1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2024 Intel Corporation
*/
#include "xe_bo.h"
#include "xe_gt_tlb_invalidation.h"
#include "xe_migrate.h"
#include "xe_module.h"
#include "xe_pt.h"
#include "xe_svm.h"
#include "xe_ttm_vram_mgr.h"
#include "xe_vm.h"
#include "xe_vm_types.h"
static bool xe_svm_range_in_vram(struct xe_svm_range *range)
{
/* Not reliable without notifier lock */
return range->base.flags.has_devmem_pages;
}
static bool xe_svm_range_has_vram_binding(struct xe_svm_range *range)
{
/* Not reliable without notifier lock */
return xe_svm_range_in_vram(range) && range->tile_present;
}
static struct xe_vm *gpusvm_to_vm(struct drm_gpusvm *gpusvm)
{
return container_of(gpusvm, struct xe_vm, svm.gpusvm);
}
static struct xe_vm *range_to_vm(struct drm_gpusvm_range *r)
{
return gpusvm_to_vm(r->gpusvm);
}
static unsigned long xe_svm_range_start(struct xe_svm_range *range)
{
return drm_gpusvm_range_start(&range->base);
}
static unsigned long xe_svm_range_end(struct xe_svm_range *range)
{
return drm_gpusvm_range_end(&range->base);
}
static unsigned long xe_svm_range_size(struct xe_svm_range *range)
{
return drm_gpusvm_range_size(&range->base);
}
#define range_debug(r__, operaton__) \
vm_dbg(&range_to_vm(&(r__)->base)->xe->drm, \
"%s: asid=%u, gpusvm=%p, vram=%d,%d, seqno=%lu, " \
"start=0x%014lx, end=0x%014lx, size=%lu", \
(operaton__), range_to_vm(&(r__)->base)->usm.asid, \
(r__)->base.gpusvm, \
xe_svm_range_in_vram((r__)) ? 1 : 0, \
xe_svm_range_has_vram_binding((r__)) ? 1 : 0, \
(r__)->base.notifier_seq, \
xe_svm_range_start((r__)), xe_svm_range_end((r__)), \
xe_svm_range_size((r__)))
void xe_svm_range_debug(struct xe_svm_range *range, const char *operation)
{
range_debug(range, operation);
}
static void *xe_svm_devm_owner(struct xe_device *xe)
{
return xe;
}
static struct drm_gpusvm_range *
xe_svm_range_alloc(struct drm_gpusvm *gpusvm)
{
struct xe_svm_range *range;
range = kzalloc(sizeof(*range), GFP_KERNEL);
if (!range)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&range->garbage_collector_link);
xe_vm_get(gpusvm_to_vm(gpusvm));
return &range->base;
}
static void xe_svm_range_free(struct drm_gpusvm_range *range)
{
xe_vm_put(range_to_vm(range));
kfree(range);
}
static struct xe_svm_range *to_xe_range(struct drm_gpusvm_range *r)
{
return container_of(r, struct xe_svm_range, base);
}
static void
xe_svm_garbage_collector_add_range(struct xe_vm *vm, struct xe_svm_range *range,
const struct mmu_notifier_range *mmu_range)
{
struct xe_device *xe = vm->xe;
range_debug(range, "GARBAGE COLLECTOR ADD");
drm_gpusvm_range_set_unmapped(&range->base, mmu_range);
spin_lock(&vm->svm.garbage_collector.lock);
if (list_empty(&range->garbage_collector_link))
list_add_tail(&range->garbage_collector_link,
&vm->svm.garbage_collector.range_list);
spin_unlock(&vm->svm.garbage_collector.lock);
queue_work(xe_device_get_root_tile(xe)->primary_gt->usm.pf_wq,
&vm->svm.garbage_collector.work);
}
static u8
xe_svm_range_notifier_event_begin(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range,
u64 *adj_start, u64 *adj_end)
{
struct xe_svm_range *range = to_xe_range(r);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
u8 tile_mask = 0;
u8 id;
xe_svm_assert_in_notifier(vm);
range_debug(range, "NOTIFIER");
/* Skip if already unmapped or if no binding exist */
if (range->base.flags.unmapped || !range->tile_present)
return 0;
range_debug(range, "NOTIFIER - EXECUTE");
/* Adjust invalidation to range boundaries */
*adj_start = min(xe_svm_range_start(range), mmu_range->start);
*adj_end = max(xe_svm_range_end(range), mmu_range->end);
/*
* XXX: Ideally would zap PTEs in one shot in xe_svm_invalidate but the
* invalidation code can't correctly cope with sparse ranges or
* invalidations spanning multiple ranges.
