summaryrefslogtreecommitdiffstats
path: root/drivers/pwm/pwm-stm32.c
blob: b889e64522c3d7b6a6ea5649f2b3ed18faf84500 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) STMicroelectronics 2016
 *
 * Author: Gerald Baeza <gerald.baeza@st.com>
 *
 * Inspired by timer-stm32.c from Maxime Coquelin
 *             pwm-atmel.c from Bo Shen
 */

#include <linux/bitfield.h>
#include <linux/mfd/stm32-timers.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>

#define CCMR_CHANNEL_SHIFT 8
#define CCMR_CHANNEL_MASK  0xFF
#define MAX_BREAKINPUT 2

struct stm32_breakinput {
	u32 index;
	u32 level;
	u32 filter;
};

struct stm32_pwm {
	struct mutex lock; /* protect pwm config/enable */
	struct clk *clk;
	struct regmap *regmap;
	u32 max_arr;
	bool have_complementary_output;
	struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
	unsigned int num_breakinputs;
	u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
};

static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
{
	return pwmchip_get_drvdata(chip);
}

static u32 active_channels(struct stm32_pwm *dev)
{
	u32 ccer;

	regmap_read(dev->regmap, TIM_CCER, &ccer);

	return ccer & TIM_CCER_CCXE;
}

struct stm32_pwm_waveform {
	u32 ccer;
	u32 psc;
	u32 arr;
	u32 ccr;
};

static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip,
					 struct pwm_device *pwm,
					 const struct pwm_waveform *wf,
					 void *_wfhw)
{
	struct stm32_pwm_waveform *wfhw = _wfhw;
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned int ch = pwm->hwpwm;
	unsigned long rate;
	u64 ccr, duty;
	int ret;

	if (wf->period_length_ns == 0) {
		*wfhw = (struct stm32_pwm_waveform){
			.ccer = 0,
		};

		return 0;
	}

	ret = clk_enable(priv->clk);
	if (ret)
		return ret;

	wfhw->ccer = TIM_CCER_CCxE(ch + 1);
	if (priv->have_complementary_output)
		wfhw->ccer = TIM_CCER_CCxNE(ch + 1);

	rate = clk_get_rate(priv->clk);

	if (active_channels(priv) & ~(1 << ch * 4)) {
		u64 arr;

		/*
		 * Other channels are already enabled, so the configured PSC and
		 * ARR must be used for this channel, too.
		 */
		ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
		if (ret)
			goto out;

		ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
		if (ret)
			goto out;

		/*
		 * calculate the best value for ARR for the given PSC, refuse if
		 * the resulting period gets bigger than the requested one.
		 */
		arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
					  (u64)NSEC_PER_SEC * (wfhw->psc + 1));
		if (arr <= wfhw->arr) {
			/*
			 * requested period is small than the currently
			 * configured and unchangable period, report back the smallest
			 * possible period, i.e. the current state; Initialize
			 * ccr to anything valid.
			 */
			wfhw->ccr = 0;
			ret = 1;
			goto out;
		}

	} else {
		/*
		 * .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
		 * the calculations here won't overflow.
		 * First we need to find the minimal value for prescaler such that
		 *
		 *        period_ns * clkrate
		 *   ------------------------------ < max_arr + 1
		 *   NSEC_PER_SEC * (prescaler + 1)
		 *
		 * This equation is equivalent to
		 *
		 *        period_ns * clkrate
		 *   ---------------------------- < prescaler + 1
		 *   NSEC_PER_SEC * (max_arr + 1)
		 *
		 * Using integer division and knowing that the right hand side is
		 * integer, this is further equivalent to
		 *
		 *   (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
		 */
		u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate,
					      (u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
		u64 arr;

		wfhw->psc = min_t(u64, psc, MAX_TIM_PSC);

		arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
					  (u64)NSEC_PER_SEC * (wfhw->psc + 1));
		if (!arr) {
			/*
			 * requested period is too small, report back the smallest
			 * possible period, i.e. ARR = 0. The only valid CCR
			 * value is then zero, too.
			 */
			wfhw->arr = 0;
			wfhw->ccr = 0;
			ret = 1;
			goto out;
		}

