cryp, aes, len + padlen);
}

static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
				struct ablkcipher_request *req)
{
	struct mtk_aes_rec *aes = cryp->aes[id];
	struct crypto_async_request *areq, *backlog;
	struct mtk_aes_reqctx *rctx;
	struct mtk_aes_ctx *ctx;
	unsigned long flags;
	int err, ret = 0;

	spin_lock_irqsave(&aes->lock, flags);
	if (req)
		ret = ablkcipher_enqueue_request(&aes->queue, req);
	if (aes->flags & AES_FLAGS_BUSY) {
		spin_unlock_irqrestore(&aes->lock, flags);
		return ret;
	}
	backlog = crypto_get_backlog(&aes->queue);
	areq = crypto_dequeue_request(&aes->queue);
	if (areq)
		aes->flags |= AES_FLAGS_BUSY;
	spin_unlock_irqrestore(&aes->lock, flags);

	if (!areq)
		return ret;

	if (backlog)
		backlog->complete(backlog, -EINPROGRESS);

	req = ablkcipher_request_cast(areq);
	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
	rctx = ablkcipher_request_ctx(req);
	rctx->mode &= AES_FLAGS_MODE_MSK;
	/* Assign new request to device */
	aes->req = req;
	aes->ctx = ctx;
	aes->flags = (aes->flags & ~AES_FLAGS_MODE_MSK) | rctx->mode;

	err = mtk_aes_map(cryp, aes);
	if (err)
		return err;

	return mtk_aes_xmit(cryp, aes);
}

static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
{
	struct mtk_aes_ctx *ctx = aes->ctx;

	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
			 DMA_TO_DEVICE);
	dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
			 DMA_TO_DEVICE);

	if (aes->src.sg == aes->dst.sg) {
		dma_unmap_sg(cryp->dev, aes->src.sg,
			     aes->src.nents, DMA_BIDIRECTIONAL);

		if (aes->src.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->src);
	} else {
		dma_unmap_sg(cryp->dev, aes->dst.sg,
			     aes->dst.nents, DMA_FROM_DEVICE);

		if (aes->dst.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->dst);

		dma_unmap_sg(cryp->dev, aes->src.sg,
			     aes->src.nents, DMA_TO_DEVICE);

		if (aes->src.sg != &aes->aligned_sg)
			mtk_aes_restore_sg(&aes->src);
	}

	if (aes->dst.sg == &aes->aligned_sg)
		sg_copy_from_buffer(aes->real_dst,
				    sg_nents(aes->real_dst),
				    aes->buf, aes->total);
}

static inline void mtk_aes_complete(struct mtk_cryp *cryp,
				    struct mtk_aes_rec *aes)
{
	aes->flags &= ~AES_FLAGS_BUSY;

	aes->req->base.complete(&aes->req->base, 0);

	/* Handle new request */
	mtk_aes_handle_queue(cryp, aes->id, NULL);
}

/* Check and set the AES key to transform state buffer */
static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
			  const u8 *key, u32 keylen)
{
	struct mtk_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
	const u32 *key_tmp = (const u32 *)key;
	u32 *key_state = ctx->tfm.state;
	int i;

	if (keylen != AES_KEYSIZE_128 &&
	    keylen != AES_KEYSIZE_192 &&
	    keylen != AES_KEYSIZE_256) {
		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}

	ctx->keylen = SIZE_IN_WORDS(keylen);

	for (i = 0; i < ctx->keylen; i++)
		key_state[i] = cpu_to_le32(key_tmp[i]);

	return 0;
}

static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode)
{
	struct mtk_aes_ctx *ctx = crypto_ablkcipher_ctx(
			crypto_ablkcipher_reqtfm(req));
	struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);

	rctx->mode = mode;

	return mtk_aes_handle_queue(ctx->cryp,
			!(mode & AES_FLAGS_ENCRYPT), req);
}

static int mtk_ecb_encrypt(struct ablkcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
}

static int mtk_ecb_decrypt(struct ablkcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ECB);
}

static int mtk_cbc_encrypt(struct ablkcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
}

static int mtk_cbc_decrypt(struct ablkcipher_request *req)
{
	return mtk_aes_crypt(req, AES_FLAGS_CBC);
}

static int mtk_aes_cra_init(struct crypto_tfm *tfm)
{
	struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
	struct mtk_cryp *cryp = NULL;

	tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);

	cryp = mtk_aes_find_dev(ctx);
	if (!cryp) {
		pr_err("can't find crypto device\n");
		return -ENODEV;
	}

	return 0;
}

static struct crypto_alg aes_algs[] = {
{
	.cra_name		=	"cbc(aes)",
	.cra_driver_name	=	"cbc-aes-mtk",
	.cra_priority		=	400,
	.cra_flags		=	CRYPTO_ALG_TYPE_ABLKCIPHER |
						CRYPTO_ALG_ASYNC,
	.cra_init		=	mtk_aes_cra_init,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct mtk_aes_ctx),
	.cra_alignmask		=	15,
	.cra_type		=	&crypto_ablkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u.ablkcipher	=	{
		.min_keysize	=	AES_MIN_KEY_SIZE,
		.max_keysize	=	AES_MAX_KEY_SIZE,
		.setkey		=	mtk_aes_setkey,
		.encrypt	=	mtk_cbc_encrypt,
		.decrypt	=	mtk_cbc_decrypt,
		.ivsize		=	AES_BLOCK_SIZE,
	}
},
{
	.cra_name		=	"ecb(aes)",
	.cra_driver_name	=	"ecb-aes-mtk",
	.cra_priority		=	400,
	.cra_flags		=	CRYPTO_ALG_TYPE_ABLKCIPHER |
						CRYPTO_ALG_ASYNC,
	.cra_init		=	mtk_aes_cra_init,
	.cra_blocksize		=	AES_BLOCK_SIZE,
	.cra_ctxsize		=	sizeof(struct mtk_aes_ctx),
	.cra_alignmask		=	15,
	.cra_type		=	&crypto_ablkcipher_type,
	.cra_module		=	THIS_MODULE,
	.cra_u.ablkcipher	=	{
		.min_keysize	=	AES_MIN_KEY_SIZE,
		.max_keysize	=	AES_MAX_KEY_SIZE,
		.setkey		=	mtk_aes_setkey,
		.encrypt	=	mtk_ecb_encrypt,
		.decrypt	=	mtk_ecb_decrypt,
	}
},
};

static void mtk_aes_enc_task(unsigned long data)
{
	struct mtk_cryp *cryp = (struct mtk_cryp *)data;
	struct mtk_aes_rec *aes = cryp->aes[0];

	mtk_aes_unmap(cryp, aes);
	mtk_aes_complete(cryp, aes);
}

static void mtk_aes_dec_task(unsigned long data)
{
	struct mtk_cryp *cryp = (struct mtk_cryp *)data;
	struct mtk_aes_rec *aes = cryp->aes[1];

	mtk_aes_unmap(cryp, aes);
	mtk_aes_complete(cryp, aes);
}

static irqreturn_t mtk_aes_enc_irq(int irq, void *dev_id)
{
	struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
	struct mtk_aes_rec *aes = cryp->aes[0];
	u32 val = mtk_aes_read(cryp, RDR_STAT(RING0));

	mtk_aes_write(cryp, RDR_STAT(RING0), val);

	if (likely(AES_FLAGS_BUSY & aes->flags)) {
		mtk_aes_write(cryp, RDR_PROC_COUNT(RING0), MTK_CNT_RST);
		mtk_aes_write(cryp, RDR_THRESH(RING0),
			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);

		tasklet_schedule(&aes->task);
	} else {
		dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
	}
	return IRQ_HANDLED;
}

static irqreturn_t mtk_aes_dec_irq(int irq, void *dev_id)
{
	struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
	struct mtk_aes_rec *aes = cryp->aes[1];
	u32 val = mtk_aes_read(cryp, RDR_STAT(RING1));

	mtk_aes_write(cryp, RDR_STAT(RING1), val);

	if (likely(AES_FLAGS_BUSY & aes->flags)) {
		mtk_aes_write(cryp, RDR_PROC_COUNT(RING1), MTK_CNT_RST);
		mtk_aes_write(cryp, RDR_THRESH(RING1),
			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);

		tasklet_schedule(&aes->task);
	} else {
		dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
	}
	return IRQ_HANDLED;
}

/*
 * The purpose of creating encryption and decryption records is
 * to process outbound/inbound data in parallel, it can improve
 * performance in most use cases, such as IPSec VPN, especially
 * under heavy network traffic.
 */
static int mtk_aes_record_init(struct mtk_cryp *cryp)
{
	struct mtk_aes_rec **aes = cryp->aes;
	int i, err = -ENOMEM;

	for (i = 0; i < MTK_REC_NUM; i++) {
		aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
		if (!aes[i])
			goto err_cleanup;

		aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
						AES_BUF_ORDER);
		if (!aes[i]->buf)
			goto err_cleanup;

		aes[i]->id = i;

		spin_lock_init(&aes[i]->lock);
		crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
	}

	tasklet_init(&aes[0]->task, mtk_aes_enc_task, (unsigned long)cryp);
	tasklet_init(&aes[1]->task, mtk_aes_dec_task, (unsigned long)cryp);

	return 0;

err_cleanup:
	for (; i--; ) {
		free_page((unsigned long)aes[i]->buf);
		kfree(aes[i]);
	}

	return err;
}

static void mtk_aes_record_free(struct mtk_cryp *cryp)
{
	int i;

	for (i = 0; i < MTK_REC_NUM; i++) {
		tasklet_kill(&cryp->aes[i]->task);
		free_page((unsigned long)cryp->aes[i]->buf);
		kfree(cryp->aes[i]);
	}
}

static void mtk_aes_unregister_algs(void)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
		crypto_unregister_alg(&aes_algs[i]);
}

static int mtk_aes_register_algs(void)
{
	int err, i;

	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
		err = crypto_register_alg(&aes_algs[i]);
		if (err)
			goto err_aes_algs;
	}

	return 0;

err_aes_algs:
	for (; i--; )
		crypto_unregister_alg(&aes_algs[i]);

	return err;
}

int mtk_cipher_alg_register(struct mtk_cryp *cryp)
{
	int ret;

	INIT_LIST_HEAD(&cryp->aes_list);

	/* Initialize two cipher records */
	ret = mtk_aes_record_init(cryp);
	if (ret)
		goto err_record;

	/* Ring0 is use by encryption record */
	ret = devm_request_irq(cryp->dev, cryp->irq[RING0], mtk_aes_enc_irq,
			       IRQF_TRIGGER_LOW, "mtk-aes", cryp);
	if (ret) {
		dev_err(cryp->dev, "unable to request AES encryption irq.\n");
		goto err_res;
	}

	/* Ring1 is use by decryption record */
	ret = devm_request_irq(cryp->dev, cryp->irq[RING1], mtk_aes_dec_irq,
			       IRQF_TRIGGER_LOW, "mtk-aes", cryp);
	if (ret) {
		dev_err(cryp->dev, "unable to request AES decryption irq.\n");
		goto err_res;
	}

	/* Enable ring0 and ring1 interrupt */
	mtk_aes_write(cryp, AIC_ENABLE_SET(RING0), MTK_IRQ_RDR0);
	mtk_aes_write(cryp, AIC_ENABLE_SET(RING1), MTK_IRQ_RDR1);

	spin_lock(&mtk_aes.lock);
	list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
	spin_unlock(&mtk_aes.lock);

	ret = mtk_aes_register_algs();
	if (ret)
		goto err_algs;

	return 0;

err_algs:
	spin_lock(&mtk_aes.lock);
	list_del(&cryp->aes_list);
	spin_unlock(&mtk_aes.lock);
err_res:
	mtk_aes_record_free(cryp);
err_record:

	dev_err(cryp->dev, "mtk-aes initialization failed.\n");
	return ret;
}

void mtk_cipher_alg_release(struct mtk_cryp *cryp)
{
	spin_lock(&mtk_aes.lock);
	list_del(&cryp->aes_list);
	spin_unlock(&mtk_aes.lock);

	mtk_aes_unregister_algs();
	mtk_aes_record_free(cryp);
}