1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
|
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*/
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drv.h"
static bool is_edp_psr(struct intel_dp *intel_dp)
{
return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
}
bool intel_psr_is_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_PSR(dev))
return false;
return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
}
static void intel_psr_write_vsc(struct intel_dp *intel_dp,
struct edp_vsc_psr *vsc_psr)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
uint32_t *data = (uint32_t *) vsc_psr;
unsigned int i;
/* As per BSPec (Pipe Video Data Island Packet), we need to disable
the video DIP being updated before program video DIP data buffer
registers for DIP being updated. */
I915_WRITE(ctl_reg, 0);
POSTING_READ(ctl_reg);
for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
if (i < sizeof(struct edp_vsc_psr))
I915_WRITE(data_reg + i, *data++);
else
I915_WRITE(data_reg + i, 0);
}
I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
POSTING_READ(ctl_reg);
}
static void intel_psr_setup_vsc(struct intel_dp *intel_dp)
{
struct edp_vsc_psr psr_vsc;
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
intel_psr_write_vsc(intel_dp, &psr_vsc);
}
static void intel_psr_enable_sink(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t aux_clock_divider;
int precharge = 0x3;
bool only_standby = false;
static const uint8_t aux_msg[] = {
[0] = DP_AUX_NATIVE_WRITE << 4,
[1] = DP_SET_POWER >> 8,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
int i;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
only_standby = true;
/* Enable PSR in sink */
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
else
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
/* Setup AUX registers */
for (i = 0; i < sizeof(aux_msg); i += 4)
I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
I915_WRITE(EDP_PSR_AUX_CTL(dev),
DP_AUX_CH_CTL_TIME_OUT_400us |
(sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
}
static void intel_psr_enable_source(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t max_sleep_time = 0x1f;
uint32_t idle_frames = 1;
uint32_t val = 0x0;
const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
bool only_standby = false;
if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
only_standby = true;
if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
val |= EDP_PSR_LINK_STANDBY;
val |= EDP_PSR_TP2_TP3_TIME_0us;
val |= EDP_PSR_TP1_TIME_0us;
val |= EDP_PSR_SKIP_AUX_EXIT;
val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
} else
val |= EDP_PSR_LINK_DISABLE;
I915_WRITE(EDP_PSR_CTL(dev), val |
(IS_BROADWELL(dev) ? 0 : link_entry_time) |
max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
EDP_PSR_ENABLE);
}
static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dig_port->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
lockdep_assert_held(&dev_priv->psr.lock);
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
dev_priv->psr.source_ok = false;
if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
return false;
}
if (!i915.enable_psr) {
DRM_DEBUG_KMS("PSR disable by flag\n");
return false;
}
/* Below limitations aren't valid for Broadwell */
if (IS_BROADWELL(dev))
goto out;
if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
S3D_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
return false;
}
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return false;
}
out:
dev_priv->psr.source_ok = true;
return true;
}
static void intel_psr_do_enable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
WARN_ON(dev_priv->psr.active);
lockdep_assert_held(&dev_priv->psr.lock);
/* Enable/Re-enable PSR on the host */
intel_psr_enable_source(intel_dp);
dev_priv->psr.active = true;
}
/**
* intel_psr_enable - Enable PSR
* @intel_dp: Intel DP
*
* This function can only be called after the pipe is fully trained and enabled.
*/
void intel_psr_enable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (!HAS_PSR(dev)) {
DRM_DEBUG_KMS("PSR not supported on this platform\n");
return;
}
if (!is_edp_psr(intel_dp)) {
DRM_DEBUG_KMS("PSR not supported by this panel\n");
return;
}
mutex_lock(&dev_priv->psr.lock);
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR already in use\n");
goto unlock;
}
if (!intel_psr_match_conditions(intel_dp))
goto unlock;
dev_priv->psr.busy_frontbuffer_bits = 0;
intel_psr_setup_vsc(intel_dp);
/* Avoid continuous PSR exit by masking memup and hpd */
I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
/* Enable PSR on the panel */
intel_psr_enable_sink(intel_dp);
dev_priv->psr.enabled = intel_dp;
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
if (dev_priv->psr.active) {
I915_WRITE(EDP_PSR_CTL(dev),
I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
/* Wait till PSR is idle */
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
dev_priv->psr.active = false;
} else {
WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
}
dev_priv->psr.enabled = NULL;
mutex_unlock(&dev_priv->psr.lock);
cancel_delayed_work_sync(&dev_priv->psr.work);
}
static void intel_psr_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), psr.work.work);
struct intel_dp *intel_dp = dev_priv->psr.enabled;
/* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
return;
}
mutex_lock(&dev_priv->psr.lock);
intel_dp = dev_priv->psr.enabled;
if (!intel_dp)
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (dev_priv->psr.busy_frontbuffer_bits)
goto unlock;
intel_psr_do_enable(intel_dp);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void intel_psr_exit(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->psr.active) {
u32 val = I915_READ(EDP_PSR_CTL(dev));
WARN_ON(!(val & EDP_PSR_ENABLE));
I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
dev_priv->psr.active = false;
}
}
/**
* intel_psr_invalidate - Invalidade PSR
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
intel_psr_exit(dev);
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_flush - Flush PSR
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
/*
* On Haswell sprite plane updates don't result in a psr invalidating
* signal in the hardware. Which means we need to manually fake this in
* software for all flushes, not just when we've seen a preceding
* invalidation through frontbuffer rendering.
*/
if (IS_HASWELL(dev) &&
(frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
intel_psr_exit(dev);
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(100));
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @dev: DRM device
*
* This function is called only once at driver load to initialize basic
* PSR stuff.
*/
void intel_psr_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
mutex_init(&dev_priv->psr.lock);
}
|