		/*
		 * ARR is limited intentionally to values less than
		 * priv->max_arr to allow 100% duty cycle.
		 */
		wfhw->arr = min_t(u64, arr, priv->max_arr) - 1;
	}

	duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate,
				   (u64)NSEC_PER_SEC * (wfhw->psc + 1));
	duty = min_t(u64, duty, wfhw->arr + 1);

	if (wf->duty_length_ns && wf->duty_offset_ns &&
	    wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) {
		wfhw->ccer |= TIM_CCER_CCxP(ch + 1);
		if (priv->have_complementary_output)
			wfhw->ccer |= TIM_CCER_CCxNP(ch + 1);

		ccr = wfhw->arr + 1 - duty;
	} else {
		ccr = duty;
	}

	wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1);

	dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n",
		pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
		rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr);

out:
	clk_disable(priv->clk);

	return ret;
}

/*
 * This should be moved to lib/math/div64.c. Currently there are some changes
 * pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles.
 */
static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c)
{
	u64 res = mul_u64_u64_div_u64(a, b, c);
	/* Those multiplications might overflow but it doesn't matter */
	u64 rem = a * b - c * res;

	if (rem)
		res += 1;

	return res;
}

static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip,
					   struct pwm_device *pwm,
					   const void *_wfhw,
					   struct pwm_waveform *wf)
{
	const struct stm32_pwm_waveform *wfhw = _wfhw;
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned int ch = pwm->hwpwm;

	if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
		unsigned long rate = clk_get_rate(priv->clk);
		u64 ccr_ns;

		/* The result doesn't overflow for rate >= 15259 */
		wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1),
									     NSEC_PER_SEC, rate);

		ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr,
							       NSEC_PER_SEC, rate);

		if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) {
			wf->duty_length_ns =
				stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr),
								      NSEC_PER_SEC, rate);

			wf->duty_offset_ns = ccr_ns;
		} else {
			wf->duty_length_ns = ccr_ns;
			wf->duty_offset_ns = 0;
		}

		dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n",
			pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate,
			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);

	} else {
		*wf = (struct pwm_waveform){
			.period_length_ns = 0,
		};
	}

	return 0;
}

static int stm32_pwm_read_waveform(struct pwm_chip *chip,
				     struct pwm_device *pwm,
				     void *_wfhw)
{
	struct stm32_pwm_waveform *wfhw = _wfhw;
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned int ch = pwm->hwpwm;
	int ret;

	ret = clk_enable(priv->clk);
	if (ret)
		return ret;

	ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer);
	if (ret)
		goto out;

	if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
		ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
		if (ret)
			goto out;

		ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
		if (ret)
			goto out;

		if (wfhw->arr == U32_MAX)
			wfhw->arr -= 1;

		ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr);
		if (ret)
			goto out;

		if (wfhw->ccr > wfhw->arr + 1)
			wfhw->ccr = wfhw->arr + 1;
	}

out:
	clk_disable(priv->clk);

	return ret;
}

static int stm32_pwm_write_waveform(struct pwm_chip *chip,
				      struct pwm_device *pwm,
				      const void *_wfhw)
{
	const struct stm32_pwm_waveform *wfhw = _wfhw;
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned int ch = pwm->hwpwm;
	int ret;

	ret = clk_enable(priv->clk);
	if (ret)
		return ret;

	if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
		u32 ccer, mask;
		unsigned int shift;
		u32 ccmr;

		ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
		if (ret)
			goto out;

		/* If there are other channels enabled, don't update PSC and ARR */
		if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) {
			u32 psc, arr;

			ret = regmap_read(priv->regmap, TIM_PSC, &psc);
			if (ret)
				goto out;

			if (psc != wfhw->psc) {
				ret = -EBUSY;
				goto out;
			}

			ret = regmap_read(priv->regmap, TIM_ARR, &arr);
			if (ret)
				goto out;

			if (arr != wfhw->arr) {
				ret = -EBUSY;
				goto out;
			}
		} else {
			ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc);
			if (ret)
				goto out;

			ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr);
			if (ret)
				goto out;

			ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
			if (ret)
				goto out;

		}

		/* set polarity */
		mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1);
		ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer);
		if (ret)
			goto out;

		ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr);
		if (ret)
			goto out;

		/* Configure output mode */
		shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
		ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
		mask = CCMR_CHANNEL_MASK << shift;

		if (ch < 2)
			ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
		else
			ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
		if (ret)
			goto out;

		ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
		if (ret)
			goto out;

		if (!(ccer & TIM_CCER_CCxE(ch + 1))) {
			mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1);

			ret = clk_enable(priv->clk);
			if (ret)
				goto out;

			ccer = (ccer & ~mask) | (wfhw->ccer & mask);
			regmap_write(priv->regmap, TIM_CCER, ccer);

			/* Make sure that registers are updated */
			regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);