*/
for_each_tile(tile, xe, id)
if (xe_pt_zap_ptes_range(tile, vm, range)) {
tile_mask |= BIT(id);
range->tile_invalidated |= BIT(id);
}
return tile_mask;
}
static void
xe_svm_range_notifier_event_end(struct xe_vm *vm, struct drm_gpusvm_range *r,
const struct mmu_notifier_range *mmu_range)
{
struct drm_gpusvm_ctx ctx = { .in_notifier = true, };
xe_svm_assert_in_notifier(vm);
drm_gpusvm_range_unmap_pages(&vm->svm.gpusvm, r, &ctx);
if (!xe_vm_is_closed(vm) && mmu_range->event == MMU_NOTIFY_UNMAP)
xe_svm_garbage_collector_add_range(vm, to_xe_range(r),
mmu_range);
}
static void xe_svm_invalidate(struct drm_gpusvm *gpusvm,
struct drm_gpusvm_notifier *notifier,
const struct mmu_notifier_range *mmu_range)
{
struct xe_vm *vm = gpusvm_to_vm(gpusvm);
struct xe_device *xe = vm->xe;
struct xe_tile *tile;
struct drm_gpusvm_range *r, *first;
struct xe_gt_tlb_invalidation_fence
fence[XE_MAX_TILES_PER_DEVICE * XE_MAX_GT_PER_TILE];
u64 adj_start = mmu_range->start, adj_end = mmu_range->end;
u8 tile_mask = 0;
u8 id;
u32 fence_id = 0;
long err;
xe_svm_assert_in_notifier(vm);
vm_dbg(&gpusvm_to_vm(gpusvm)->xe->drm,
"INVALIDATE: asid=%u, gpusvm=%p, seqno=%lu, start=0x%016lx, end=0x%016lx, event=%d",
vm->usm.asid, gpusvm, notifier->notifier.invalidate_seq,
mmu_range->start, mmu_range->end, mmu_range->event);
/* Adjust invalidation to notifier boundaries */
adj_start = max(drm_gpusvm_notifier_start(notifier), adj_start);
adj_end = min(drm_gpusvm_notifier_end(notifier), adj_end);
first = drm_gpusvm_range_find(notifier, adj_start, adj_end);
if (!first)
return;
/*
* PTs may be getting destroyed so not safe to touch these but PT should
* be invalidated at this point in time. Regardless we still need to
* ensure any dma mappings are unmapped in the here.
*/
if (xe_vm_is_closed(vm))
goto range_notifier_event_end;
/*
* XXX: Less than ideal to always wait on VM's resv slots if an
* invalidation is not required. Could walk range list twice to figure
* out if an invalidations is need, but also not ideal.
*/
err = dma_resv_wait_timeout(xe_vm_resv(vm),
DMA_RESV_USAGE_BOOKKEEP,
false, MAX_SCHEDULE_TIMEOUT);
XE_WARN_ON(err <= 0);
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
tile_mask |= xe_svm_range_notifier_event_begin(vm, r, mmu_range,
&adj_start,
&adj_end);
if (!tile_mask)
goto range_notifier_event_end;
xe_device_wmb(xe);
for_each_tile(tile, xe, id) {
if (tile_mask & BIT(id)) {
int err;
xe_gt_tlb_invalidation_fence_init(tile->primary_gt,
&fence[fence_id], true);
err = xe_gt_tlb_invalidation_range(tile->primary_gt,
&fence[fence_id],
adj_start,
adj_end,
vm->usm.asid);
if (WARN_ON_ONCE(err < 0))
goto wait;
++fence_id;
if (!tile->media_gt)
continue;
xe_gt_tlb_invalidation_fence_init(tile->media_gt,
&fence[fence_id], true);
err = xe_gt_tlb_invalidation_range(tile->media_gt,
&fence[fence_id],
adj_start,
adj_end,
vm->usm.asid);
if (WARN_ON_ONCE(err < 0))
goto wait;
++fence_id;
}
}
wait:
for (id = 0; id < fence_id; ++id)
xe_gt_tlb_invalidation_fence_wait(&fence[id]);
range_notifier_event_end:
r = first;
drm_gpusvm_for_each_range(r, notifier, adj_start, adj_end)
xe_svm_range_notifier_event_end(vm, r, mmu_range);
}
static int __xe_svm_garbage_collector(struct xe_vm *vm,
struct xe_svm_range *range)
{
struct dma_fence *fence;
range_debug(range, "GARBAGE COLLECTOR");
xe_vm_lock(vm, false);
fence = xe_vm_range_unbind(vm, range);
xe_vm_unlock(vm);
if (IS_ERR(fence))
return PTR_ERR(fence);
dma_fence_put(fence);
drm_gpusvm_range_remove(&vm->svm.gpusvm, &range->base);
return 0;
}
static int xe_svm_garbage_collector(struct xe_vm *vm)
{
struct xe_svm_range *range;
int err;
lockdep_assert_held_write(&vm->lock);
if (xe_vm_is_closed_or_banned(vm))
return -ENOENT;
spin_lock(&vm->svm.garbage_collector.lock);
for (;;) {
range = list_first_entry_or_null(&vm->svm.garbage_collector.range_list,
typeof(*range),
garbage_collector_link);
if (!range)
break;
list_del(&range->garbage_collector_link);
spin_unlock(&vm->svm.garbage_collector.lock);
err = __xe_svm_garbage_collector(vm, range);
if (err) {
drm_warn(&vm->xe->drm,
"Garbage collection failed: %pe\n",
ERR_PTR(err));
xe_vm_kill(vm, true);
return err;
}
spin_lock(&vm->svm.garbage_collector.lock);
}
spin_unlock(&vm->svm.garbage_collector.lock);
return 0;
}
static void xe_svm_garbage_collector_work_func(struct work_struct *w)
{
struct xe_vm *vm = container_of(w, struct xe_vm,
svm.garbage_collector.work);
down_write(&vm->lock);
xe_svm_garbage_collector(vm);
up_write(&vm->lock);
}
static struct xe_vram_region *page_to_vr(struct page *page)
{
return container_of(page_pgmap(page), struct xe_vram_region, pagemap);
}
static struct xe_tile *vr_to_tile(struct xe_vram_region *vr)
{
return container_of(vr, struct xe_tile, mem.vram);
}
static u64 xe_vram_region_page_to_dpa(struct xe_vram_region *vr,
struct page *page)
{
u64 dpa;
struct xe_tile *tile = vr_to_tile(vr);
u64 pfn = page_to_pfn(page);
u64 offset;
xe_tile_assert(tile, is_device_private_page(page));
xe_tile_assert(tile, (pfn << PAGE_SHIFT) >= vr->hpa_base);
offset = (pfn << PAGE_SHIFT) - vr->hpa_base;
dpa = vr->dpa_base + offset;
return dpa;
}
enum xe_svm_copy_dir {
XE_SVM_COPY_TO_VRAM,
XE_SVM_COPY_TO_SRAM,
};
static int xe_svm_copy(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages, const enum xe_svm_copy_dir dir)
{
struct xe_vram_region *vr = NULL;
struct xe_tile *tile;
struct dma_fence *fence = NULL;
unsigned long i;
#define XE_VRAM_ADDR_INVALID ~0x0ull
u64 vram_addr = XE_VRAM_ADDR_INVALID;
int err = 0, pos = 0;
bool sram = dir == XE_SVM_COPY_TO_SRAM;
/*
* This flow is complex: it locates physically contiguous device pages,
* derives the starting physical address, and performs a single GPU copy
* to for every 8M chunk in a DMA address array. Both device pages and
* DMA addresses may be sparsely populated. If either is NULL, a copy is
* triggered based on the current search state. The last GPU copy is
* waited on to ensure all copies are complete.
