summaryrefslogtreecommitdiffstats
path: root/drivers/irqchip/irq-sifive-plic.c
blob: 357e9daf94ae061dad439df9404f9898354d7930 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017 SiFive
 * Copyright (C) 2018 Christoph Hellwig
 */
#define pr_fmt(fmt) "plic: " fmt
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqchip.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <asm/smp.h>

/*
 * This driver implements a version of the RISC-V PLIC with the actual layout
 * specified in chapter 8 of the SiFive U5 Coreplex Series Manual:
 *
 *     https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
 *
 * The largest number supported by devices marked as 'sifive,plic-1.0.0', is
 * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged
 * Spec.
 */

#define MAX_DEVICES			1024
#define MAX_CONTEXTS			15872

/*
 * Each interrupt source has a priority register associated with it.
 * We always hardwire it to one in Linux.
 */
#define PRIORITY_BASE			0
#define     PRIORITY_PER_ID		4

/*
 * Each hart context has a vector of interrupt enable bits associated with it.
 * There's one bit for each interrupt source.
 */
#define ENABLE_BASE			0x2000
#define     ENABLE_PER_HART		0x80

/*
 * Each hart context has a set of control registers associated with it.  Right
 * now there's only two: a source priority threshold over which the hart will
 * take an interrupt, and a register to claim interrupts.
 */
#define CONTEXT_BASE			0x200000
#define     CONTEXT_PER_HART		0x1000
#define     CONTEXT_THRESHOLD		0x00
#define     CONTEXT_CLAIM		0x04

static void __iomem *plic_regs;

struct plic_handler {
	bool			present;
	int			ctxid;
};
static DEFINE_PER_CPU(struct plic_handler, plic_handlers);

static inline void __iomem *plic_hart_offset(int ctxid)
{
	return plic_regs + CONTEXT_BASE + ctxid * CONTEXT_PER_HART;
}

static inline u32 __iomem *plic_enable_base(int ctxid)
{
	return plic_regs + ENABLE_BASE + ctxid * ENABLE_PER_HART;
}

/*
 * Protect mask operations on the registers given that we can't assume that
 * atomic memory operations work on them.
 */
static DEFINE_RAW_SPINLOCK(plic_toggle_lock);

static inline void plic_toggle(int ctxid, int hwirq, int enable)
{
	u32 __iomem *reg = plic_enable_base(ctxid) + (hwirq / 32);
	u32 hwirq_mask = 1 << (hwirq % 32);

	raw_spin_lock(&plic_toggle_lock);
	if (enable)
		writel(readl(reg) | hwirq_mask, reg);
	else
		writel(readl(reg) & ~hwirq_mask, reg);
	raw_spin_unlock(&plic_toggle_lock);
}

static inline void plic_irq_toggle(struct irq_data *d, int enable)
{
	int cpu;

	writel(enable, plic_regs + PRIORITY_BASE + d->hwirq * PRIORITY_PER_ID);
	for_each_cpu(cpu, irq_data_get_affinity_mask(d)) {
		struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu);

		if (handler->present)
			plic_toggle(handler->ctxid, d->hwirq, enable);
	}
}

static void plic_irq_enable(struct irq_data *d)
{
	plic_irq_toggle(d, 1);
}

static void plic_irq_disable(struct irq_data *d)
{
	plic_irq_toggle(d, 0);
}

static struct irq_chip plic_chip = {
	.name		= "SiFive PLIC",
	/*
	 * There is no need to mask/unmask PLIC interrupts.  They are "masked"
	 * by reading claim and "unmasked" when writing it back.
	 */
	.irq_enable	= plic_irq_enable,
	.irq_disable	= plic_irq_disable,
};

static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq,
			      irq_hw_number_t hwirq)
{
	irq_set_chip_and_handler(irq, &plic_chip, handle_simple_irq);
	irq_set_chip_data(irq, NULL);
	irq_set_noprobe(irq);
	return 0;
}

static const struct irq_domain_ops plic_irqdomain_ops = {
	.map		= plic_irqdomain_map,
	.xlate		= irq_domain_xlate_onecell,
};

static struct irq_domain *plic_irqdomain;

