summaryrefslogtreecommitdiffstats
path: root/drivers/md/dm-vdo/indexer/index.c
blob: 35e3b45cdb713c9cb452e4f14ba7c95ceaa37a8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2023 Red Hat
 */


#include "index.h"

#include "logger.h"
#include "memory-alloc.h"

#include "funnel-requestqueue.h"
#include "hash-utils.h"
#include "sparse-cache.h"

static const u64 NO_LAST_SAVE = U64_MAX;

/*
 * When searching for deduplication records, the index first searches the volume index, and then
 * searches the chapter index for the relevant chapter. If the chapter has been fully committed to
 * storage, the chapter pages are loaded into the page cache. If the chapter has not yet been
 * committed (either the open chapter or a recently closed one), the index searches the in-memory
 * representation of the chapter. Finally, if the volume index does not find a record and the index
 * is sparse, the index will search the sparse cache.
 *
 * The index send two kinds of messages to coordinate between zones: chapter close messages for the
 * chapter writer, and sparse cache barrier messages for the sparse cache.
 *
 * The chapter writer is responsible for committing chapters of records to storage. Since zones can
 * get different numbers of records, some zones may fall behind others. Each time a zone fills up
 * its available space in a chapter, it informs the chapter writer that the chapter is complete,
 * and also informs all other zones that it has closed the chapter. Each other zone will then close
 * the chapter immediately, regardless of how full it is, in order to minimize skew between zones.
 * Once every zone has closed the chapter, the chapter writer will commit that chapter to storage.
 *
 * The last zone to close the chapter also removes the oldest chapter from the volume index.
 * Although that chapter is invalid for zones that have moved on, the existence of the open chapter
 * means that those zones will never ask the volume index about it. No zone is allowed to get more
 * than one chapter ahead of any other. If a zone is so far ahead that it tries to close another
 * chapter before the previous one has been closed by all zones, it is forced to wait.
 *
 * The sparse cache relies on having the same set of chapter indexes available to all zones. When a
 * request wants to add a chapter to the sparse cache, it sends a barrier message to each zone
 * during the triage stage that acts as a rendezvous. Once every zone has reached the barrier and
 * paused its operations, the cache membership is changed and each zone is then informed that it
 * can proceed. More details can be found in the sparse cache documentation.
 *
 * If a sparse cache has only one zone, it will not create a triage queue, but it still needs the
 * barrier message to change the sparse cache membership, so the index simulates the message by
 * invoking the handler directly.
 */

struct chapter_writer {
	/* The index to which we belong */
	struct uds_index *index;
	/* The thread to do the writing */
	struct thread *thread;
	/* The lock protecting the following fields */
	struct mutex mutex;
	/* The condition signalled on state changes */
	struct cond_var cond;
	/* Set to true to stop the thread */
	bool stop;
	/* The result from the most recent write */
	int result;
	/* The number of bytes allocated by the chapter writer */
	size_t memory_size;
	/* The number of zones which have submitted a chapter for writing */
	unsigned int zones_to_write;
	/* Open chapter index used by uds_close_open_chapter() */
	struct open_chapter_index *open_chapter_index;
	/* Collated records used by uds_close_open_chapter() */
	struct uds_volume_record *collated_records;
	/* The chapters to write (one per zone) */
	struct open_chapter_zone *chapters[];
};

static bool is_zone_chapter_sparse(const struct index_zone *zone, u64 virtual_chapter)
{
	return uds_is_chapter_sparse(zone->index->volume->geometry,
				     zone->oldest_virtual_chapter,
				     zone->newest_virtual_chapter, virtual_chapter);
}

static int launch_zone_message(struct uds_zone_message message, unsigned int zone,
			       struct uds_index *index)
{
	int result;
	struct uds_request *request;

	result = uds_allocate(1, struct uds_request, __func__, &request);
	if (result != UDS_SUCCESS)
		return result;

	request->index = index;
	request->unbatched = true;
	request->zone_number = zone;
	request->zone_message = message;

	uds_enqueue_request(request, STAGE_MESSAGE);
	return UDS_SUCCESS;
}

static void enqueue_barrier_messages(struct uds_index *index, u64 virtual_chapter)
{
	struct uds_zone_message message = {
		.type = UDS_MESSAGE_SPARSE_CACHE_BARRIER,
		.virtual_chapter = virtual_chapter,
	};
	unsigned int zone;

	for (zone = 0; zone < index->zone_count; zone++) {
		int result = launch_zone_message(message, zone, index);

		ASSERT_LOG_ONLY((result == UDS_SUCCESS), "barrier message allocation");
	}
}

/*
 * Determine whether this request should trigger a sparse cache barrier message to change the
 * membership of the sparse cache. If a change in membership is desired, the function returns the
 * chapter number to add.
 */
static u64 triage_index_request(struct uds_index *index, struct uds_request *request)
{
	u64 virtual_chapter;
	struct index_zone *zone;

	virtual_chapter = uds_lookup_volume_index_name(index->volume_index,
						       &request->record_name);
	if (virtual_chapter == NO_CHAPTER)
		return NO_CHAPTER;

	zone = index->zones[request->zone_number];
	if (!is_zone_chapter_sparse(zone, virtual_chapter))
		return NO_CHAPTER;