*/
for (i = 0; i < npages; ++i) {
struct page *spage = pages[i];
struct dma_fence *__fence;
u64 __vram_addr;
bool match = false, chunk, last;
#define XE_MIGRATE_CHUNK_SIZE SZ_8M
chunk = (i - pos) == (XE_MIGRATE_CHUNK_SIZE / PAGE_SIZE);
last = (i + 1) == npages;
/* No CPU page and no device pages queue'd to copy */
if (!dma_addr[i] && vram_addr == XE_VRAM_ADDR_INVALID)
continue;
if (!vr && spage) {
vr = page_to_vr(spage);
tile = vr_to_tile(vr);
}
XE_WARN_ON(spage && page_to_vr(spage) != vr);
/*
* CPU page and device page valid, capture physical address on
* first device page, check if physical contiguous on subsequent
* device pages.
*/
if (dma_addr[i] && spage) {
__vram_addr = xe_vram_region_page_to_dpa(vr, spage);
if (vram_addr == XE_VRAM_ADDR_INVALID) {
vram_addr = __vram_addr;
pos = i;
}
match = vram_addr + PAGE_SIZE * (i - pos) == __vram_addr;
}
/*
* Mismatched physical address, 8M copy chunk, or last page -
* trigger a copy.
*/
if (!match || chunk || last) {
/*
* Extra page for first copy if last page and matching
* physical address.
*/
int incr = (match && last) ? 1 : 0;
if (vram_addr != XE_VRAM_ADDR_INVALID) {
if (sram) {
vm_dbg(&tile->xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
vram_addr, (u64)dma_addr[pos], i - pos + incr);
__fence = xe_migrate_from_vram(tile->migrate,
i - pos + incr,
vram_addr,
dma_addr + pos);
} else {
vm_dbg(&tile->xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%ld",
(u64)dma_addr[pos], vram_addr, i - pos + incr);
__fence = xe_migrate_to_vram(tile->migrate,
i - pos + incr,
dma_addr + pos,
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
/* Setup physical address of next device page */
if (dma_addr[i] && spage) {
vram_addr = __vram_addr;
pos = i;
} else {
vram_addr = XE_VRAM_ADDR_INVALID;
}
/* Extra mismatched device page, copy it */
if (!match && last && vram_addr != XE_VRAM_ADDR_INVALID) {
if (sram) {
vm_dbg(&tile->xe->drm,
"COPY TO SRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
vram_addr, (u64)dma_addr[pos], 1);
__fence = xe_migrate_from_vram(tile->migrate, 1,
vram_addr,
dma_addr + pos);
} else {
vm_dbg(&tile->xe->drm,
"COPY TO VRAM - 0x%016llx -> 0x%016llx, NPAGES=%d",
(u64)dma_addr[pos], vram_addr, 1);
__fence = xe_migrate_to_vram(tile->migrate, 1,
dma_addr + pos,
vram_addr);
}
if (IS_ERR(__fence)) {
err = PTR_ERR(__fence);
goto err_out;
}
dma_fence_put(fence);
fence = __fence;
}
}
}
err_out:
/* Wait for all copies to complete */
if (fence) {
dma_fence_wait(fence, false);
dma_fence_put(fence);
}
return err;
#undef XE_MIGRATE_CHUNK_SIZE
#undef XE_VRAM_ADDR_INVALID
}
static int xe_svm_copy_to_devmem(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages)
{
return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_VRAM);
}
static int xe_svm_copy_to_ram(struct page **pages, dma_addr_t *dma_addr,
unsigned long npages)
{
return xe_svm_copy(pages, dma_addr, npages, XE_SVM_COPY_TO_SRAM);
}
static struct xe_bo *to_xe_bo(struct drm_gpusvm_devmem *devmem_allocation)
{
return container_of(devmem_allocation, struct xe_bo, devmem_allocation);
}
static void xe_svm_devmem_release(struct drm_gpusvm_devmem *devmem_allocation)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
xe_bo_put_async(bo);
}
static u64 block_offset_to_pfn(struct xe_vram_region *vr, u64 offset)
{
return PHYS_PFN(offset + vr->hpa_base);
}
static struct drm_buddy *tile_to_buddy(struct xe_tile *tile)
{
return &tile->mem.vram.ttm.mm;
}
static int xe_svm_populate_devmem_pfn(struct drm_gpusvm_devmem *devmem_allocation,
unsigned long npages, unsigned long *pfn)
{
struct xe_bo *bo = to_xe_bo(devmem_allocation);
struct ttm_resource *res = bo->ttm.resource;
struct list_head *blocks = &to_xe_ttm_vram_mgr_resource(res)->blocks;
struct drm_buddy_block *block;
int j = 0;
list_for_each_entry(block, blocks, link) {
struct xe_vram_region *vr = block->private;
struct xe_tile *tile = vr_to_tile(vr);
struct drm_buddy *buddy = tile_to_buddy(tile);
u64 block_pfn = block_offset_to_pfn(vr, drm_buddy_block_offset(block));
int i;
for (i = 0; i < drm_buddy_block_size(buddy, block) >> PAGE_SHIFT; ++i)
pfn[j++] = block_pfn + i;
}
return 0;
}
static const struct drm_gpusvm_devmem_ops gpusvm_devmem_ops = {
.devmem_release = xe_svm_devmem_release,
.populate_devmem_pfn = xe_svm_populate_devmem_pfn,
.copy_to_devmem = xe_svm_copy_to_devmem,
.copy_to_ram = xe_svm_copy_to_ram,
};
static const struct drm_gpusvm_ops gpusvm_ops = {
.range_alloc = xe_svm_range_alloc,
.range_free = xe_svm_range_free,
.invalidate = xe_svm_invalidate,
};
static const unsigned long fault_chunk_sizes[] = {
SZ_2M,
SZ_64K,
SZ_4K,
};
/**
* xe_svm_init() - SVM initialize
* @vm: The VM.
*
* Initialize SVM state which is embedded within the VM.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_init(struct xe_vm *vm)
{
int err;
spin_lock_init(&vm->svm.garbage_collector.lock);
INIT_LIST_HEAD(&vm->svm.garbage_collector.range_list);
INIT_WORK(&vm->svm.garbage_collector.work,
xe_svm_garbage_collector_work_func);
err = drm_gpusvm_init(&vm->svm.gpusvm, "Xe SVM", &vm->xe->drm,
current->mm, xe_svm_devm_owner(vm->xe), 0,
vm->size, xe_modparam.svm_notifier_size * SZ_1M,
&gpusvm_ops, fault_chunk_sizes,
ARRAY_SIZE(fault_chunk_sizes));
if (err)
return err;
drm_gpusvm_driver_set_lock(&vm->svm.gpusvm, &vm->lock);
return 0;
}
/**
* xe_svm_close() - SVM close
* @vm: The VM.
*
* Close SVM state (i.e., stop and flush all SVM actions).
*/
void xe_svm_close(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
flush_work(&vm->svm.garbage_collector.work);
}
/**
* xe_svm_fini() - SVM finalize
* @vm: The VM.
*
* Finalize SVM state which is embedded within the VM.
*/
void xe_svm_fini(struct xe_vm *vm)
{
xe_assert(vm->xe, xe_vm_is_closed(vm));
drm_gpusvm_fini(&vm->svm.gpusvm);
}
static bool xe_svm_range_is_valid(struct xe_svm_range *range,
struct xe_tile *tile)
{
return (range->tile_present & ~range->tile_invalidated) & BIT(tile->id);
}
static struct xe_vram_region *tile_to_vr(struct xe_tile *tile)
{
return &tile->mem.vram;
}
static int xe_svm_alloc_vram(struct xe_vm *vm, struct xe_tile *tile,
struct xe_svm_range *range,
const struct drm_gpusvm_ctx *ctx)
{
struct mm_struct *mm = vm->svm.gpusvm.mm;
struct xe_vram_region *vr = tile_to_vr(tile);
struct drm_buddy_block *block;
struct list_head *blocks;
struct xe_bo *bo;
ktime_t end = 0;
int err;
range_debug(range, "ALLOCATE VRAM");
if (!mmget_not_zero(mm))
return -EFAULT;
mmap_read_lock(mm);
retry:
bo = xe_bo_create_locked(tile_to_xe(tile), NULL, NULL,
xe_svm_range_size(range),
ttm_bo_type_device,
XE_BO_FLAG_VRAM_IF_DGFX(tile) |
XE_BO_FLAG_CPU_ADDR_MIRROR);
if (IS_ERR(bo)) {
err = PTR_ERR(bo);
if (xe_vm_validate_should_retry(NULL, err, &end))
goto retry;
goto unlock;
}
drm_gpusvm_devmem_init(&bo->devmem_allocation,
vm->xe->drm.dev, mm,
&gpusvm_devmem_ops,
&tile->mem.vram.dpagemap,
xe_svm_range_size(range));
blocks = &to_xe_ttm_vram_mgr_resource(bo->ttm.resource)->blocks;
list_for_each_entry(block, blocks, link)
block->private = vr;
xe_bo_get(bo);
err = drm_gpusvm_migrate_to_devmem(&vm->svm.gpusvm, &range->base,
&bo->devmem_allocation, ctx);
if (err)
xe_svm_devmem_release(&bo->devmem_allocation);
xe_bo_unlock(bo);
xe_bo_put(bo);
unlock:
mmap_read_unlock(mm);
mmput(mm);
return err;
}
/**
* xe_svm_handle_pagefault() - SVM handle page fault
* @vm: The VM.