			/* Enable controller */
			regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
		}

	} else {
		/* disable channel */
		u32 mask, ccer;

		mask = TIM_CCER_CCxE(ch + 1);
		if (priv->have_complementary_output)
			mask |= TIM_CCER_CCxNE(ch + 1);

		ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
		if (ret)
			goto out;

		if (ccer & mask) {
			ccer = ccer & ~mask;

			ret = regmap_write(priv->regmap, TIM_CCER, ccer);
			if (ret)
				goto out;

			if (!(ccer & TIM_CCER_CCXE)) {
				/* When all channels are disabled, we can disable the controller */
				ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
				if (ret)
					goto out;
			}

			clk_disable(priv->clk);
		}
	}

out:
	clk_disable(priv->clk);

	return ret;
}

#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)

/*
 * Capture using PWM input mode:
 *                              ___          ___
 * TI[1, 2, 3 or 4]: ........._|   |________|
 *                             ^0  ^1       ^2
 *                              .   .        .
 *                              .   .        XXXXX
 *                              .   .   XXXXX     |
 *                              .  XXXXX     .    |
 *                            XXXXX .        .    |
 * COUNTER:        ______XXXXX  .   .        .    |_XXX
 *                 start^       .   .        .        ^stop
 *                      .       .   .        .
 *                      v       v   .        v
 *                                  v
 * CCR1/CCR3:       tx..........t0...........t2
 * CCR2/CCR4:       tx..............t1.........
 *
 * DMA burst transfer:          |            |
 *                              v            v
 * DMA buffer:                  { t0, tx }   { t2, t1 }
 * DMA done:                                 ^
 *
 * 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
 * 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
 * 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
 *    + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
 *
 * DMA done, compute:
 * - Period     = t2 - t0
 * - Duty cycle = t1 - t0
 */
static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
				 unsigned long tmo_ms, u32 *raw_prd,
				 u32 *raw_dty)
{
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	struct device *parent = pwmchip_parent(chip)->parent;
	enum stm32_timers_dmas dma_id;
	u32 ccen, ccr;
	int ret;

	/* Ensure registers have been updated, enable counter and capture */
	regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
	regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);

	/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
	dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
	ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
	ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
	regmap_set_bits(priv->regmap, TIM_CCER, ccen);

	/*
	 * Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
	 * CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
	 * We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
	 * or { CCR3, CCR4 }, { CCR3, CCR4 }
	 */
	ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
					  2, tmo_ms);
	if (ret)
		goto stop;

	/* Period: t2 - t0 (take care of counter overflow) */
	if (priv->capture[0] <= priv->capture[2])
		*raw_prd = priv->capture[2] - priv->capture[0];
	else
		*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];

	/* Duty cycle capture requires at least two capture units */
	if (pwm->chip->npwm < 2)
		*raw_dty = 0;
	else if (priv->capture[0] <= priv->capture[3])
		*raw_dty = priv->capture[3] - priv->capture[0];
	else
		*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];

	if (*raw_dty > *raw_prd) {
		/*
		 * Race beetween PWM input and DMA: it may happen
		 * falling edge triggers new capture on TI2/4 before DMA
		 * had a chance to read CCR2/4. It means capture[1]
		 * contains period + duty_cycle. So, subtract period.
		 */
		*raw_dty -= *raw_prd;
	}

stop:
	regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
	regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);

	return ret;
}

static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
			     struct pwm_capture *result, unsigned long tmo_ms)
{
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned long long prd, div, dty;
	unsigned long rate;
	unsigned int psc = 0, icpsc, scale;
	u32 raw_prd = 0, raw_dty = 0;
	int ret = 0;

	mutex_lock(&priv->lock);

	if (active_channels(priv)) {
		ret = -EBUSY;
		goto unlock;
	}

	ret = clk_enable(priv->clk);
	if (ret) {
		dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
		goto unlock;
	}

	rate = clk_get_rate(priv->clk);
	if (!rate) {
		ret = -EINVAL;
		goto clk_dis;
	}

	/* prescaler: fit timeout window provided by upper layer */
	div = (unsigned long long)rate * (unsigned long long)tmo_ms;
	do_div(div, MSEC_PER_SEC);
	prd = div;
	while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
		psc++;
		div = prd;
		do_div(div, psc + 1);
	}
	regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
	regmap_write(priv->regmap, TIM_PSC, psc);

	/* Reset input selector to its default input and disable slave mode */
	regmap_write(priv->regmap, TIM_TISEL, 0x0);
	regmap_write(priv->regmap, TIM_SMCR, 0x0);