	/*
	 * FIXME: Optimize for a common case by remembering the chapter from the most recent
	 * barrier message and skipping this chapter if is it the same.
	 */

	return virtual_chapter;
}

/*
 * Simulate a message to change the sparse cache membership for a single-zone sparse index. This
 * allows us to forgo the complicated locking required by a multi-zone sparse index. Any other kind
 * of index does nothing here.
 */
static int simulate_index_zone_barrier_message(struct index_zone *zone,
					       struct uds_request *request)
{
	u64 sparse_virtual_chapter;

	if ((zone->index->zone_count > 1) ||
	    !uds_is_sparse_index_geometry(zone->index->volume->geometry))
		return UDS_SUCCESS;

	sparse_virtual_chapter = triage_index_request(zone->index, request);
	if (sparse_virtual_chapter == NO_CHAPTER)
		return UDS_SUCCESS;

	return uds_update_sparse_cache(zone, sparse_virtual_chapter);
}

/* This is the request processing function for the triage queue. */
static void triage_request(struct uds_request *request)
{
	struct uds_index *index = request->index;
	u64 sparse_virtual_chapter = triage_index_request(index, request);

	if (sparse_virtual_chapter != NO_CHAPTER)
		enqueue_barrier_messages(index, sparse_virtual_chapter);

	uds_enqueue_request(request, STAGE_INDEX);
}

static int finish_previous_chapter(struct uds_index *index, u64 current_chapter_number)
{
	int result;
	struct chapter_writer *writer = index->chapter_writer;

	mutex_lock(&writer->mutex);
	while (index->newest_virtual_chapter < current_chapter_number)
		uds_wait_cond(&writer->cond, &writer->mutex);
	result = writer->result;
	mutex_unlock(&writer->mutex);

	if (result != UDS_SUCCESS)
		return uds_log_error_strerror(result,
					      "Writing of previous open chapter failed");

	return UDS_SUCCESS;
}

static int swap_open_chapter(struct index_zone *zone)
{
	int result;
	struct open_chapter_zone *temporary_chapter;

	result = finish_previous_chapter(zone->index, zone->newest_virtual_chapter);
	if (result != UDS_SUCCESS)
		return result;

	temporary_chapter = zone->open_chapter;
	zone->open_chapter = zone->writing_chapter;
	zone->writing_chapter = temporary_chapter;
	return UDS_SUCCESS;
}

/*
 * Inform the chapter writer that this zone is done with this chapter. The chapter won't start
 * writing until all zones have closed it.
 */
static unsigned int start_closing_chapter(struct uds_index *index,
					  unsigned int zone_number,
					  struct open_chapter_zone *chapter)
{
	unsigned int finished_zones;
	struct chapter_writer *writer = index->chapter_writer;

	mutex_lock(&writer->mutex);
	finished_zones = ++writer->zones_to_write;
	writer->chapters[zone_number] = chapter;
	uds_broadcast_cond(&writer->cond);
	mutex_unlock(&writer->mutex);

	return finished_zones;
}

static int announce_chapter_closed(struct index_zone *zone, u64 closed_chapter)
{
	int result;
	unsigned int i;
	struct uds_zone_message zone_message = {
		.type = UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED,
		.virtual_chapter = closed_chapter,
	};

	for (i = 0; i < zone->index->zone_count; i++) {
		if (zone->id == i)
			continue;

		result = launch_zone_message(zone_message, i, zone->index);
		if (result != UDS_SUCCESS)
			return result;
	}

	return UDS_SUCCESS;
}

static int open_next_chapter(struct index_zone *zone)
{
	int result;
	u64 closed_chapter;
	u64 expiring;
	unsigned int finished_zones;
	u32 expire_chapters;

	uds_log_debug("closing chapter %llu of zone %u after %u entries (%u short)",
		      (unsigned long long) zone->newest_virtual_chapter, zone->id,
		      zone->open_chapter->size,
		      zone->open_chapter->capacity - zone->open_chapter->size);

	result = swap_open_chapter(zone);
	if (result != UDS_SUCCESS)
		return result;

	closed_chapter = zone->newest_virtual_chapter++;
	uds_set_volume_index_zone_open_chapter(zone->index->volume_index, zone->id,
					       zone->newest_virtual_chapter);
	uds_reset_open_chapter(zone->open_chapter);

	finished_zones = start_closing_chapter(zone->index, zone->id,
					       zone->writing_chapter);
	if ((finished_zones == 1) && (zone->index->zone_count > 1)) {
		result = announce_chapter_closed(zone, closed_chapter);
		if (result != UDS_SUCCESS)
			return result;
	}

	expiring = zone->oldest_virtual_chapter;
	expire_chapters = uds_chapters_to_expire(zone->index->volume->geometry,
						 zone->newest_virtual_chapter);
	zone->oldest_virtual_chapter += expire_chapters;

	if (finished_zones < zone->index->zone_count)
		return UDS_SUCCESS;

	while (expire_chapters-- > 0)
		uds_forget_chapter(zone->index->volume, expiring++);

	return UDS_SUCCESS;
}

static int handle_chapter_closed(struct index_zone *zone, u64 virtual_chapter)
{
	if (zone->newest_virtual_chapter == virtual_chapter)
		return open_next_chapter(zone);

	return UDS_SUCCESS;
}

static int dispatch_index_zone_control_request(struct uds_request *request)
{
	struct uds_zone_message *message = &request->zone_message;
	struct index_zone *zone = request->index->zones[request->zone_number];

	switch (message->type) {
	case UDS_MESSAGE_SPARSE_CACHE_BARRIER:
		return uds_update_sparse_cache(zone, message->virtual_chapter);

	case UDS_MESSAGE_ANNOUNCE_CHAPTER_CLOSED:
		return handle_chapter_closed(zone, message->virtual_chapter);

	default:
		uds_log_error("invalid message type: %d", message->type);
		return UDS_INVALID_ARGUMENT;
	}
}

static void set_request_location(struct uds_request *request,
				 enum uds_index_region new_location)
{
	request->location = new_location;
	request->found = ((new_location == UDS_LOCATION_IN_OPEN_CHAPTER) ||
			  (new_location == UDS_LOCATION_IN_DENSE) ||
			  (new_location == UDS_LOCATION_IN_SPARSE));
}

static void set_chapter_location(struct uds_request *request,
				 const struct index_zone *zone, u64 virtual_chapter)
{
	request->found = true;
	if (virtual_chapter == zone->newest_virtual_chapter)
		request->location = UDS_LOCATION_IN_OPEN_CHAPTER;
	else if (is_zone_chapter_sparse(zone, virtual_chapter))
		request->location = UDS_LOCATION_IN_SPARSE;
	else
		request->location = UDS_LOCATION_IN_DENSE;
}

static int search_sparse_cache_in_zone(struct index_zone *zone, struct uds_request *request,
				       u64 virtual_chapter, bool *found)
{
	int result;
	struct volume *volume;
	u16 record_page_number;
	u32 chapter;

	result = uds_search_sparse_cache(zone, &request->record_name, &virtual_chapter,
					 &record_page_number);
	if ((result != UDS_SUCCESS) || (virtual_chapter == NO_CHAPTER))
		return result;

	request->virtual_chapter = virtual_chapter;
	volume = zone->index->volume;
	chapter = uds_map_to_physical_chapter(volume->geometry, virtual_chapter);
	return uds_search_cached_record_page(volume, request, chapter,
					     record_page_number, found);
}

static int get_record_from_zone(struct index_zone *zone, struct uds_request *request,
				bool *found)
{
	struct volume *volume;

	if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) {
		*found = true;
		return UDS_SUCCESS;
	} else if (request->location == UDS_LOCATION_UNAVAILABLE) {
		*found = false;
		return UDS_SUCCESS;
	}

	if (request->virtual_chapter == zone->newest_virtual_chapter) {
		uds_search_open_chapter(zone->open_chapter, &request->record_name,
					&request->old_metadata, found);
		return UDS_SUCCESS;
	}

	if ((zone->newest_virtual_chapter > 0) &&
	    (request->virtual_chapter == (zone->newest_virtual_chapter - 1)) &&
	    (zone->writing_chapter->size > 0)) {
		uds_search_open_chapter(zone->writing_chapter, &request->record_name,
					&request->old_metadata, found);
		return UDS_SUCCESS;
	}

	volume = zone->index->volume;
	if (is_zone_chapter_sparse(zone, request->virtual_chapter) &&
	    uds_sparse_cache_contains(volume->sparse_cache, request->virtual_chapter,
				      request->zone_number))
		return search_sparse_cache_in_zone(zone, request,
						   request->virtual_chapter, found);

	return uds_search_volume_page_cache(volume, request, found);
}

static int put_record_in_zone(struct index_zone *zone, struct uds_request *request,
			      const struct uds_record_data *metadata)
{
	unsigned int remaining;

	remaining = uds_put_open_chapter(zone->open_chapter, &request->record_name,
					 metadata);
	if (remaining == 0)
		return open_next_chapter(zone);

	return UDS_SUCCESS;
}

static int search_index_zone(struct index_zone *zone, struct uds_request *request)
{
	int result;
	struct volume_index_record record;
	bool overflow_record, found = false;
	struct uds_record_data *metadata;
	u64 chapter;

	result = uds_get_volume_index_record(zone->index->volume_index,
					     &request->record_name, &record);
	if (result != UDS_SUCCESS)
		return result;

	if (record.is_found) {
		if (request->requeued && request->virtual_chapter != record.virtual_chapter)
			set_request_location(request, UDS_LOCATION_UNKNOWN);

		request->virtual_chapter = record.virtual_chapter;
		result = get_record_from_zone(zone, request, &found);
		if (result != UDS_SUCCESS)
			return result;
	}

	if (found)
		set_chapter_location(request, zone, record.virtual_chapter);

	/*
	 * If a record has overflowed a chapter index in more than one chapter (or overflowed in
	 * one chapter and collided with an existing record), it will exist as a collision record
	 * in the volume index, but we won't find it in the volume. This case needs special
	 * handling.
	 */
	overflow_record = (record.is_found && record.is_collision && !found);
	chapter = zone->newest_virtual_chapter;
	if (found || overflow_record) {
		if ((request->type == UDS_QUERY_NO_UPDATE) ||
		    ((request->type == UDS_QUERY) && overflow_record)) {
			/* There is nothing left to do. */
			return UDS_SUCCESS;
		}

		if (record.virtual_chapter != chapter) {
			/*
			 * Update the volume index to reference the new chapter for the block. If
			 * the record had been deleted or dropped from the chapter index, it will
			 * be back.
			 */
			result = uds_set_volume_index_record_chapter(&record, chapter);
		} else if (request->type != UDS_UPDATE) {
			/* The record is already in the open chapter. */
			return UDS_SUCCESS;
		}
	} else {
		/*
		 * The record wasn't in the volume index, so check whether the
		 * name is in a cached sparse chapter. If we found the name on
		 * a previous search, use that result instead.
		 */
		if (request->location == UDS_LOCATION_RECORD_PAGE_LOOKUP) {
			found = true;
		} else if (request->location == UDS_LOCATION_UNAVAILABLE) {
			found = false;
		} else if (uds_is_sparse_index_geometry(zone->index->volume->geometry) &&
			   !uds_is_volume_index_sample(zone->index->volume_index,
						       &request->record_name)) {
			result = search_sparse_cache_in_zone(zone, request, NO_CHAPTER,
							     &found);
			if (result != UDS_SUCCESS)
				return result;
		}

		if (found)
			set_request_location(request, UDS_LOCATION_IN_SPARSE);

		if ((request->type == UDS_QUERY_NO_UPDATE) ||
		    ((request->type == UDS_QUERY) && !found)) {
			/* There is nothing left to do. */
			return UDS_SUCCESS;
		}

		/*
		 * Add a new entry to the volume index referencing the open chapter. This needs to
		 * be done both for new records, and for records from cached sparse chapters.
		 */
		result = uds_put_volume_index_record(&record, chapter);
	}

	if (result == UDS_OVERFLOW) {
		/*
		 * The volume index encountered a delta list overflow. The condition was already
		 * logged. We will go on without adding the record to the open chapter.
		 */
		return UDS_SUCCESS;
	}

	if (result != UDS_SUCCESS)
		return result;

	if (!found || (request->type == UDS_UPDATE)) {
		/* This is a new record or we're updating an existing record. */
		metadata = &request->new_metadata;
	} else {
		/* Move the existing record to the open chapter. */
		metadata = &request->old_metadata;
	}

	return put_record_in_zone(zone, request, metadata);
}

static int remove_from_index_zone(struct index_zone *zone, struct uds_request *request)
{
	int result;
	struct volume_index_record record;

	result = uds_get_volume_index_record(zone->index->volume_index,
					     &request->record_name, &record);
	if (result != UDS_SUCCESS)
		return result;

	if (!record.is_found)
		return UDS_SUCCESS;

	/* If the request was requeued, check whether the saved state is still valid. */

	if (record.is_collision) {
		set_chapter_location(request, zone, record.virtual_chapter);
	} else {
		/* Non-collision records are hints, so resolve the name in the chapter. */
		bool found;

		if (request->requeued && request->virtual_chapter != record.virtual_chapter)
			set_request_location(request, UDS_LOCATION_UNKNOWN);

		request->virtual_chapter = record.virtual_chapter;
		result = get_record_from_zone(zone, request, &found);
		if (result != UDS_SUCCESS)
			return result;

		if (!found) {
			/* There is no record to remove. */
			return UDS_SUCCESS;
		}
	}

	set_chapter_location(request, zone, record.virtual_chapter);

	/*
	 * Delete the volume index entry for the named record only. Note that a later search might
	 * later return stale advice if there is a colliding name in the same chapter, but it's a
	 * very rare case (1 in 2^21).
	 */
	result = uds_remove_volume_index_record(&record);
	if (result != UDS_SUCCESS)
		return result;

	/*
	 * If the record is in the open chapter, we must remove it or mark it deleted to avoid
	 * trouble if the record is added again later.
	 */
	if (request->location == UDS_LOCATION_IN_OPEN_CHAPTER)
		uds_remove_from_open_chapter(zone->open_chapter, &request->record_name);

	return UDS_SUCCESS;
}

static int dispatch_index_request(struct uds_index *index, struct uds_request *request)
{
	int result;
	struct index_zone *zone = index->zones[request->zone_number];

	if (!request->requeued) {
		result = simulate_index_zone_barrier_message(zone, request);
		if (result != UDS_SUCCESS)
			return result;
	}

	switch (request->type) {
	case UDS_POST:
	case UDS_UPDATE:
	case UDS_QUERY:
	case UDS_QUERY_NO_UPDATE:
		result = search_index_zone(zone, request);
		break;

	case UDS_DELETE:
		result = remove_from_index_zone(zone, request);
		break;

	default:
		result = uds_log_warning_strerror(UDS_INVALID_ARGUMENT,
						  "invalid request type: %d",
						  request->type);
		break;
	}

	return result;
}

/* This is the request processing function invoked by each zone's thread. */
static void execute_zone_request(struct uds_request *request)
{
	int result;
	struct uds_index *index = request->index;

	if (request->zone_message.type != UDS_MESSAGE_NONE) {
		result = dispatch_index_zone_control_request(request);
		if (result != UDS_SUCCESS) {
			uds_log_error_strerror(result, "error executing message: %d",
					       request->zone_message.type);
		}

		/* Once the message is processed it can be freed. */
		uds_free(uds_forget(request));
		return;
	}

	index->need_to_save = true;
	if (request->requeued && (request->status != UDS_SUCCESS)) {
		set_request_location(request, UDS_LOCATION_UNAVAILABLE);
		index->callback(request);
		return;
	}

	result = dispatch_index_request(index, request);
	if (result == UDS_QUEUED) {
		/* The request has been requeued so don't let it complete. */
		return;
	}

	if (!request->found)
		set_request_location(request, UDS_LOCATION_UNAVAILABLE);

	request->status = result;
	index->callback(request);
}

static int initialize_index_queues(struct uds_index *index,
				   const struct index_geometry *geometry)
{
	int result;
	unsigned int i;

	for (i = 0; i < index->zone_count; i++) {
		result = uds_make_request_queue("indexW", &execute_zone_request,
						&index->zone_queues[i]);
		if (result != UDS_SUCCESS)
			return result;
	}