* @vma: The CPU address mirror VMA.
* @tile: The tile upon the fault occurred.
* @fault_addr: The GPU fault address.
* @atomic: The fault atomic access bit.
*
* Create GPU bindings for a SVM page fault. Optionally migrate to device
* memory.
*
* Return: 0 on success, negative error code on error.
*/
int xe_svm_handle_pagefault(struct xe_vm *vm, struct xe_vma *vma,
struct xe_tile *tile, u64 fault_addr,
bool atomic)
{
struct drm_gpusvm_ctx ctx = {
.read_only = xe_vma_read_only(vma),
.devmem_possible = IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR),
.check_pages_threshold = IS_DGFX(vm->xe) &&
IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR) ? SZ_64K : 0,
};
struct xe_svm_range *range;
struct drm_gpusvm_range *r;
struct drm_exec exec;
struct dma_fence *fence;
ktime_t end = 0;
int err;
lockdep_assert_held_write(&vm->lock);
xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma));
retry:
/* Always process UNMAPs first so view SVM ranges is current */
err = xe_svm_garbage_collector(vm);
if (err)
return err;
r = drm_gpusvm_range_find_or_insert(&vm->svm.gpusvm, fault_addr,
xe_vma_start(vma), xe_vma_end(vma),
&ctx);
if (IS_ERR(r))
return PTR_ERR(r);
range = to_xe_range(r);
if (xe_svm_range_is_valid(range, tile))
return 0;
range_debug(range, "PAGE FAULT");
/* XXX: Add migration policy, for now migrate range once */
if (!range->skip_migrate && range->base.flags.migrate_devmem &&
xe_svm_range_size(range) >= SZ_64K) {
range->skip_migrate = true;
err = xe_svm_alloc_vram(vm, tile, range, &ctx);
if (err) {
drm_dbg(&vm->xe->drm,
"VRAM allocation failed, falling back to "
"retrying fault, asid=%u, errno=%pe\n",
vm->usm.asid, ERR_PTR(err));
goto retry;
}
}
range_debug(range, "GET PAGES");
err = drm_gpusvm_range_get_pages(&vm->svm.gpusvm, r, &ctx);
/* Corner where CPU mappings have changed */
if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) {
if (err == -EOPNOTSUPP) {
range_debug(range, "PAGE FAULT - EVICT PAGES");
drm_gpusvm_range_evict(&vm->svm.gpusvm, &range->base);
}
drm_dbg(&vm->xe->drm,
"Get pages failed, falling back to retrying, asid=%u, gpusvm=%p, errno=%pe\n",
vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err));
range_debug(range, "PAGE FAULT - RETRY PAGES");
goto retry;
}
if (err) {
range_debug(range, "PAGE FAULT - FAIL PAGE COLLECT");
goto err_out;
}
range_debug(range, "PAGE FAULT - BIND");
retry_bind:
drm_exec_init(&exec, 0, 0);
drm_exec_until_all_locked(&exec) {
err = drm_exec_lock_obj(&exec, vm->gpuvm.r_obj);
drm_exec_retry_on_contention(&exec);
if (err) {
drm_exec_fini(&exec);
goto err_out;
}
fence = xe_vm_range_rebind(vm, vma, range, BIT(tile->id));
if (IS_ERR(fence)) {
drm_exec_fini(&exec);
err = PTR_ERR(fence);
if (err == -EAGAIN) {
range_debug(range, "PAGE FAULT - RETRY BIND");
goto retry;
}
if (xe_vm_validate_should_retry(&exec, err, &end))
goto retry_bind;
goto err_out;
}
}
drm_exec_fini(&exec);
if (xe_modparam.always_migrate_to_vram)
range->skip_migrate = false;
dma_fence_wait(fence, false);
dma_fence_put(fence);
err_out:
return err;
}
/**
* xe_svm_has_mapping() - SVM has mappings
* @vm: The VM.