	/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
	regmap_update_bits(priv->regmap,
			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
			   TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
			   TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
			   TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);

	/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
	regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
			   TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
			   TIM_CCER_CC2P : TIM_CCER_CC4P);

	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
	if (ret)
		goto stop;

	/*
	 * Got a capture. Try to improve accuracy at high rates:
	 * - decrease counter clock prescaler, scale up to max rate.
	 * - use input prescaler, capture once every /2 /4 or /8 edges.
	 */
	if (raw_prd) {
		u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */

		scale = max_arr / min(max_arr, raw_prd);
	} else {
		scale = priv->max_arr; /* below resolution, use max scale */
	}

	if (psc && scale > 1) {
		/* 2nd measure with new scale */
		psc /= scale;
		regmap_write(priv->regmap, TIM_PSC, psc);
		ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
					    &raw_dty);
		if (ret)
			goto stop;
	}

	/* Compute intermediate period not to exceed timeout at low rates */
	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
	do_div(prd, rate);

	for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
		/* input prescaler: also keep arbitrary margin */
		if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
			break;
		if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
			break;
	}

	if (!icpsc)
		goto done;

	/* Last chance to improve period accuracy, using input prescaler */
	regmap_update_bits(priv->regmap,
			   pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
			   TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
			   FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
			   FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));

	ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
	if (ret)
		goto stop;

	if (raw_dty >= (raw_prd >> icpsc)) {
		/*
		 * We may fall here using input prescaler, when input
		 * capture starts on high side (before falling edge).
		 * Example with icpsc to capture on each 4 events:
		 *
		 *       start   1st capture                     2nd capture
		 *         v     v                               v
		 *         ___   _____   _____   _____   _____   ____
		 * TI1..4     |__|    |__|    |__|    |__|    |__|
		 *            v  v    .  .    .  .    .       v  v
		 * icpsc1/3:  .  0    .  1    .  2    .  3    .  0
		 * icpsc2/4:  0       1       2       3       0
		 *            v  v                            v  v
		 * CCR1/3  ......t0..............................t2
		 * CCR2/4  ..t1..............................t1'...
		 *               .                            .  .
		 * Capture0:     .<----------------------------->.
		 * Capture1:     .<-------------------------->.  .
		 *               .                            .  .
		 * Period:       .<------>                    .  .
		 * Low side:                                  .<>.
		 *
		 * Result:
		 * - Period = Capture0 / icpsc
		 * - Duty = Period - Low side = Period - (Capture0 - Capture1)
		 */
		raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
	}

done:
	prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
	result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
	dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
	result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
stop:
	regmap_write(priv->regmap, TIM_CCER, 0);
	regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
	regmap_write(priv->regmap, TIM_PSC, 0);
clk_dis:
	clk_disable(priv->clk);
unlock:
	mutex_unlock(&priv->lock);

	return ret;
}

static const struct pwm_ops stm32pwm_ops = {
	.sizeof_wfhw = sizeof(struct stm32_pwm_waveform),
	.round_waveform_tohw = stm32_pwm_round_waveform_tohw,
	.round_waveform_fromhw = stm32_pwm_round_waveform_fromhw,
	.read_waveform = stm32_pwm_read_waveform,
	.write_waveform = stm32_pwm_write_waveform,

	.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
};

static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
				    const struct stm32_breakinput *bi)
{
	u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
	u32 bke = TIM_BDTR_BKE(bi->index);
	u32 bkp = TIM_BDTR_BKP(bi->index);
	u32 bkf = TIM_BDTR_BKF(bi->index);
	u32 mask = bkf | bkp | bke;
	u32 bdtr;

	bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;

	if (bi->level)
		bdtr |= bkp;

	regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);

	regmap_read(priv->regmap, TIM_BDTR, &bdtr);

	return (bdtr & bke) ? 0 : -EINVAL;
}

static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
{
	unsigned int i;
	int ret;

	for (i = 0; i < priv->num_breakinputs; i++) {
		ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
		if (ret < 0)
			return ret;
	}

	return 0;
}

static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
				       struct device_node *np)
{
	int nb, ret, array_size;
	unsigned int i;

	nb = of_property_count_elems_of_size(np, "st,breakinput",
					     sizeof(struct stm32_breakinput));

	/*
	 * Because "st,breakinput" parameter is optional do not make probe
	 * failed if it doesn't exist.
	 */
	if (nb <= 0)
		return 0;

	if (nb > MAX_BREAKINPUT)
		return -EINVAL;

	priv->num_breakinputs = nb;
	array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
	ret = of_property_read_u32_array(np, "st,breakinput",
					 (u32 *)priv->breakinputs, array_size);
	if (ret)
		return ret;

	for (i = 0; i < priv->num_breakinputs; i++) {
		if (priv->breakinputs[i].index > 1 ||
		    priv->breakinputs[i].level > 1 ||
		    priv->breakinputs[i].filter > 15)
			return -EINVAL;
	}

	return stm32_pwm_apply_breakinputs(priv);
}

static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
{
	u32 ccer;

	/*
	 * If complementary bit doesn't exist writing 1 will have no
	 * effect so we can detect it.
	 */
	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
	regmap_read(priv->regmap, TIM_CCER, &ccer);
	regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);

	priv->have_complementary_output = (ccer != 0);
}

static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
					      unsigned int *num_enabled)
{
	u32 ccer, ccer_backup;

	/*
	 * If channels enable bits don't exist writing 1 will have no
	 * effect so we can detect and count them.
	 */
	regmap_read(regmap, TIM_CCER, &ccer_backup);
	regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
	regmap_read(regmap, TIM_CCER, &ccer);
	regmap_write(regmap, TIM_CCER, ccer_backup);

	*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);

	return hweight32(ccer & TIM_CCER_CCXE);
}

static int stm32_pwm_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
	struct pwm_chip *chip;
	struct stm32_pwm *priv;
	unsigned int npwm, num_enabled;
	unsigned int i;
	int ret;

	npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);

	chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
	if (IS_ERR(chip))
		return PTR_ERR(chip);
	priv = to_stm32_pwm_dev(chip);

	mutex_init(&priv->lock);
	priv->regmap = ddata->regmap;
	priv->clk = ddata->clk;
	priv->max_arr = ddata->max_arr;

	if (!priv->regmap || !priv->clk)
		return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
				     priv->regmap ? "clk" : "regmap");

	ret = stm32_pwm_probe_breakinputs(priv, np);
	if (ret)
		return dev_err_probe(dev, ret,
				     "Failed to configure breakinputs\n");

	stm32_pwm_detect_complementary(priv);

	ret = devm_clk_rate_exclusive_get(dev, priv->clk);
	if (ret)
		return dev_err_probe(dev, ret, "Failed to lock clock\n");

	/*
	 * With the clk running with not more than 1 GHz the calculations in
	 * .apply() won't overflow.
	 */
	if (clk_get_rate(priv->clk) > 1000000000)
		return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n",
				     clk_get_rate(priv->clk));

	chip->ops = &stm32pwm_ops;

	/* Initialize clock refcount to number of enabled PWM channels. */
	for (i = 0; i < num_enabled; i++)
		clk_enable(priv->clk);

	ret = devm_pwmchip_add(dev, chip);
	if (ret < 0)
		return dev_err_probe(dev, ret,
				     "Failed to register pwmchip\n");

	platform_set_drvdata(pdev, chip);

	return 0;
}

static int stm32_pwm_suspend(struct device *dev)
{
	struct pwm_chip *chip = dev_get_drvdata(dev);
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	unsigned int i;
	u32 ccer, mask;

	/* Look for active channels */
	ccer = active_channels(priv);

	for (i = 0; i < chip->npwm; i++) {
		mask = TIM_CCER_CCxE(i + 1);
		if (ccer & mask) {
			dev_err(dev, "PWM %u still in use by consumer %s\n",
				i, chip->pwms[i].label);
			return -EBUSY;
		}
	}

	return pinctrl_pm_select_sleep_state(dev);
}

static int stm32_pwm_resume(struct device *dev)
{
	struct pwm_chip *chip = dev_get_drvdata(dev);
	struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;

	/* restore breakinput registers that may have been lost in low power */
	return stm32_pwm_apply_breakinputs(priv);
}

static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);

static const struct of_device_id stm32_pwm_of_match[] = {
	{ .compatible = "st,stm32-pwm",	},
	{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);

static struct platform_driver stm32_pwm_driver = {
	.probe	= stm32_pwm_probe,
	.driver	= {
		.name = "stm32-pwm",
		.of_match_table = stm32_pwm_of_match,
		.pm = pm_ptr(&stm32_pwm_pm_ops),
	},
};
module_platform_driver(stm32_pwm_driver);

MODULE_ALIAS("platform:stm32-pwm");
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
MODULE_LICENSE("GPL v2");