1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2020 Hannes Reinecke, SUSE Linux
*/
#include <linux/module.h>
#include <linux/crc32.h>
#include <linux/base64.h>
#include <linux/prandom.h>
#include <linux/scatterlist.h>
#include <linux/unaligned.h>
#include <crypto/hash.h>
#include <crypto/dh.h>
#include <crypto/hkdf.h>
#include <linux/nvme.h>
#include <linux/nvme-auth.h>
#define HKDF_MAX_HASHLEN 64
static u32 nvme_dhchap_seqnum;
static DEFINE_MUTEX(nvme_dhchap_mutex);
u32 nvme_auth_get_seqnum(void)
{
u32 seqnum;
mutex_lock(&nvme_dhchap_mutex);
if (!nvme_dhchap_seqnum)
nvme_dhchap_seqnum = get_random_u32();
else {
nvme_dhchap_seqnum++;
if (!nvme_dhchap_seqnum)
nvme_dhchap_seqnum++;
}
seqnum = nvme_dhchap_seqnum;
mutex_unlock(&nvme_dhchap_mutex);
return seqnum;
}
EXPORT_SYMBOL_GPL(nvme_auth_get_seqnum);
static struct nvme_auth_dhgroup_map {
const char name[16];
const char kpp[16];
} dhgroup_map[] = {
[NVME_AUTH_DHGROUP_NULL] = {
.name = "null", .kpp = "null" },
[NVME_AUTH_DHGROUP_2048] = {
.name = "ffdhe2048", .kpp = "ffdhe2048(dh)" },
[NVME_AUTH_DHGROUP_3072] = {
.name = "ffdhe3072", .kpp = "ffdhe3072(dh)" },
[NVME_AUTH_DHGROUP_4096] = {
.name = "ffdhe4096", .kpp = "ffdhe4096(dh)" },
[NVME_AUTH_DHGROUP_6144] = {
.name = "ffdhe6144", .kpp = "ffdhe6144(dh)" },
[NVME_AUTH_DHGROUP_8192] = {
.name = "ffdhe8192", .kpp = "ffdhe8192(dh)" },
};
const char *nvme_auth_dhgroup_name(u8 dhgroup_id)
{
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
return NULL;
return dhgroup_map[dhgroup_id].name;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_name);
const char *nvme_auth_dhgroup_kpp(u8 dhgroup_id)
{
if (dhgroup_id >= ARRAY_SIZE(dhgroup_map))
return NULL;
return dhgroup_map[dhgroup_id].kpp;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_kpp);
u8 nvme_auth_dhgroup_id(const char *dhgroup_name)
{
int i;
if (!dhgroup_name || !strlen(dhgroup_name))
return NVME_AUTH_DHGROUP_INVALID;
for (i = 0; i < ARRAY_SIZE(dhgroup_map); i++) {
if (!strlen(dhgroup_map[i].name))
continue;
if (!strncmp(dhgroup_map[i].name, dhgroup_name,
strlen(dhgroup_map[i].name)))
return i;
}
return NVME_AUTH_DHGROUP_INVALID;
}
EXPORT_SYMBOL_GPL(nvme_auth_dhgroup_id);
static struct nvme_dhchap_hash_map {
int len;
const char hmac[15];
const char digest[8];
} hash_map[] = {
[NVME_AUTH_HASH_SHA256] = {
.len = 32,
.hmac = "hmac(sha256)",
.digest = "sha256",
},
[NVME_AUTH_HASH_SHA384] = {
.len = 48,
.hmac = "hmac(sha384)",
.digest = "sha384",
},
[NVME_AUTH_HASH_SHA512] = {
.len = 64,
.hmac = "hmac(sha512)",
.digest = "sha512",
},
};
const char *nvme_auth_hmac_name(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return NULL;
return hash_map[hmac_id].hmac;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_name);
const char *nvme_auth_digest_name(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return NULL;
return hash_map[hmac_id].digest;
}
EXPORT_SYMBOL_GPL(nvme_auth_digest_name);
u8 nvme_auth_hmac_id(const char *hmac_name)
{
int i;
if (!hmac_name || !strlen(hmac_name))
return NVME_AUTH_HASH_INVALID;
for (i = 0; i < ARRAY_SIZE(hash_map); i++) {
if (!strlen(hash_map[i].hmac))
continue;
if (!strncmp(hash_map[i].hmac, hmac_name,
strlen(hash_map[i].hmac)))
return i;
}
return NVME_AUTH_HASH_INVALID;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_id);
size_t nvme_auth_hmac_hash_len(u8 hmac_id)
{
if (hmac_id >= ARRAY_SIZE(hash_map))
return 0;
return hash_map[hmac_id].len;
}
EXPORT_SYMBOL_GPL(nvme_auth_hmac_hash_len);
u32 nvme_auth_key_struct_size(u32 key_len)
{
struct nvme_dhchap_key key;
return struct_size(&key, key, key_len);
}
EXPORT_SYMBOL_GPL(nvme_auth_key_struct_size);
struct nvme_dhchap_key *nvme_auth_extract_key(unsigned char *secret,
u8 key_hash)
{
struct nvme_dhchap_key *key;
unsigned char *p;
u32 crc;
int ret, key_len;
size_t allocated_len = strlen(secret);
/* Secret might be affixed with a ':' */
p = strrchr(secret, ':');
if (p)
allocated_len = p - secret;
key = nvme_auth_alloc_key(allocated_len, 0);
if (!key)
return ERR_PTR(-ENOMEM);
key_len = base64_decode(secret, allocated_len, key->key);
if (key_len < 0) {
pr_debug("base64 key decoding error %d\n",
key_len);
ret = key_len;
goto out_free_secret;
}
if (key_len != 36 && key_len != 52 &&
key_len != 68) {
pr_err("Invalid key len %d\n", key_len);
ret = -EINVAL;
goto out_free_secret;
}
/* The last four bytes is the CRC in little-endian format */
key_len -= 4;
/*
* The linux implementation doesn't do pre- and post-increments,
* so we have to do it manually.
*/
crc = ~crc32(~0, key->key, key_len);
if (get_unaligned_le32(key->key + key_len) != crc) {
pr_err("key crc mismatch (key %08x, crc %08x)\n",
get_unaligned_le32(key->key + key_len), crc);
ret = -EKEYREJECTED;
goto out_free_secret;
}
key->len = key_len;
key->hash = key_hash;
return key;
out_free_secret:
nvme_auth_free_key(key);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(nvme_auth_extract_key);
struct nvme_dhchap_key *nvme_auth_alloc_key(u32 len, u8 hash)
{
u32 num_bytes = nvme_auth_key_struct_size(len);
struct nvme_dhchap_key *key = kzalloc(num_bytes, GFP_KERNEL);
if (key) {
key->len = len;
key->hash = hash;
}
return key;
}
EXPORT_SYMBOL_GPL(nvme_auth_alloc_key);
void nvme_auth_free_key(struct nvme_dhchap_key *key)
{
if (!key)
return;
kfree_sensitive(key);
}
EXPORT_SYMBOL_GPL(nvme_auth_free_key);
struct nvme_dhchap_key *nvme_auth_transform_key(
struct nvme_dhchap_key *key, char *nqn)
{
const char *hmac_name;
struct crypto_shash *key_tfm;
struct shash_desc *shash;
struct nvme_dhchap_key *transformed_key;
int ret, key_len;
if (!key) {
pr_warn("No key specified\n");
return ERR_PTR(-ENOKEY);
}
if (key->hash == 0) {
key_len = nvme_auth_key_struct_size(key->len);
transformed_key = kmemdup(key, key_len, GFP_KERNEL);
if (!transformed_key)
return ERR_PTR(-ENOMEM);
return transformed_key;
}
hmac_name = nvme_auth_hmac_name(key->hash);
if (!hmac_name) {
pr_warn("Invalid key hash id %d\n", key->hash);
return ERR_PTR(-EINVAL);
}
key_tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(key_tfm))
return ERR_CAST(key_tfm);
shash = kmalloc(sizeof(struct shash_desc) +
crypto_shash_descsize(key_tfm),
GFP_KERNEL);
if (!shash) {
ret = -ENOMEM;
goto out_free_key;
}
key_len = crypto_shash_digestsize(key_tfm);
transformed_key = nvme_auth_alloc_key(key_len, key->hash);
if (!transformed_key) {
ret = -ENOMEM;
goto out_free_shash;
}
shash->tfm = key_tfm;
ret = crypto_shash_setkey(key_tfm, key->key, key->len);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_init(shash);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_update(shash, nqn, strlen(nqn));
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_update(shash, "NVMe-over-Fabrics", 17);
if (ret < 0)
goto out_free_transformed_key;
ret = crypto_shash_final(shash, transformed_key->key);
if (ret < 0)
goto out_free_transformed_key;
kfree(shash);
crypto_free_shash(key_tfm);
return transformed_key;
out_free_transformed_key:
nvme_auth_free_key(transformed_key);
out_free_shash:
kfree(shash);
out_free_key:
crypto_free_shash(key_tfm);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(nvme_auth_transform_key);
static int nvme_auth_hash_skey(int hmac_id, u8 *skey, size_t skey_len, u8 *hkey)
{
const char *digest_name;
struct crypto_shash *tfm;
int ret;
digest_name = nvme_auth_digest_name(hmac_id);
if (!digest_name) {
pr_debug("%s: failed to get digest for %d\n", __func__,
hmac_id);
return -EINVAL;
}
tfm = crypto_alloc_shash(digest_name, 0, 0);
if (IS_ERR(tfm))
return -ENOMEM;
ret = crypto_shash_tfm_digest(tfm, skey, skey_len, hkey);
if (ret < 0)
pr_debug("%s: Failed to hash digest len %zu\n", __func__,
skey_len);
crypto_free_shash(tfm);
return ret;
}
int nvme_auth_augmented_challenge(u8 hmac_id, u8 *skey, size_t skey_len,
u8 *challenge, u8 *aug, size_t hlen)
{
struct crypto_shash *tfm;
u8 *hashed_key;
const char *hmac_name;
int ret;
hashed_key = kmalloc(hlen, GFP_KERNEL);
if (!hashed_key)
return -ENOMEM;
ret = nvme_auth_hash_skey(hmac_id, skey,
skey_len, hashed_key);
if (ret < 0)
goto out_free_key;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
ret = -EINVAL;
goto out_free_key;
}
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out_free_key;
}
ret = crypto_shash_setkey(tfm, hashed_key, hlen);
if (ret)
goto out_free_hash;
ret = crypto_shash_tfm_digest(tfm, challenge, hlen, aug);
out_free_hash:
crypto_free_shash(tfm);
out_free_key:
kfree_sensitive(hashed_key);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_augmented_challenge);
int nvme_auth_gen_privkey(struct crypto_kpp *dh_tfm, u8 dh_gid)
{
int ret;
ret = crypto_kpp_set_secret(dh_tfm, NULL, 0);
if (ret)
pr_debug("failed to set private key, error %d\n", ret);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_privkey);
int nvme_auth_gen_pubkey(struct crypto_kpp *dh_tfm,
u8 *host_key, size_t host_key_len)
{
struct kpp_request *req;
struct crypto_wait wait;
struct scatterlist dst;
int ret;
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, host_key, host_key_len);
kpp_request_set_output(req, &dst, host_key_len);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
kpp_request_free(req);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_pubkey);
int nvme_auth_gen_shared_secret(struct crypto_kpp *dh_tfm,
u8 *ctrl_key, size_t ctrl_key_len,
u8 *sess_key, size_t sess_key_len)
{
struct kpp_request *req;
struct crypto_wait wait;
struct scatterlist src, dst;
int ret;
req = kpp_request_alloc(dh_tfm, GFP_KERNEL);
if (!req)
return -ENOMEM;
crypto_init_wait(&wait);
sg_init_one(&src, ctrl_key, ctrl_key_len);
kpp_request_set_input(req, &src, ctrl_key_len);
sg_init_one(&dst, sess_key, sess_key_len);
kpp_request_set_output(req, &dst, sess_key_len);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
kpp_request_free(req);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_gen_shared_secret);
int nvme_auth_generate_key(u8 *secret, struct nvme_dhchap_key **ret_key)
{
struct nvme_dhchap_key *key;
u8 key_hash;
if (!secret) {
*ret_key = NULL;
return 0;
}
if (sscanf(secret, "DHHC-1:%hhd:%*s:", &key_hash) != 1)
return -EINVAL;
/* Pass in the secret without the 'DHHC-1:XX:' prefix */
key = nvme_auth_extract_key(secret + 10, key_hash);
if (IS_ERR(key)) {
*ret_key = NULL;
return PTR_ERR(key);
}
*ret_key = key;
return 0;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_key);
/**
* nvme_auth_generate_psk - Generate a PSK for TLS
* @hmac_id: Hash function identifier
* @skey: Session key
* @skey_len: Length of @skey
* @c1: Value of challenge C1
* @c2: Value of challenge C2
* @hash_len: Hash length of the hash algorithm
* @ret_psk: Pointer too the resulting generated PSK
* @ret_len: length of @ret_psk
*
* Generate a PSK for TLS as specified in NVMe base specification, section
* 8.13.5.9: Generated PSK for TLS
*
* The generated PSK for TLS shall be computed applying the HMAC function
* using the hash function H( ) selected by the HashID parameter in the
* DH-HMAC-CHAP_Challenge message with the session key KS as key to the
* concatenation of the two challenges C1 and C2 (i.e., generated
* PSK = HMAC(KS, C1 || C2)).
*
* Returns 0 on success with a valid generated PSK pointer in @ret_psk and
* the length of @ret_psk in @ret_len, or a negative error number otherwise.
*/
int nvme_auth_generate_psk(u8 hmac_id, u8 *skey, size_t skey_len,
u8 *c1, u8 *c2, size_t hash_len, u8 **ret_psk, size_t *ret_len)
{
struct crypto_shash *tfm;
SHASH_DESC_ON_STACK(shash, tfm);
u8 *psk;
const char *hmac_name;
int ret, psk_len;
if (!c1 || !c2)
return -EINVAL;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
psk_len = crypto_shash_digestsize(tfm);
psk = kzalloc(psk_len, GFP_KERNEL);
if (!psk) {
ret = -ENOMEM;
goto out_free_tfm;
}
shash->tfm = tfm;
ret = crypto_shash_setkey(tfm, skey, skey_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_init(shash);
if (ret)
goto out_free_psk;
ret = crypto_shash_update(shash, c1, hash_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_update(shash, c2, hash_len);
if (ret)
goto out_free_psk;
ret = crypto_shash_final(shash, psk);
if (!ret) {
*ret_psk = psk;
*ret_len = psk_len;
}
out_free_psk:
if (ret)
kfree_sensitive(psk);
out_free_tfm:
crypto_free_shash(tfm);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_psk);
/**
* nvme_auth_generate_digest - Generate TLS PSK digest
* @hmac_id: Hash function identifier
* @psk: Generated input PSK
* @psk_len: Length of @psk
* @subsysnqn: NQN of the subsystem
* @hostnqn: NQN of the host
* @ret_digest: Pointer to the returned digest
*
* Generate a TLS PSK digest as specified in TP8018 Section 3.6.1.3:
* TLS PSK and PSK identity Derivation
*
* The PSK digest shall be computed by encoding in Base64 (refer to RFC
* 4648) the result of the application of the HMAC function using the hash
* function specified in item 4 above (ie the hash function of the cipher
* suite associated with the PSK identity) with the PSK as HMAC key to the
* concatenation of:
* - the NQN of the host (i.e., NQNh) not including the null terminator;
* - a space character;
* - the NQN of the NVM subsystem (i.e., NQNc) not including the null
* terminator;
* - a space character; and
* - the seventeen ASCII characters "NVMe-over-Fabrics"
* (i.e., <PSK digest> = Base64(HMAC(PSK, NQNh || " " || NQNc || " " ||
* "NVMe-over-Fabrics"))).
* The length of the PSK digest depends on the hash function used to compute
* it as follows:
* - If the SHA-256 hash function is used, the resulting PSK digest is 44
* characters long; or
* - If the SHA-384 hash function is used, the resulting PSK digest is 64
* characters long.
*
* Returns 0 on success with a valid digest pointer in @ret_digest, or a
* negative error number on failure.
*/
int nvme_auth_generate_digest(u8 hmac_id, u8 *psk, size_t psk_len,
char *subsysnqn, char *hostnqn, u8 **ret_digest)
{
struct crypto_shash *tfm;
SHASH_DESC_ON_STACK(shash, tfm);
u8 *digest, *enc;
const char *hmac_name;
size_t digest_len, hmac_len;
int ret;
if (WARN_ON(!subsysnqn || !hostnqn))
return -EINVAL;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
switch (nvme_auth_hmac_hash_len(hmac_id)) {
case 32:
hmac_len = 44;
break;
case 48:
hmac_len = 64;
break;
default:
pr_warn("%s: invalid hash algorithm '%s'\n",
__func__, hmac_name);
return -EINVAL;
}
enc = kzalloc(hmac_len + 1, GFP_KERNEL);
if (!enc)
return -ENOMEM;
tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out_free_enc;
}
digest_len = crypto_shash_digestsize(tfm);
digest = kzalloc(digest_len, GFP_KERNEL);
if (!digest) {
ret = -ENOMEM;
goto out_free_tfm;
}
shash->tfm = tfm;
ret = crypto_shash_setkey(tfm, psk, psk_len);
if (ret)
goto out_free_digest;
ret = crypto_shash_init(shash);
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, hostnqn, strlen(hostnqn));
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, " ", 1);
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, subsysnqn, strlen(subsysnqn));
if (ret)
goto out_free_digest;
ret = crypto_shash_update(shash, " NVMe-over-Fabrics", 18);
if (ret)
goto out_free_digest;
ret = crypto_shash_final(shash, digest);
if (ret)
goto out_free_digest;
ret = base64_encode(digest, digest_len, enc);
if (ret < hmac_len) {
ret = -ENOKEY;
goto out_free_digest;
}
*ret_digest = enc;
ret = 0;
out_free_digest:
kfree_sensitive(digest);
out_free_tfm:
crypto_free_shash(tfm);
out_free_enc:
if (ret)
kfree_sensitive(enc);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_generate_digest);
/**
* nvme_auth_derive_tls_psk - Derive TLS PSK
* @hmac_id: Hash function identifier
* @psk: generated input PSK
* @psk_len: size of @psk
* @psk_digest: TLS PSK digest
* @ret_psk: Pointer to the resulting TLS PSK
*
* Derive a TLS PSK as specified in TP8018 Section 3.6.1.3:
* TLS PSK and PSK identity Derivation
*
* The TLS PSK shall be derived as follows from an input PSK
* (i.e., either a retained PSK or a generated PSK) and a PSK
* identity using the HKDF-Extract and HKDF-Expand-Label operations
* (refer to RFC 5869 and RFC 8446) where the hash function is the
* one specified by the hash specifier of the PSK identity:
* 1. PRK = HKDF-Extract(0, Input PSK); and
* 2. TLS PSK = HKDF-Expand-Label(PRK, "nvme-tls-psk", PskIdentityContext, L),
* where PskIdentityContext is the hash identifier indicated in
* the PSK identity concatenated to a space character and to the
* Base64 PSK digest (i.e., "<hash> <PSK digest>") and L is the
* output size in bytes of the hash function (i.e., 32 for SHA-256
* and 48 for SHA-384).
*
* Returns 0 on success with a valid psk pointer in @ret_psk or a negative
* error number otherwise.
*/
int nvme_auth_derive_tls_psk(int hmac_id, u8 *psk, size_t psk_len,
u8 *psk_digest, u8 **ret_psk)
{
struct crypto_shash *hmac_tfm;
const char *hmac_name;
const char *psk_prefix = "tls13 nvme-tls-psk";
static const char default_salt[HKDF_MAX_HASHLEN];
size_t info_len, prk_len;
char *info;
unsigned char *prk, *tls_key;
int ret;
hmac_name = nvme_auth_hmac_name(hmac_id);
if (!hmac_name) {
pr_warn("%s: invalid hash algorithm %d\n",
__func__, hmac_id);
return -EINVAL;
}
if (hmac_id == NVME_AUTH_HASH_SHA512) {
pr_warn("%s: unsupported hash algorithm %s\n",
__func__, hmac_name);
return -EINVAL;
}
hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
if (IS_ERR(hmac_tfm))
return PTR_ERR(hmac_tfm);
prk_len = crypto_shash_digestsize(hmac_tfm);
prk = kzalloc(prk_len, GFP_KERNEL);
if (!prk) {
ret = -ENOMEM;
goto out_free_shash;
}
if (WARN_ON(prk_len > HKDF_MAX_HASHLEN)) {
ret = -EINVAL;
goto out_free_prk;
}
ret = hkdf_extract(hmac_tfm, psk, psk_len,
default_salt, prk_len, prk);
if (ret)
goto out_free_prk;
ret = crypto_shash_setkey(hmac_tfm, prk, prk_len);
if (ret)
goto out_free_prk;
/*
* 2 addtional bytes for the length field from HDKF-Expand-Label,
* 2 addtional bytes for the HMAC ID, and one byte for the space
* separator.
*/
info_len = strlen(psk_digest) + strlen(psk_prefix) + 5;
info = kzalloc(info_len + 1, GFP_KERNEL);
if (!info) {
ret = -ENOMEM;
goto out_free_prk;
}
put_unaligned_be16(psk_len, info);
memcpy(info + 2, psk_prefix, strlen(psk_prefix));
sprintf(info + 2 + strlen(psk_prefix), "%02d %s", hmac_id, psk_digest);
tls_key = kzalloc(psk_len, GFP_KERNEL);
if (!tls_key) {
ret = -ENOMEM;
goto out_free_info;
}
ret = hkdf_expand(hmac_tfm, info, info_len, tls_key, psk_len);
if (ret) {
kfree(tls_key);
goto out_free_info;
}
*ret_psk = tls_key;
out_free_info:
kfree(info);
out_free_prk:
kfree(prk);
out_free_shash:
crypto_free_shash(hmac_tfm);
return ret;
}
EXPORT_SYMBOL_GPL(nvme_auth_derive_tls_psk);
MODULE_DESCRIPTION("NVMe Authentication framework");
MODULE_LICENSE("GPL v2");
|