* @start: Start address.
* @end: End address.
*
* Check if an address range has SVM mappings.
*
* Return: True if address range has a SVM mapping, False otherwise
*/
bool xe_svm_has_mapping(struct xe_vm *vm, u64 start, u64 end)
{
return drm_gpusvm_has_mapping(&vm->svm.gpusvm, start, end);
}
/**
* xe_svm_bo_evict() - SVM evict BO to system memory
* @bo: BO to evict
*
* SVM evict BO to system memory. GPU SVM layer ensures all device pages
* are evicted before returning.
*
* Return: 0 on success standard error code otherwise
*/
int xe_svm_bo_evict(struct xe_bo *bo)
{
return drm_gpusvm_evict_to_ram(&bo->devmem_allocation);
}
#if IS_ENABLED(CONFIG_DRM_XE_DEVMEM_MIRROR)
static struct drm_pagemap_device_addr
xe_drm_pagemap_device_map(struct drm_pagemap *dpagemap,
struct device *dev,
struct page *page,
unsigned int order,
enum dma_data_direction dir)
{
struct device *pgmap_dev = dpagemap->dev;
enum drm_interconnect_protocol prot;
dma_addr_t addr;
if (pgmap_dev == dev) {
addr = xe_vram_region_page_to_dpa(page_to_vr(page), page);
prot = XE_INTERCONNECT_VRAM;
} else {
addr = DMA_MAPPING_ERROR;
prot = 0;
}
return drm_pagemap_device_addr_encode(addr, prot, order, dir);
}
static const struct drm_pagemap_ops xe_drm_pagemap_ops = {
.device_map = xe_drm_pagemap_device_map,
};
/**
* xe_devm_add: Remap and provide memmap backing for device memory
* @tile: tile that the memory region belongs to
* @vr: vram memory region to remap
*
* This remap device memory to host physical address space and create
* struct page to back device memory
*
* Return: 0 on success standard error code otherwise
*/
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
struct xe_device *xe = tile_to_xe(tile);
struct device *dev = &to_pci_dev(xe->drm.dev)->dev;
struct resource *res;
void *addr;
int ret;
res = devm_request_free_mem_region(dev, &iomem_resource,
vr->usable_size);
if (IS_ERR(res)) {
ret = PTR_ERR(res);
return ret;
}
vr->pagemap.type = MEMORY_DEVICE_PRIVATE;
vr->pagemap.range.start = res->start;
vr->pagemap.range.end = res->end;
vr->pagemap.nr_range = 1;
vr->pagemap.ops = drm_gpusvm_pagemap_ops_get();
vr->pagemap.owner = xe_svm_devm_owner(xe);
addr = devm_memremap_pages(dev, &vr->pagemap);
vr->dpagemap.dev = dev;
vr->dpagemap.ops = &xe_drm_pagemap_ops;
if (IS_ERR(addr)) {
devm_release_mem_region(dev, res->start, resource_size(res));
ret = PTR_ERR(addr);
drm_err(&xe->drm, "Failed to remap tile %d memory, errno %pe\n",
tile->id, ERR_PTR(ret));
return ret;
}
vr->hpa_base = res->start;
drm_dbg(&xe->drm, "Added tile %d memory [%llx-%llx] to devm, remapped to %pr\n",
tile->id, vr->io_start, vr->io_start + vr->usable_size, res);
return 0;
}
#else
int xe_devm_add(struct xe_tile *tile, struct xe_vram_region *vr)
{
return 0;
}
#endif
|