/*
 * Handling an interrupt is a two-step process: first you claim the interrupt
 * by reading the claim register, then you complete the interrupt by writing
 * that source ID back to the same claim register.  This automatically enables
 * and disables the interrupt, so there's nothing else to do.
 */
static void plic_handle_irq(struct pt_regs *regs)
{
	struct plic_handler *handler = this_cpu_ptr(&plic_handlers);
	void __iomem *claim = plic_hart_offset(handler->ctxid) + CONTEXT_CLAIM;
	irq_hw_number_t hwirq;

	WARN_ON_ONCE(!handler->present);

	csr_clear(sie, SIE_SEIE);
	while ((hwirq = readl(claim))) {
		int irq = irq_find_mapping(plic_irqdomain, hwirq);

		if (unlikely(irq <= 0))
			pr_warn_ratelimited("can't find mapping for hwirq %lu\n",
					hwirq);
		else
			generic_handle_irq(irq);
		writel(hwirq, claim);
	}
	csr_set(sie, SIE_SEIE);
}

/*
 * Walk up the DT tree until we find an active RISC-V core (HART) node and
 * extract the cpuid from it.
 */
static int plic_find_hart_id(struct device_node *node)
{
	for (; node; node = node->parent) {
		if (of_device_is_compatible(node, "riscv"))
			return riscv_of_processor_hartid(node);
	}

	return -1;
}

static int __init plic_init(struct device_node *node,
		struct device_node *parent)
{
	int error = 0, nr_handlers, nr_mapped = 0, i;
	u32 nr_irqs;

	if (plic_regs) {
		pr_warn("PLIC already present.\n");
		return -ENXIO;
	}

	plic_regs = of_iomap(node, 0);
	if (WARN_ON(!plic_regs))
		return -EIO;

	error = -EINVAL;
	of_property_read_u32(node, "riscv,ndev", &nr_irqs);
	if (WARN_ON(!nr_irqs))
		goto out_iounmap;

	nr_handlers = of_irq_count(node);
	if (WARN_ON(!nr_handlers))
		goto out_iounmap;
	if (WARN_ON(nr_handlers < num_possible_cpus()))
		goto out_iounmap;

	error = -ENOMEM;
	plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1,
			&plic_irqdomain_ops, NULL);
	if (WARN_ON(!plic_irqdomain))
		goto out_iounmap;

	for (i = 0; i < nr_handlers; i++) {
		struct of_phandle_args parent;
		struct plic_handler *handler;
		irq_hw_number_t hwirq;
		int cpu, hartid;

		if (of_irq_parse_one(node, i, &parent)) {
			pr_err("failed to parse parent for context %d.\n", i);
			continue;
		}

		/* skip context holes */
		if (parent.args[0] == -1)
			continue;

		hartid = plic_find_hart_id(parent.np);
		if (hartid < 0) {
			pr_warn("failed to parse hart ID for context %d.\n", i);
			continue;
		}

		cpu = riscv_hartid_to_cpuid(hartid);
		handler = per_cpu_ptr(&plic_handlers, cpu);
		handler->present = true;
		handler->ctxid = i;

		/* priority must be > threshold to trigger an interrupt */
		writel(0, plic_hart_offset(i) + CONTEXT_THRESHOLD);
		for (hwirq = 1; hwirq <= nr_irqs; hwirq++)
			plic_toggle(i, hwirq, 0);
		nr_mapped++;
	}

	pr_info("mapped %d interrupts to %d (out of %d) handlers.\n",
		nr_irqs, nr_mapped, nr_handlers);
	set_handle_irq(plic_handle_irq);
	return 0;

out_iounmap:
	iounmap(plic_regs);
	return error;
}

IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init);
IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */