summaryrefslogtreecommitdiffstats
path: root/drivers/pwm/pwm-tegra.c
blob: 172063b51d4424a4109432916bb0e5959c9eacdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * drivers/pwm/pwm-tegra.c
 *
 * Tegra pulse-width-modulation controller driver
 *
 * Copyright (c) 2010-2020, NVIDIA Corporation.
 * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
 *
 * Overview of Tegra Pulse Width Modulator Register:
 * 1. 13-bit: Frequency division (SCALE)
 * 2. 8-bit : Pulse division (DUTY)
 * 3. 1-bit : Enable bit
 *
 * The PWM clock frequency is divided by 256 before subdividing it based
 * on the programmable frequency division value to generate the required
 * frequency for PWM output. The maximum output frequency that can be
 * achieved is (max rate of source clock) / 256.
 * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
 * 408 MHz/256 = 1.6 MHz.
 * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
 *
 * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
 * To achieve 100% duty cycle, program Bit [24] of this register to
 * 1’b1. In which case the other bits [23:16] are set to don't care.
 *
 * Limitations:
 * -	When PWM is disabled, the output is driven to inactive.
 * -	It does not allow the current PWM period to complete and
 *	stops abruptly.
 *
 * -	If the register is reconfigured while PWM is running,
 *	it does not complete the currently running period.
 *
 * -	If the user input duty is beyond acceptible limits,
 *	-EINVAL is returned.
 */

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/pwm.h>
#include <linux/platform_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/reset.h>

#include <soc/tegra/common.h>

#define PWM_ENABLE	(1 << 31)
#define PWM_DUTY_WIDTH	8
#define PWM_DUTY_SHIFT	16
#define PWM_SCALE_WIDTH	13
#define PWM_SCALE_SHIFT	0

struct tegra_pwm_soc {
	unsigned int num_channels;

	/* Maximum IP frequency for given SoCs */
	unsigned long max_frequency;
};

struct tegra_pwm_chip {
	struct clk *clk;
	struct reset_control*rst;

	unsigned long clk_rate;
	unsigned long min_period_ns;

	void __iomem *regs;

	const struct tegra_pwm_soc *soc;
};

static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
{
	return pwmchip_get_drvdata(chip);
}

static inline u32 pwm_readl(struct tegra_pwm_chip *pc, unsigned int offset)
{
	return readl(pc->regs + (offset << 4));
}

static inline void pwm_writel(struct tegra_pwm_chip *pc, unsigned int offset, u32 value)
{
	writel(value, pc->regs + (offset << 4));
}

static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			    int duty_ns, int period_ns)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	unsigned long long c = duty_ns;
	unsigned long rate, required_clk_rate;
	u32 val = 0;
	int err;

	/*
	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
	 * nearest integer during division.
	 */
	c *= (1 << PWM_DUTY_WIDTH);
	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);

	val = (u32)c << PWM_DUTY_SHIFT;

	/*
	 *  min period = max clock limit >> PWM_DUTY_WIDTH
	 */
	if (period_ns < pc->min_period_ns)
		return -EINVAL;

	/*
	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
	 * cycles at the PWM clock rate will take period_ns nanoseconds.
	 *
	 * num_channels: If single instance of PWM controller has multiple
	 * channels (e.g. Tegra210 or older) then it is not possible to
	 * configure separate clock rates to each of the channels, in such
	 * case the value stored during probe will be referred.
	 *
	 * If every PWM controller instance has one channel respectively, i.e.
	 * nums_channels == 1 then only the clock rate can be modified
	 * dynamically (e.g. Tegra186 or Tegra194).
	 */
	if (pc->soc->num_channels == 1) {
		/*
		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
		 * with the maximum possible rate that the controller can
		 * provide. Any further lower value can be derived by setting
		 * PFM bits[0:12].
		 *
		 * required_clk_rate is a reference rate for source clock and
		 * it is derived based on user requested period. By setting the
		 * source clock rate as required_clk_rate, PWM controller will
		 * be able to configure the requested period.
		 */
		required_clk_rate = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC << PWM_DUTY_WIDTH,
						     period_ns);

		if (required_clk_rate > clk_round_rate(pc->clk, required_clk_rate))
			/*
			 * required_clk_rate is a lower bound for the input
			 * rate; for lower rates there is no value for PWM_SCALE
			 * that yields a period less than or equal to the
			 * requested period. Hence, for lower rates, double the
			 * required_clk_rate to get a clock rate that can meet
			 * the requested period.
			 */
			required_clk_rate *= 2;

		err = dev_pm_opp_set_rate(pwmchip_parent(chip), required_clk_rate);
		if (err < 0)
			return -EINVAL;

		/* Store the new rate for further references */
		pc->clk_rate = clk_get_rate(pc->clk);
	}

	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
	rate = mul_u64_u64_div_u64(pc->clk_rate, period_ns,
				   (u64)NSEC_PER_SEC << PWM_DUTY_WIDTH);

	/*
	 * Since the actual PWM divider is the register's frequency divider
	 * field plus 1, we need to decrement to get the correct value to
	 * write to the register.
	 */
	if (rate > 0)
		rate--;
	else
		return -EINVAL;

	/*
	 * Make sure that the rate will fit in the register's frequency
	 * divider field.
	 */
	if (rate >> PWM_SCALE_WIDTH)
		return -EINVAL;

	val |= rate << PWM_SCALE_SHIFT;

	/*
	 * If the PWM channel is disabled, make sure to turn on the clock
	 * before writing the register. Otherwise, keep it enabled.
	 */
	if (!pwm_is_enabled(pwm)) {
		err = pm_runtime_resume_and_get(pwmchip_parent(chip));
		if (err)
			return err;
	} else
		val |= PWM_ENABLE;

	pwm_writel(pc, pwm->hwpwm, val);

	/*
	 * If the PWM is not enabled, turn the clock off again to save power.
	 */
	if (!pwm_is_enabled(pwm))
		pm_runtime_put(pwmchip_parent(chip));

	return 0;
}

static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int rc = 0;
	u32 val;

	rc = pm_runtime_resume_and_get(pwmchip_parent(chip));
	if (rc)
		return rc;

	val = pwm_readl(pc, pwm->hwpwm);
	val |= PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	return 0;
}

static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	u32 val;

	val = pwm_readl(pc, pwm->hwpwm);
	val &= ~PWM_ENABLE;
	pwm_writel(pc, pwm->hwpwm, val);

	pm_runtime_put_sync(pwmchip_parent(chip));
}

static int tegra_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			   const struct pwm_state *state)
{
	int err;
	bool enabled = pwm->state.enabled;

	if (state->polarity != PWM_POLARITY_NORMAL)
		return -EINVAL;

	if (!state->enabled) {
		if (enabled)
			tegra_pwm_disable(chip, pwm);

		return 0;
	}

	err = tegra_pwm_config(chip, pwm, state->duty_cycle, state->period);
	if (err)
		return err;

	if (!enabled)
		err = tegra_pwm_enable(chip, pwm);

	return err;
}

static const struct pwm_ops tegra_pwm_ops = {
	.apply = tegra_pwm_apply,
};

static int tegra_pwm_probe(struct platform_device *pdev)
{
	struct pwm_chip *chip;
	struct tegra_pwm_chip *pc;
	const struct tegra_pwm_soc *soc;
	int ret;

	soc = of_device_get_match_data(&pdev->dev);

	chip = devm_pwmchip_alloc(&pdev->dev, soc->num_channels, sizeof(*pc));
	if (IS_ERR(chip))
		return PTR_ERR(chip);
	pc = to_tegra_pwm_chip(chip);

	pc->soc = soc;

	pc->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(pc->regs))
		return PTR_ERR(pc->regs);

	platform_set_drvdata(pdev, chip);

	pc->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(pc->clk))
		return PTR_ERR(pc->clk);

	ret = devm_tegra_core_dev_init_opp_table_common(&pdev->dev);
	if (ret)
		return ret;

	pm_runtime_enable(&pdev->dev);
	ret = pm_runtime_resume_and_get(&pdev->dev);
	if (ret)
		return ret;

	/* Set maximum frequency of the IP */
	ret = dev_pm_opp_set_rate(&pdev->dev, pc->soc->max_frequency);
	if (ret < 0) {
		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
		goto put_pm;
	}

	/*
	 * The requested and configured frequency may differ due to
	 * clock register resolutions. Get the configured frequency
	 * so that PWM period can be calculated more accurately.
	 */
	pc->clk_rate = clk_get_rate(pc->clk);

	/* Set minimum limit of PWM period for the IP */
	pc->min_period_ns =
	    (NSEC_PER_SEC / (pc->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;

	pc->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
	if (IS_ERR(pc->rst)) {
		ret = PTR_ERR(pc->rst);
		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
		goto put_pm;
	}

	reset_control_deassert(pc->rst);

	chip->ops = &tegra_pwm_ops;

	ret = pwmchip_add(chip);
	if (ret < 0) {
		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
		reset_control_assert(pc->rst);
		goto put_pm;
	}

	pm_runtime_put(&pdev->dev);

	return 0;
put_pm:
	pm_runtime_put_sync_suspend(&pdev->dev);
	pm_runtime_force_suspend(&pdev->dev);
	return ret;
}

static void tegra_pwm_remove(struct platform_device *pdev)
{
	struct pwm_chip *chip = platform_get_drvdata(pdev);
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);

	pwmchip_remove(chip);

	reset_control_assert(pc->rst);

	pm_runtime_force_suspend(&pdev->dev);
}

static int __maybe_unused tegra_pwm_runtime_suspend(struct device *dev)
{
	struct pwm_chip *chip = dev_get_drvdata(dev);
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int err;

	clk_disable_unprepare(pc->clk);

	err = pinctrl_pm_select_sleep_state(dev);
	if (err) {
		clk_prepare_enable(pc->clk);
		return err;
	}

	return 0;
}

static int __maybe_unused tegra_pwm_runtime_resume(struct device *dev)
{
	struct pwm_chip *chip = dev_get_drvdata(dev);
	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
	int err;

	err = pinctrl_pm_select_default_state(dev);
	if (err)
		return err;

	err = clk_prepare_enable(pc->clk);
	if (err) {
		pinctrl_pm_select_sleep_state(dev);
		return err;
	}

	return 0;
}

static const struct tegra_pwm_soc tegra20_pwm_soc = {
	.num_channels = 4,
	.max_frequency = 48000000UL,
};

static const struct tegra_pwm_soc tegra186_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 102000000UL,
};

static const struct tegra_pwm_soc tegra194_pwm_soc = {
	.num_channels = 1,
	.max_frequency = 408000000UL,
};

static const struct of_device_id tegra_pwm_of_match[] = {
	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
	{ }
};
MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);

static const struct dev_pm_ops tegra_pwm_pm_ops = {
	SET_RUNTIME_PM_OPS(tegra_pwm_runtime_suspend, tegra_pwm_runtime_resume,
			   NULL)
	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
				pm_runtime_force_resume)
};

static struct platform_driver tegra_pwm_driver = {
	.driver = {
		.name = "tegra-pwm",
		.of_match_table = tegra_pwm_of_match,
		.pm = &tegra_pwm_pm_ops,
	},
	.probe = tegra_pwm_probe,
	.remove = tegra_pwm_remove,
};

module_platform_driver(tegra_pwm_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
MODULE_DESCRIPTION("Tegra PWM controller driver");
MODULE_ALIAS("platform:tegra-pwm");