	/* The triage queue is only needed for sparse multi-zone indexes. */
	if ((index->zone_count > 1) && uds_is_sparse_index_geometry(geometry)) {
		result = uds_make_request_queue("triageW", &triage_request,
						&index->triage_queue);
		if (result != UDS_SUCCESS)
			return result;
	}

	return UDS_SUCCESS;
}

/* This is the driver function for the chapter writer thread. */
static void close_chapters(void *arg)
{
	int result;
	struct chapter_writer *writer = arg;
	struct uds_index *index = writer->index;

	uds_log_debug("chapter writer starting");
	mutex_lock(&writer->mutex);
	for (;;) {
		while (writer->zones_to_write < index->zone_count) {
			if (writer->stop && (writer->zones_to_write == 0)) {
				/*
				 * We've been told to stop, and all of the zones are in the same
				 * open chapter, so we can exit now.
				 */
				mutex_unlock(&writer->mutex);
				uds_log_debug("chapter writer stopping");
				return;
			}
			uds_wait_cond(&writer->cond, &writer->mutex);
		}

		/*
		 * Release the lock while closing a chapter. We probably don't need to do this, but
		 * it seems safer in principle. It's OK to access the chapter and chapter_number
		 * fields without the lock since those aren't allowed to change until we're done.
		 */
		mutex_unlock(&writer->mutex);

		if (index->has_saved_open_chapter) {
			/*
			 * Remove the saved open chapter the first time we close an open chapter
			 * after loading from a clean shutdown, or after doing a clean save. The
			 * lack of the saved open chapter will indicate that a recovery is
			 * necessary.
			 */
			index->has_saved_open_chapter = false;
			result = uds_discard_open_chapter(index->layout);
			if (result == UDS_SUCCESS)
				uds_log_debug("Discarding saved open chapter");
		}

		result = uds_close_open_chapter(writer->chapters, index->zone_count,
						index->volume,
						writer->open_chapter_index,
						writer->collated_records,
						index->newest_virtual_chapter);

		mutex_lock(&writer->mutex);
		index->newest_virtual_chapter++;
		index->oldest_virtual_chapter +=
			uds_chapters_to_expire(index->volume->geometry,
					       index->newest_virtual_chapter);
		writer->result = result;
		writer->zones_to_write = 0;
		uds_broadcast_cond(&writer->cond);
	}
}

static void stop_chapter_writer(struct chapter_writer *writer)
{
	struct thread *writer_thread = NULL;

	mutex_lock(&writer->mutex);
	if (writer->thread != NULL) {
		writer_thread = writer->thread;
		writer->thread = NULL;
		writer->stop = true;
		uds_broadcast_cond(&writer->cond);
	}
	mutex_unlock(&writer->mutex);

	if (writer_thread != NULL)
		vdo_join_threads(writer_thread);
}

static void free_chapter_writer(struct chapter_writer *writer)
{
	if (writer == NULL)
		return;

	stop_chapter_writer(writer);
	uds_free_open_chapter_index(writer->open_chapter_index);
	uds_free(writer->collated_records);
	uds_free(writer);
}

static int make_chapter_writer(struct uds_index *index,
			       struct chapter_writer **writer_ptr)
{
	int result;
	struct chapter_writer *writer;
	size_t collated_records_size =
		(sizeof(struct uds_volume_record) * index->volume->geometry->records_per_chapter);

	result = uds_allocate_extended(struct chapter_writer, index->zone_count,
				       struct open_chapter_zone *, "Chapter Writer",
				       &writer);
	if (result != UDS_SUCCESS)
		return result;

	writer->index = index;
	mutex_init(&writer->mutex);
	uds_init_cond(&writer->cond);

	result = uds_allocate_cache_aligned(collated_records_size, "collated records",
					    &writer->collated_records);
	if (result != UDS_SUCCESS) {
		free_chapter_writer(writer);
		return result;
	}

	result = uds_make_open_chapter_index(&writer->open_chapter_index,
					     index->volume->geometry,
					     index->volume->nonce);
	if (result != UDS_SUCCESS) {
		free_chapter_writer(writer);
		return result;
	}

	writer->memory_size = (sizeof(struct chapter_writer) +
			       index->zone_count * sizeof(struct open_chapter_zone *) +
			       collated_records_size +
			       writer->open_chapter_index->memory_size);

	result = vdo_create_thread(close_chapters, writer, "writer", &writer->thread);
	if (result != UDS_SUCCESS) {
		free_chapter_writer(writer);
		return result;
	}

	*writer_ptr = writer;
	return UDS_SUCCESS;
}

static int load_index(struct uds_index *index)
{
	int result;
	u64 last_save_chapter;

	result = uds_load_index_state(index->layout, index);
	if (result != UDS_SUCCESS)
		return UDS_INDEX_NOT_SAVED_CLEANLY;

	last_save_chapter = ((index->last_save != NO_LAST_SAVE) ? index->last_save : 0);

	uds_log_info("loaded index from chapter %llu through chapter %llu",
		     (unsigned long long) index->oldest_virtual_chapter,
		     (unsigned long long) last_save_chapter);

	return UDS_SUCCESS;
}

static int rebuild_index_page_map(struct uds_index *index, u64 vcn)
{
	int result;
	struct delta_index_page *chapter_index_page;
	struct index_geometry *geometry = index->volume->geometry;
	u32 chapter = uds_map_to_physical_chapter(geometry, vcn);
	u32 expected_list_number = 0;
	u32 index_page_number;
	u32 lowest_delta_list;
	u32 highest_delta_list;

	for (index_page_number = 0;
	     index_page_number < geometry->index_pages_per_chapter;
	     index_page_number++) {
		result = uds_get_volume_index_page(index->volume, chapter,
						   index_page_number,
						   &chapter_index_page);
		if (result != UDS_SUCCESS) {
			return uds_log_error_strerror(result,
						      "failed to read index page %u in chapter %u",
						      index_page_number, chapter);
		}

		lowest_delta_list = chapter_index_page->lowest_list_number;
		highest_delta_list = chapter_index_page->highest_list_number;
		if (lowest_delta_list != expected_list_number) {
			return uds_log_error_strerror(UDS_CORRUPT_DATA,
						      "chapter %u index page %u is corrupt",
						      chapter, index_page_number);
		}

		uds_update_index_page_map(index->volume->index_page_map, vcn, chapter,
					  index_page_number, highest_delta_list);
		expected_list_number = highest_delta_list + 1;
	}

	return UDS_SUCCESS;
}

static int replay_record(struct uds_index *index, const struct uds_record_name *name,
			 u64 virtual_chapter, bool will_be_sparse_chapter)
{
	int result;
	struct volume_index_record record;
	bool update_record;

	if (will_be_sparse_chapter &&
	    !uds_is_volume_index_sample(index->volume_index, name)) {
		/*
		 * This entry will be in a sparse chapter after the rebuild completes, and it is
		 * not a sample, so just skip over it.
		 */
		return UDS_SUCCESS;
	}

	result = uds_get_volume_index_record(index->volume_index, name, &record);
	if (result != UDS_SUCCESS)
		return result;

	if (record.is_found) {
		if (record.is_collision) {
			if (record.virtual_chapter == virtual_chapter) {
				/* The record is already correct. */
				return UDS_SUCCESS;
			}

			update_record = true;
		} else if (record.virtual_chapter == virtual_chapter) {
			/*
			 * There is a volume index entry pointing to the current chapter, but we
			 * don't know if it is for the same name as the one we are currently
			 * working on or not. For now, we're just going to assume that it isn't.
			 * This will create one extra collision record if there was a deleted
			 * record in the current chapter.
			 */
			update_record = false;
		} else {
			/*
			 * If we're rebuilding, we don't normally want to go to disk to see if the
			 * record exists, since we will likely have just read the record from disk
			 * (i.e. we know it's there). The exception to this is when we find an
			 * entry in the volume index that has a different chapter. In this case, we
			 * need to search that chapter to determine if the volume index entry was
			 * for the same record or a different one.
			 */
			result = uds_search_volume_page_cache_for_rebuild(index->volume,
									  name,
									  record.virtual_chapter,
									  &update_record);
			if (result != UDS_SUCCESS)
				return result;
			}
	} else {
		update_record = false;
	}

	if (update_record) {
		/*
		 * Update the volume index to reference the new chapter for the block. If the
		 * record had been deleted or dropped from the chapter index, it will be back.
		 */
		result = uds_set_volume_index_record_chapter(&record, virtual_chapter);
	} else {
		/*
		 * Add a new entry to the volume index referencing the open chapter. This should be
		 * done regardless of whether we are a brand new record or a sparse record, i.e.
		 * one that doesn't exist in the index but does on disk, since for a sparse record,
		 * we would want to un-sparsify if it did exist.
		 */
		result = uds_put_volume_index_record(&record, virtual_chapter);
	}

	if ((result == UDS_DUPLICATE_NAME) || (result == UDS_OVERFLOW)) {
		/* The rebuilt index will lose these records. */
		return UDS_SUCCESS;
	}

	return result;
}

static bool check_for_suspend(struct uds_index *index)
{
	bool closing;

	if (index->load_context == NULL)
		return false;

	mutex_lock(&index->load_context->mutex);
	if (index->load_context->status != INDEX_SUSPENDING) {
		mutex_unlock(&index->load_context->mutex);
		return false;
	}

	/* Notify that we are suspended and wait for the resume. */
	index->load_context->status = INDEX_SUSPENDED;
	uds_broadcast_cond(&index->load_context->cond);

	while ((index->load_context->status != INDEX_OPENING) &&
	       (index->load_context->status != INDEX_FREEING))
		uds_wait_cond(&index->load_context->cond, &index->load_context->mutex);

	closing = (index->load_context->status == INDEX_FREEING);
	mutex_unlock(&index->load_context->mutex);
	return closing;
}

static int replay_chapter(struct uds_index *index, u64 virtual, bool sparse)
{
	int result;
	u32 i;
	u32 j;
	const struct index_geometry *geometry;
	u32 physical_chapter;

	if (check_for_suspend(index)) {
		uds_log_info("Replay interrupted by index shutdown at chapter %llu",
			     (unsigned long long) virtual);
		return -EBUSY;
	}

	geometry = index->volume->geometry;
	physical_chapter = uds_map_to_physical_chapter(geometry, virtual);
	uds_prefetch_volume_chapter(index->volume, physical_chapter);
	uds_set_volume_index_open_chapter(index->volume_index, virtual);

	result = rebuild_index_page_map(index, virtual);
	if (result != UDS_SUCCESS) {
		return uds_log_error_strerror(result,
					      "could not rebuild index page map for chapter %u",
					      physical_chapter);
	}

	for (i = 0; i < geometry->record_pages_per_chapter; i++) {
		u8 *record_page;
		u32 record_page_number;

		record_page_number = geometry->index_pages_per_chapter + i;
		result = uds_get_volume_record_page(index->volume, physical_chapter,
						    record_page_number, &record_page);
		if (result != UDS_SUCCESS) {
			return uds_log_error_strerror(result, "could not get page %d",
						      record_page_number);
		}

		for (j = 0; j < geometry->records_per_page; j++) {
			const u8 *name_bytes;
			struct uds_record_name name;

			name_bytes = record_page + (j * BYTES_PER_RECORD);
			memcpy(&name.name, name_bytes, UDS_RECORD_NAME_SIZE);
			result = replay_record(index, &name, virtual, sparse);
			if (result != UDS_SUCCESS)
				return result;
		}
	}

	return UDS_SUCCESS;
}

static int replay_volume(struct uds_index *index)
{
	int result;
	u64 old_map_update;
	u64 new_map_update;
	u64 virtual;
	u64 from_virtual = index->oldest_virtual_chapter;
	u64 upto_virtual = index->newest_virtual_chapter;
	bool will_be_sparse;

	uds_log_info("Replaying volume from chapter %llu through chapter %llu",
		     (unsigned long long) from_virtual,
		     (unsigned long long) upto_virtual);

	/*
	 * The index failed to load, so the volume index is empty. Add records to the volume index
	 * in order, skipping non-hooks in chapters which will be sparse to save time.
	 *
	 * Go through each record page of each chapter and add the records back to the volume
	 * index. This should not cause anything to be written to either the open chapter or the
	 * on-disk volume. Also skip the on-disk chapter corresponding to upto_virtual, as this
	 * would have already been purged from the volume index when the chapter was opened.
	 *
	 * Also, go through each index page for each chapter and rebuild the index page map.
	 */
	old_map_update = index->volume->index_page_map->last_update;
	for (virtual = from_virtual; virtual < upto_virtual; virtual++) {
		will_be_sparse = uds_is_chapter_sparse(index->volume->geometry,
						       from_virtual, upto_virtual,
						       virtual);
		result = replay_chapter(index, virtual, will_be_sparse);
		if (result != UDS_SUCCESS)
			return result;
	}

	/* Also reap the chapter being replaced by the open chapter. */
	uds_set_volume_index_open_chapter(index->volume_index, upto_virtual);

	new_map_update = index->volume->index_page_map->last_update;
	if (new_map_update != old_map_update) {
		uds_log_info("replay changed index page map update from %llu to %llu",
			     (unsigned long long) old_map_update,
			     (unsigned long long) new_map_update);
	}

	return UDS_SUCCESS;
}

static int rebuild_index(struct uds_index *index)
{
	int result;
	u64 lowest;
	u64 highest;
	bool is_empty = false;
	u32 chapters_per_volume = index->volume->geometry->chapters_per_volume;

	index->volume->lookup_mode = LOOKUP_FOR_REBUILD;
	result = uds_find_volume_chapter_boundaries(index->volume, &lowest, &highest,
						    &is_empty);
	if (result != UDS_SUCCESS) {
		return uds_log_fatal_strerror(result,
					      "cannot rebuild index: unknown volume chapter boundaries");
	}

	if (is_empty) {
		index->newest_virtual_chapter = 0;
		index->oldest_virtual_chapter = 0;
		index->volume->lookup_mode = LOOKUP_NORMAL;
		return UDS_SUCCESS;
	}

	index->newest_virtual_chapter = highest + 1;
	index->oldest_virtual_chapter = lowest;
	if (index->newest_virtual_chapter ==
	    (index->oldest_virtual_chapter + chapters_per_volume)) {
		/* Skip the chapter shadowed by the open chapter. */
		index->oldest_virtual_chapter++;
	}

	result = replay_volume(index);
	if (result != UDS_SUCCESS)
		return result;

	index->volume->lookup_mode = LOOKUP_NORMAL;
	return UDS_SUCCESS;
}

static void free_index_zone(struct index_zone *zone)
{
	if (zone == NULL)
		return;

	uds_free_open_chapter(zone->open_chapter);
	uds_free_open_chapter(zone->writing_chapter);
	uds_free(zone);
}

static int make_index_zone(struct uds_index *index, unsigned int zone_number)
{
	int result;
	struct index_zone *zone;

	result = uds_allocate(1, struct index_zone, "index zone", &zone);
	if (result != UDS_SUCCESS)
		return result;

	result = uds_make_open_chapter(index->volume->geometry, index->zone_count,
				       &zone->open_chapter);
	if (result != UDS_SUCCESS) {
		free_index_zone(zone);
		return result;
	}

	result = uds_make_open_chapter(index->volume->geometry, index->zone_count,
				       &zone->writing_chapter);
	if (result != UDS_SUCCESS) {
		free_index_zone(zone);
		return result;
	}

	zone->index = index;
	zone->id = zone_number;
	index->zones[zone_number] = zone;

	return UDS_SUCCESS;
}

int uds_make_index(struct uds_configuration *config, enum uds_open_index_type open_type,
		   struct index_load_context *load_context, index_callback_fn callback,
		   struct uds_index **new_index)
{
	int result;
	bool loaded = false;
	bool new = (open_type == UDS_CREATE);
	struct uds_index *index = NULL;
	struct index_zone *zone;
	u64 nonce;
	unsigned int z;

	result = uds_allocate_extended(struct uds_index, config->zone_count,
				       struct uds_request_queue *, "index", &index);
	if (result != UDS_SUCCESS)
		return result;

	index->zone_count = config->zone_count;

	result = uds_make_index_layout(config, new, &index->layout);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return result;
	}

	result = uds_allocate(index->zone_count, struct index_zone *, "zones",
			      &index->zones);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return result;
	}

	result = uds_make_volume(config, index->layout, &index->volume);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return result;
	}

