1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
|
// SPDX-License-Identifier: GPL-2.0
/*
* FPGA Manager Core
*
* Copyright (C) 2013-2015 Altera Corporation
* Copyright (C) 2017 Intel Corporation
*
* With code from the mailing list:
* Copyright (C) 2013 Xilinx, Inc.
*/
#include <linux/firmware.h>
#include <linux/fpga/fpga-mgr.h>
#include <linux/idr.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
static DEFINE_IDA(fpga_mgr_ida);
static struct class *fpga_mgr_class;
struct fpga_mgr_devres {
struct fpga_manager *mgr;
};
static inline void fpga_mgr_fpga_remove(struct fpga_manager *mgr)
{
if (mgr->mops->fpga_remove)
mgr->mops->fpga_remove(mgr);
}
static inline enum fpga_mgr_states fpga_mgr_state(struct fpga_manager *mgr)
{
if (mgr->mops->state)
return mgr->mops->state(mgr);
return FPGA_MGR_STATE_UNKNOWN;
}
static inline u64 fpga_mgr_status(struct fpga_manager *mgr)
{
if (mgr->mops->status)
return mgr->mops->status(mgr);
return 0;
}
static inline int fpga_mgr_write(struct fpga_manager *mgr, const char *buf, size_t count)
{
if (mgr->mops->write)
return mgr->mops->write(mgr, buf, count);
return -EOPNOTSUPP;
}
/*
* After all the FPGA image has been written, do the device specific steps to
* finish and set the FPGA into operating mode.
*/
static inline int fpga_mgr_write_complete(struct fpga_manager *mgr,
struct fpga_image_info *info)
{
int ret = 0;
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE;
if (mgr->mops->write_complete)
ret = mgr->mops->write_complete(mgr, info);
if (ret) {
dev_err(&mgr->dev, "Error after writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_COMPLETE_ERR;
return ret;
}
mgr->state = FPGA_MGR_STATE_OPERATING;
return 0;
}
static inline int fpga_mgr_parse_header(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
if (mgr->mops->parse_header)
return mgr->mops->parse_header(mgr, info, buf, count);
return 0;
}
static inline int fpga_mgr_write_init(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
if (mgr->mops->write_init)
return mgr->mops->write_init(mgr, info, buf, count);
return 0;
}
static inline int fpga_mgr_write_sg(struct fpga_manager *mgr,
struct sg_table *sgt)
{
if (mgr->mops->write_sg)
return mgr->mops->write_sg(mgr, sgt);
return -EOPNOTSUPP;
}
/**
* fpga_image_info_alloc - Allocate an FPGA image info struct
* @dev: owning device
*
* Return: struct fpga_image_info or NULL
*/
struct fpga_image_info *fpga_image_info_alloc(struct device *dev)
{
struct fpga_image_info *info;
get_device(dev);
info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
if (!info) {
put_device(dev);
return NULL;
}
info->dev = dev;
return info;
}
EXPORT_SYMBOL_GPL(fpga_image_info_alloc);
/**
* fpga_image_info_free - Free an FPGA image info struct
* @info: FPGA image info struct to free
*/
void fpga_image_info_free(struct fpga_image_info *info)
{
struct device *dev;
if (!info)
return;
dev = info->dev;
if (info->firmware_name)
devm_kfree(dev, info->firmware_name);
devm_kfree(dev, info);
put_device(dev);
}
EXPORT_SYMBOL_GPL(fpga_image_info_free);
/*
* Call the low level driver's parse_header function with entire FPGA image
* buffer on the input. This will set info->header_size and info->data_size.
*/
static int fpga_mgr_parse_header_mapped(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
mgr->state = FPGA_MGR_STATE_PARSE_HEADER;
ret = fpga_mgr_parse_header(mgr, info, buf, count);
if (info->header_size + info->data_size > count) {
dev_err(&mgr->dev, "Bitstream data outruns FPGA image\n");
ret = -EINVAL;
}
if (ret) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
}
return ret;
}
/*
* Call the low level driver's parse_header function with first fragment of
* scattered FPGA image on the input. If header fits first fragment,
* parse_header will set info->header_size and info->data_size. If it is not,
* parse_header will set desired size to info->header_size and -EAGAIN will be
* returned.
*/
static int fpga_mgr_parse_header_sg_first(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
struct sg_mapping_iter miter;
int ret;
mgr->state = FPGA_MGR_STATE_PARSE_HEADER;
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (sg_miter_next(&miter) &&
miter.length >= info->header_size)
ret = fpga_mgr_parse_header(mgr, info, miter.addr, miter.length);
else
ret = -EAGAIN;
sg_miter_stop(&miter);
if (ret && ret != -EAGAIN) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
}
return ret;
}
/*
* Copy scattered FPGA image fragments to temporary buffer and call the
* low level driver's parse_header function. This should be called after
* fpga_mgr_parse_header_sg_first() returned -EAGAIN. In case of success,
* pointer to the newly allocated image header copy will be returned and
* its size will be set into *ret_size. Returned buffer needs to be freed.
*/
static void *fpga_mgr_parse_header_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt, size_t *ret_size)
{
size_t len, new_header_size, header_size = 0;
char *new_buf, *buf = NULL;
int ret;
do {
new_header_size = info->header_size;
if (new_header_size <= header_size) {
dev_err(&mgr->dev, "Requested invalid header size\n");
ret = -EFAULT;
break;
}
new_buf = krealloc(buf, new_header_size, GFP_KERNEL);
if (!new_buf) {
ret = -ENOMEM;
break;
}
buf = new_buf;
len = sg_pcopy_to_buffer(sgt->sgl, sgt->nents,
buf + header_size,
new_header_size - header_size,
header_size);
if (len != new_header_size - header_size) {
ret = -EFAULT;
break;
}
header_size = new_header_size;
ret = fpga_mgr_parse_header(mgr, info, buf, header_size);
} while (ret == -EAGAIN);
if (ret) {
dev_err(&mgr->dev, "Error while parsing FPGA image header\n");
mgr->state = FPGA_MGR_STATE_PARSE_HEADER_ERR;
kfree(buf);
buf = ERR_PTR(ret);
}
*ret_size = header_size;
return buf;
}
/*
* Call the low level driver's write_init function. This will do the
* device-specific things to get the FPGA into the state where it is ready to
* receive an FPGA image. The low level driver gets to see at least first
* info->header_size bytes in the buffer. If info->header_size is 0,
* write_init will not get any bytes of image buffer.
*/
static int fpga_mgr_write_init_buf(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
size_t header_size = info->header_size;
int ret;
mgr->state = FPGA_MGR_STATE_WRITE_INIT;
if (header_size > count)
ret = -EINVAL;
else if (!header_size)
ret = fpga_mgr_write_init(mgr, info, NULL, 0);
else
ret = fpga_mgr_write_init(mgr, info, buf, count);
if (ret) {
dev_err(&mgr->dev, "Error preparing FPGA for writing\n");
mgr->state = FPGA_MGR_STATE_WRITE_INIT_ERR;
return ret;
}
return 0;
}
static int fpga_mgr_prepare_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
struct sg_mapping_iter miter;
size_t len;
char *buf;
int ret;
/* Short path. Low level driver don't care about image header. */
if (!mgr->mops->initial_header_size && !mgr->mops->parse_header)
return fpga_mgr_write_init_buf(mgr, info, NULL, 0);
/*
* First try to use miter to map the first fragment to access the
* header, this is the typical path.
*/
ret = fpga_mgr_parse_header_sg_first(mgr, info, sgt);
/* If 0, header fits first fragment, call write_init on it */
if (!ret) {
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (sg_miter_next(&miter)) {
ret = fpga_mgr_write_init_buf(mgr, info, miter.addr,
miter.length);
sg_miter_stop(&miter);
return ret;
}
sg_miter_stop(&miter);
/*
* If -EAGAIN, more sg buffer is needed,
* otherwise an error has occurred.
*/
} else if (ret != -EAGAIN) {
return ret;
}
/*
* Copy the fragments into temporary memory.
* Copying is done inside fpga_mgr_parse_header_sg().
*/
buf = fpga_mgr_parse_header_sg(mgr, info, sgt, &len);
if (IS_ERR(buf))
return PTR_ERR(buf);
ret = fpga_mgr_write_init_buf(mgr, info, buf, len);
kfree(buf);
return ret;
}
/**
* fpga_mgr_buf_load_sg - load fpga from image in buffer from a scatter list
* @mgr: fpga manager
* @info: fpga image specific information
* @sgt: scatterlist table
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is
* not an error code.
*
* This is the preferred entry point for FPGA programming, it does not require
* any contiguous kernel memory.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_buf_load_sg(struct fpga_manager *mgr,
struct fpga_image_info *info,
struct sg_table *sgt)
{
int ret;
ret = fpga_mgr_prepare_sg(mgr, info, sgt);
if (ret)
return ret;
/* Write the FPGA image to the FPGA. */
mgr->state = FPGA_MGR_STATE_WRITE;
if (mgr->mops->write_sg) {
ret = fpga_mgr_write_sg(mgr, sgt);
} else {
size_t length, count = 0, data_size = info->data_size;
struct sg_mapping_iter miter;
sg_miter_start(&miter, sgt->sgl, sgt->nents, SG_MITER_FROM_SG);
if (mgr->mops->skip_header &&
!sg_miter_skip(&miter, info->header_size)) {
ret = -EINVAL;
goto out;
}
while (sg_miter_next(&miter)) {
if (data_size)
length = min(miter.length, data_size - count);
else
length = miter.length;
ret = fpga_mgr_write(mgr, miter.addr, length);
if (ret)
break;
count += length;
if (data_size && count >= data_size)
break;
}
sg_miter_stop(&miter);
}
out:
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
static int fpga_mgr_buf_load_mapped(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
int ret;
ret = fpga_mgr_parse_header_mapped(mgr, info, buf, count);
if (ret)
return ret;
ret = fpga_mgr_write_init_buf(mgr, info, buf, count);
if (ret)
return ret;
if (mgr->mops->skip_header) {
buf += info->header_size;
count -= info->header_size;
}
if (info->data_size)
count = info->data_size;
/*
* Write the FPGA image to the FPGA.
*/
mgr->state = FPGA_MGR_STATE_WRITE;
ret = fpga_mgr_write(mgr, buf, count);
if (ret) {
dev_err(&mgr->dev, "Error while writing image data to FPGA\n");
mgr->state = FPGA_MGR_STATE_WRITE_ERR;
return ret;
}
return fpga_mgr_write_complete(mgr, info);
}
/**
* fpga_mgr_buf_load - load fpga from image in buffer
* @mgr: fpga manager
* @info: fpga image info
* @buf: buffer contain fpga image
* @count: byte count of buf
*
* Step the low level fpga manager through the device-specific steps of getting
* an FPGA ready to be configured, writing the image to it, then doing whatever
* post-configuration steps necessary. This code assumes the caller got the
* mgr pointer from of_fpga_mgr_get() and checked that it is not an error code.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_buf_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count)
{
struct page **pages;
struct sg_table sgt;
const void *p;
int nr_pages;
int index;
int rc;
/*
* This is just a fast path if the caller has already created a
* contiguous kernel buffer and the driver doesn't require SG, non-SG
* drivers will still work on the slow path.
*/
if (mgr->mops->write)
return fpga_mgr_buf_load_mapped(mgr, info, buf, count);
/*
* Convert the linear kernel pointer into a sg_table of pages for use
* by the driver.
*/
nr_pages = DIV_ROUND_UP((unsigned long)buf + count, PAGE_SIZE) -
(unsigned long)buf / PAGE_SIZE;
pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
if (!pages)
return -ENOMEM;
p = buf - offset_in_page(buf);
for (index = 0; index < nr_pages; index++) {
if (is_vmalloc_addr(p))
pages[index] = vmalloc_to_page(p);
else
pages[index] = kmap_to_page((void *)p);
if (!pages[index]) {
kfree(pages);
return -EFAULT;
}
p += PAGE_SIZE;
}
/*
* The temporary pages list is used to code share the merging algorithm
* in sg_alloc_table_from_pages
*/
rc = sg_alloc_table_from_pages(&sgt, pages, index, offset_in_page(buf),
count, GFP_KERNEL);
kfree(pages);
if (rc)
return rc;
rc = fpga_mgr_buf_load_sg(mgr, info, &sgt);
sg_free_table(&sgt);
return rc;
}
/**
* fpga_mgr_firmware_load - request firmware and load to fpga
* @mgr: fpga manager
* @info: fpga image specific information
* @image_name: name of image file on the firmware search path
*
* Request an FPGA image using the firmware class, then write out to the FPGA.
* Update the state before each step to provide info on what step failed if
* there is a failure. This code assumes the caller got the mgr pointer
* from of_fpga_mgr_get() or fpga_mgr_get() and checked that it is not an error
* code.
*
* Return: 0 on success, negative error code otherwise.
*/
static int fpga_mgr_firmware_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *image_name)
{
struct device *dev = &mgr->dev;
const struct firmware *fw;
int ret;
dev_info(dev, "writing %s to %s\n", image_name, mgr->name);
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ;
ret = request_firmware(&fw, image_name, dev);
if (ret) {
mgr->state = FPGA_MGR_STATE_FIRMWARE_REQ_ERR;
dev_err(dev, "Error requesting firmware %s\n", image_name);
return ret;
}
ret = fpga_mgr_buf_load(mgr, info, fw->data, fw->size);
release_firmware(fw);
return ret;
}
/**
* fpga_mgr_load - load FPGA from scatter/gather table, buffer, or firmware
* @mgr: fpga manager
* @info: fpga image information.
*
* Load the FPGA from an image which is indicated in @info. If successful, the
* FPGA ends up in operating mode.
*
* Return: 0 on success, negative error code otherwise.
*/
int fpga_mgr_load(struct fpga_manager *mgr, struct fpga_image_info *info)
{
info->header_size = mgr->mops->initial_header_size;
if (info->sgt)
return fpga_mgr_buf_load_sg(mgr, info, info->sgt);
if (info->buf && info->count)
return fpga_mgr_buf_load(mgr, info, info->buf, info->count);
if (info->firmware_name)
return fpga_mgr_firmware_load(mgr, info, info->firmware_name);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(fpga_mgr_load);
static const char * const state_str[] = {
[FPGA_MGR_STATE_UNKNOWN] = "unknown",
[FPGA_MGR_STATE_POWER_OFF] = "power off",
[FPGA_MGR_STATE_POWER_UP] = "power up",
[FPGA_MGR_STATE_RESET] = "reset",
/* requesting FPGA image from firmware */
[FPGA_MGR_STATE_FIRMWARE_REQ] = "firmware request",
[FPGA_MGR_STATE_FIRMWARE_REQ_ERR] = "firmware request error",
/* Parse FPGA image header */
[FPGA_MGR_STATE_PARSE_HEADER] = "parse header",
[FPGA_MGR_STATE_PARSE_HEADER_ERR] = "parse header error",
/* Preparing FPGA to receive image */
[FPGA_MGR_STATE_WRITE_INIT] = "write init",
[FPGA_MGR_STATE_WRITE_INIT_ERR] = "write init error",
/* Writing image to FPGA */
[FPGA_MGR_STATE_WRITE] = "write",
[FPGA_MGR_STATE_WRITE_ERR] = "write error",
/* Finishing configuration after image has been written */
[FPGA_MGR_STATE_WRITE_COMPLETE] = "write complete",
[FPGA_MGR_STATE_WRITE_COMPLETE_ERR] = "write complete error",
/* FPGA reports to be in normal operating mode */
[FPGA_MGR_STATE_OPERATING] = "operating",
};
static ssize_t name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", mgr->name);
}
static ssize_t state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
return sprintf(buf, "%s\n", state_str[mgr->state]);
}
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
u64 status;
int len = 0;
status = fpga_mgr_status(mgr);
if (status & FPGA_MGR_STATUS_OPERATION_ERR)
len += sprintf(buf + len, "reconfig operation error\n");
if (status & FPGA_MGR_STATUS_CRC_ERR)
len += sprintf(buf + len, "reconfig CRC error\n");
if (status & FPGA_MGR_STATUS_INCOMPATIBLE_IMAGE_ERR)
len += sprintf(buf + len, "reconfig incompatible image\n");
if (status & FPGA_MGR_STATUS_IP_PROTOCOL_ERR)
len += sprintf(buf + len, "reconfig IP protocol error\n");
if (status & FPGA_MGR_STATUS_FIFO_OVERFLOW_ERR)
len += sprintf(buf + len, "reconfig fifo overflow error\n");
return len;
}
static DEVICE_ATTR_RO(name);
static DEVICE_ATTR_RO(state);
static DEVICE_ATTR_RO(status);
static struct attribute *fpga_mgr_attrs[] = {
&dev_attr_name.attr,
&dev_attr_state.attr,
&dev_attr_status.attr,
NULL,
};
ATTRIBUTE_GROUPS(fpga_mgr);
static struct fpga_manager *__fpga_mgr_get(struct device *dev)
{
struct fpga_manager *mgr;
mgr = to_fpga_manager(dev);
if (!try_module_get(dev->parent->driver->owner))
goto err_dev;
return mgr;
err_dev:
put_device(dev);
return ERR_PTR(-ENODEV);
}
static int fpga_mgr_dev_match(struct device *dev, const void *data)
{
return dev->parent == data;
}
/**
* fpga_mgr_get - Given a device, get a reference to an fpga mgr.
* @dev: parent device that fpga mgr was registered with
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *fpga_mgr_get(struct device *dev)
{
struct device *mgr_dev = class_find_device(fpga_mgr_class, NULL, dev,
fpga_mgr_dev_match);
if (!mgr_dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(mgr_dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_get);
/**
* of_fpga_mgr_get - Given a device node, get a reference to an fpga mgr.
*
* @node: device node
*
* Return: fpga manager struct or IS_ERR() condition containing error code.
*/
struct fpga_manager *of_fpga_mgr_get(struct device_node *node)
{
struct device *dev;
dev = class_find_device_by_of_node(fpga_mgr_class, node);
if (!dev)
return ERR_PTR(-ENODEV);
return __fpga_mgr_get(dev);
}
EXPORT_SYMBOL_GPL(of_fpga_mgr_get);
/**
* fpga_mgr_put - release a reference to an fpga manager
* @mgr: fpga manager structure
*/
void fpga_mgr_put(struct fpga_manager *mgr)
{
module_put(mgr->dev.parent->driver->owner);
put_device(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_put);
/**
* fpga_mgr_lock - Lock FPGA manager for exclusive use
* @mgr: fpga manager
*
* Given a pointer to FPGA Manager (from fpga_mgr_get() or
* of_fpga_mgr_put()) attempt to get the mutex. The user should call
* fpga_mgr_lock() and verify that it returns 0 before attempting to
* program the FPGA. Likewise, the user should call fpga_mgr_unlock
* when done programming the FPGA.
*
* Return: 0 for success or -EBUSY
*/
int fpga_mgr_lock(struct fpga_manager *mgr)
{
if (!mutex_trylock(&mgr->ref_mutex)) {
dev_err(&mgr->dev, "FPGA manager is in use.\n");
return -EBUSY;
}
return 0;
}
EXPORT_SYMBOL_GPL(fpga_mgr_lock);
/**
* fpga_mgr_unlock - Unlock FPGA manager after done programming
* @mgr: fpga manager
*/
void fpga_mgr_unlock(struct fpga_manager *mgr)
{
mutex_unlock(&mgr->ref_mutex);
}
EXPORT_SYMBOL_GPL(fpga_mgr_unlock);
/**
* fpga_mgr_register_full - create and register an FPGA Manager device
* @parent: fpga manager device from pdev
* @info: parameters for fpga manager
*
* The caller of this function is responsible for calling fpga_mgr_unregister().
* Using devm_fpga_mgr_register_full() instead is recommended.
*
* Return: pointer to struct fpga_manager pointer or ERR_PTR()
*/
struct fpga_manager *
fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info)
{
const struct fpga_manager_ops *mops = info->mops;
struct fpga_manager *mgr;
int id, ret;
if (!mops) {
dev_err(parent, "Attempt to register without fpga_manager_ops\n");
return ERR_PTR(-EINVAL);
}
if (!info->name || !strlen(info->name)) {
dev_err(parent, "Attempt to register with no name!\n");
return ERR_PTR(-EINVAL);
}
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
if (!mgr)
return ERR_PTR(-ENOMEM);
id = ida_alloc(&fpga_mgr_ida, GFP_KERNEL);
if (id < 0) {
ret = id;
goto error_kfree;
}
mutex_init(&mgr->ref_mutex);
mgr->name = info->name;
mgr->mops = info->mops;
mgr->priv = info->priv;
mgr->compat_id = info->compat_id;
mgr->dev.class = fpga_mgr_class;
mgr->dev.groups = mops->groups;
mgr->dev.parent = parent;
mgr->dev.of_node = parent->of_node;
mgr->dev.id = id;
ret = dev_set_name(&mgr->dev, "fpga%d", id);
if (ret)
goto error_device;
/*
* Initialize framework state by requesting low level driver read state
* from device. FPGA may be in reset mode or may have been programmed
* by bootloader or EEPROM.
*/
mgr->state = fpga_mgr_state(mgr);
ret = device_register(&mgr->dev);
if (ret) {
put_device(&mgr->dev);
return ERR_PTR(ret);
}
return mgr;
error_device:
ida_free(&fpga_mgr_ida, id);
error_kfree:
kfree(mgr);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(fpga_mgr_register_full);
/**
* fpga_mgr_register - create and register an FPGA Manager device
* @parent: fpga manager device from pdev
* @name: fpga manager name
* @mops: pointer to structure of fpga manager ops
* @priv: fpga manager private data
*
* The caller of this function is responsible for calling fpga_mgr_unregister().
* Using devm_fpga_mgr_register() instead is recommended. This simple
* version of the register function should be sufficient for most users. The
* fpga_mgr_register_full() function is available for users that need to pass
* additional, optional parameters.
*
* Return: pointer to struct fpga_manager pointer or ERR_PTR()
*/
struct fpga_manager *
fpga_mgr_register(struct device *parent, const char *name,
const struct fpga_manager_ops *mops, void *priv)
{
struct fpga_manager_info info = { 0 };
info.name = name;
info.mops = mops;
info.priv = priv;
return fpga_mgr_register_full(parent, &info);
}
EXPORT_SYMBOL_GPL(fpga_mgr_register);
/**
* fpga_mgr_unregister - unregister an FPGA manager
* @mgr: fpga manager struct
*
* This function is intended for use in an FPGA manager driver's remove function.
*/
void fpga_mgr_unregister(struct fpga_manager *mgr)
{
dev_info(&mgr->dev, "%s %s\n", __func__, mgr->name);
/*
* If the low level driver provides a method for putting fpga into
* a desired state upon unregister, do it.
*/
fpga_mgr_fpga_remove(mgr);
device_unregister(&mgr->dev);
}
EXPORT_SYMBOL_GPL(fpga_mgr_unregister);
static void devm_fpga_mgr_unregister(struct device *dev, void *res)
{
struct fpga_mgr_devres *dr = res;
fpga_mgr_unregister(dr->mgr);
}
/**
* devm_fpga_mgr_register_full - resource managed variant of fpga_mgr_register()
* @parent: fpga manager device from pdev
* @info: parameters for fpga manager
*
* Return: fpga manager pointer on success, negative error code otherwise.
*
* This is the devres variant of fpga_mgr_register_full() for which the unregister
* function will be called automatically when the managing device is detached.
*/
struct fpga_manager *
devm_fpga_mgr_register_full(struct device *parent, const struct fpga_manager_info *info)
{
struct fpga_mgr_devres *dr;
struct fpga_manager *mgr;
dr = devres_alloc(devm_fpga_mgr_unregister, sizeof(*dr), GFP_KERNEL);
if (!dr)
return ERR_PTR(-ENOMEM);
mgr = fpga_mgr_register_full(parent, info);
if (IS_ERR(mgr)) {
devres_free(dr);
return mgr;
}
dr->mgr = mgr;
devres_add(parent, dr);
return mgr;
}
EXPORT_SYMBOL_GPL(devm_fpga_mgr_register_full);
/**
* devm_fpga_mgr_register - resource managed variant of fpga_mgr_register()
* @parent: fpga manager device from pdev
* @name: fpga manager name
* @mops: pointer to structure of fpga manager ops
* @priv: fpga manager private data
*
* Return: fpga manager pointer on success, negative error code otherwise.
*
* This is the devres variant of fpga_mgr_register() for which the
* unregister function will be called automatically when the managing
* device is detached.
*/
struct fpga_manager *
devm_fpga_mgr_register(struct device *parent, const char *name,
const struct fpga_manager_ops *mops, void *priv)
{
struct fpga_manager_info info = { 0 };
info.name = name;
info.mops = mops;
info.priv = priv;
return devm_fpga_mgr_register_full(parent, &info);
}
EXPORT_SYMBOL_GPL(devm_fpga_mgr_register);
static void fpga_mgr_dev_release(struct device *dev)
{
struct fpga_manager *mgr = to_fpga_manager(dev);
ida_free(&fpga_mgr_ida, mgr->dev.id);
kfree(mgr);
}
static int __init fpga_mgr_class_init(void)
{
pr_info("FPGA manager framework\n");
fpga_mgr_class = class_create("fpga_manager");
if (IS_ERR(fpga_mgr_class))
return PTR_ERR(fpga_mgr_class);
fpga_mgr_class->dev_groups = fpga_mgr_groups;
fpga_mgr_class->dev_release = fpga_mgr_dev_release;
return 0;
}
static void __exit fpga_mgr_class_exit(void)
{
class_destroy(fpga_mgr_class);
ida_destroy(&fpga_mgr_ida);
}
MODULE_AUTHOR("Alan Tull <atull@kernel.org>");
MODULE_DESCRIPTION("FPGA manager framework");
MODULE_LICENSE("GPL v2");
subsys_initcall(fpga_mgr_class_init);
module_exit(fpga_mgr_class_exit);
|