	index->volume->lookup_mode = LOOKUP_NORMAL;
	for (z = 0; z < index->zone_count; z++) {
		result = make_index_zone(index, z);
		if (result != UDS_SUCCESS) {
			uds_free_index(index);
			return uds_log_error_strerror(result,
						      "Could not create index zone");
		}
	}

	nonce = uds_get_volume_nonce(index->layout);
	result = uds_make_volume_index(config, nonce, &index->volume_index);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return uds_log_error_strerror(result, "could not make volume index");
	}

	index->load_context = load_context;
	index->callback = callback;

	result = initialize_index_queues(index, config->geometry);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return result;
	}

	result = make_chapter_writer(index, &index->chapter_writer);
	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return result;
	}

	if (!new) {
		result = load_index(index);
		switch (result) {
		case UDS_SUCCESS:
			loaded = true;
			break;
		case -ENOMEM:
			/* We should not try a rebuild for this error. */
			uds_log_error_strerror(result, "index could not be loaded");
			break;
		default:
			uds_log_error_strerror(result, "index could not be loaded");
			if (open_type == UDS_LOAD) {
				result = rebuild_index(index);
				if (result != UDS_SUCCESS) {
					uds_log_error_strerror(result,
							       "index could not be rebuilt");
				}
			}
			break;
		}
	}

	if (result != UDS_SUCCESS) {
		uds_free_index(index);
		return uds_log_error_strerror(result, "fatal error in %s()", __func__);
	}

	for (z = 0; z < index->zone_count; z++) {
		zone = index->zones[z];
		zone->oldest_virtual_chapter = index->oldest_virtual_chapter;
		zone->newest_virtual_chapter = index->newest_virtual_chapter;
	}

	if (index->load_context != NULL) {
		mutex_lock(&index->load_context->mutex);
		index->load_context->status = INDEX_READY;
		/*
		 * If we get here, suspend is meaningless, but notify any thread trying to suspend
		 * us so it doesn't hang.
		 */
		uds_broadcast_cond(&index->load_context->cond);
		mutex_unlock(&index->load_context->mutex);
	}

	index->has_saved_open_chapter = loaded;
	index->need_to_save = !loaded;
	*new_index = index;
	return UDS_SUCCESS;
}

void uds_free_index(struct uds_index *index)
{
	unsigned int i;

	if (index == NULL)
		return;

	uds_request_queue_finish(index->triage_queue);
	for (i = 0; i < index->zone_count; i++)
		uds_request_queue_finish(index->zone_queues[i]);

	free_chapter_writer(index->chapter_writer);

	uds_free_volume_index(index->volume_index);
	if (index->zones != NULL) {
		for (i = 0; i < index->zone_count; i++)
			free_index_zone(index->zones[i]);
		uds_free(index->zones);
	}

	uds_free_volume(index->volume);
	uds_free_index_layout(uds_forget(index->layout));
	uds_free(index);
}

/* Wait for the chapter writer to complete any outstanding writes. */
void uds_wait_for_idle_index(struct uds_index *index)
{
	struct chapter_writer *writer = index->chapter_writer;

	mutex_lock(&writer->mutex);
	while (writer->zones_to_write > 0)
		uds_wait_cond(&writer->cond, &writer->mutex);
	mutex_unlock(&writer->mutex);
}

/* This function assumes that all requests have been drained. */
int uds_save_index(struct uds_index *index)
{
	int result;

	if (!index->need_to_save)
		return UDS_SUCCESS;

	uds_wait_for_idle_index(index);
	index->prev_save = index->last_save;
	index->last_save = ((index->newest_virtual_chapter == 0) ?
			    NO_LAST_SAVE : index->newest_virtual_chapter - 1);
	uds_log_info("beginning save (vcn %llu)", (unsigned long long) index->last_save);

	result = uds_save_index_state(index->layout, index);
	if (result != UDS_SUCCESS) {
		uds_log_info("save index failed");
		index->last_save = index->prev_save;
	} else {
		index->has_saved_open_chapter = true;
		index->need_to_save = false;
		uds_log_info("finished save (vcn %llu)",
			     (unsigned long long) index->last_save);
	}

	return result;
}

int uds_replace_index_storage(struct uds_index *index, struct block_device *bdev)
{
	return uds_replace_volume_storage(index->volume, index->layout, bdev);
}

/* Accessing statistics should be safe from any thread. */
void uds_get_index_stats(struct uds_index *index, struct uds_index_stats *counters)
{
	struct volume_index_stats stats;

	uds_get_volume_index_stats(index->volume_index, &stats);
	counters->entries_indexed = stats.record_count;
	counters->collisions = stats.collision_count;
	counters->entries_discarded = stats.discard_count;

	counters->memory_used = (index->volume_index->memory_size +
				 index->volume->cache_size +
				 index->chapter_writer->memory_size);
}

void uds_enqueue_request(struct uds_request *request, enum request_stage stage)
{
	struct uds_index *index = request->index;
	struct uds_request_queue *queue;

	switch (stage) {
	case STAGE_TRIAGE:
		if (index->triage_queue != NULL) {
			queue = index->triage_queue;
			break;
		}

		fallthrough;

	case STAGE_INDEX:
		request->zone_number =
			uds_get_volume_index_zone(index->volume_index, &request->record_name);
		fallthrough;

	case STAGE_MESSAGE:
		queue = index->zone_queues[request->zone_number];
		break;

	default:
		ASSERT_LOG_ONLY(false, "invalid index stage: %d", stage);
		return;
	}

	uds_request_queue_enqueue(queue, request);
}