summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/tests/btrfs-tests.c
blob: 30ed438da2a9f71ba735bcd31f852cfdedc2f4db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2013 Fusion IO.  All rights reserved.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/magic.h>
#include "btrfs-tests.h"
#include "../ctree.h"
#include "../free-space-cache.h"
#include "../free-space-tree.h"
#include "../transaction.h"
#include "../volumes.h"
#include "../disk-io.h"
#include "../qgroup.h"

static struct vfsmount *test_mnt = NULL;

static const struct super_operations btrfs_test_super_ops = {
	.alloc_inode	= btrfs_alloc_inode,
	.destroy_inode	= btrfs_test_destroy_inode,
};

static struct dentry *btrfs_test_mount(struct file_system_type *fs_type,
				       int flags, const char *dev_name,
				       void *data)
{
	return mount_pseudo(fs_type, "btrfs_test:", &btrfs_test_super_ops,
			    NULL, BTRFS_TEST_MAGIC);
}

static struct file_system_type test_type = {
	.name		= "btrfs_test_fs",
	.mount		= btrfs_test_mount,
	.kill_sb	= kill_anon_super,
};

struct inode *btrfs_new_test_inode(void)
{
	return new_inode(test_mnt->mnt_sb);
}

static int btrfs_init_test_fs(void)
{
	int ret;

	ret = register_filesystem(&test_type);
	if (ret) {
		printk(KERN_ERR "btrfs: cannot register test file system\n");
		return ret;
	}

	test_mnt = kern_mount(&test_type);
	if (IS_ERR(test_mnt)) {
		printk(KERN_ERR "btrfs: cannot mount test file system\n");
		unregister_filesystem(&test_type);
		return PTR_ERR(test_mnt);
	}
	return 0;
}

static void btrfs_destroy_test_fs(void)
{
	kern_unmount(test_mnt);
	unregister_filesystem(&test_type);
}

struct btrfs_fs_info *btrfs_alloc_dummy_fs_info(u32 nodesize, u32 sectorsize)
{
	struct btrfs_fs_info *fs_info = kzalloc(sizeof(struct btrfs_fs_info),
						GFP_KERNEL);

	if (!fs_info)
		return fs_info;
	fs_info->fs_devices = kzalloc(sizeof(struct btrfs_fs_devices),
				      GFP_KERNEL);
	if (!fs_info->fs_devices) {
		kfree(fs_info);
		return NULL;
	}
	fs_info->super_copy = kzalloc(sizeof(struct btrfs_super_block),
				      GFP_KERNEL);
	if (!fs_info->super_copy) {
		kfree(fs_info->fs_devices);
		kfree(fs_info);
		return NULL;
	}

	fs_info->nodesize = nodesize;
	fs_info->sectorsize = sectorsize;

	if (init_srcu_struct(&fs_info->subvol_srcu)) {
		kfree(fs_info->fs_devices);
		kfree(fs_info->super_copy);
		kfree(fs_info);
		return NULL;
	}

	spin_lock_init(&fs_info->buffer_lock);
	spin_lock_init(&fs_info->qgroup_lock);
	spin_lock_init(&fs_info->qgroup_op_lock);
	spin_lock_init(&fs_info->super_lock);
	spin_lock_init(&fs_info->fs_roots_radix_lock);
	spin_lock_init(&fs_info->tree_mod_seq_lock);
	mutex_init(&fs_info->qgroup_ioctl_lock);
	mutex_init(&fs_info->qgroup_rescan_lock);
	rwlock_init(&fs_info->tree_mod_log_lock);
	fs_info->running_transaction = NULL;
	fs_info->qgroup_tree = RB_ROOT;
	fs_info->qgroup_ulist = NULL;
	atomic64_set(&fs_info->tree_mod_seq, 0);
	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
	INIT_LIST_HEAD(&fs_info->dead_roots);
	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
	extent_io_tree_init(&fs_info->freed_extents[0], NULL);
	extent_io_tree_init(&fs_info->freed_extents[1], NULL);
	fs_info->pinned_extents = &fs_info->freed_extents[0];
	set_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);

	test_mnt->mnt_sb->s_fs_info = fs_info;

	return fs_info;
}

void btrfs_free_dummy_fs_info(struct btrfs_fs_info *fs_info)
{
	struct radix_tree_iter iter;
	void **slot;

	if (!fs_info)
		return;

	if (WARN_ON(!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
			      &fs_info->fs_state)))
		return;

	test_mnt->mnt_sb->s_fs_info = NULL;

	spin_lock(&fs_info->buffer_lock);
	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter, 0) {
		struct extent_buffer *eb;

		eb = radix_tree_deref_slot_protected(slot, &fs_info->buffer_lock);
		if (!eb)
			continue;
		/* Shouldn't happen but that kind of thinking creates CVE's */
		if (radix_tree_exception(eb)) {
			if (radix_tree_deref_retry(eb))
				slot = radix_tree_iter_retry(&iter);
			continue;
		}
		slot = radix_tree_iter_resume(slot, &iter);
		spin_unlock(&fs_info->buffer_lock);
		free_extent_buffer_stale(eb);
		spin_lock(&fs_info->buffer_lock);
	}
	spin_unlock(&fs_info->buffer_lock);

	btrfs_free_qgroup_config(fs_info);
	btrfs_free_fs_roots(fs_info);
	cleanup_srcu_struct(&fs_info->subvol_srcu);
	kfree(fs_info->super_copy);
	kfree(fs_info->fs_devices);
	kfree(fs_info);
}

void btrfs_free_dummy_root(struct btrfs_root *root)
{
	if (!root)
		return;
	/* Will be freed by btrfs_free_fs_roots */
	if (WARN_ON(test_bit(BTRFS_ROOT_IN_RADIX, &root->state)))
		return;
	if (root->node)
		free_extent_buffer(root->node);
	kfree(root);
}

struct btrfs_block_group_cache *
btrfs_alloc_dummy_block_group(struct btrfs_fs_info *fs_info,
			      unsigned long length)
{
	struct btrfs_block_group_cache *cache;

	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
	if (!cache)
		return NULL;
	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
					GFP_KERNEL);
	if (!cache->free_space_ctl) {
		kfree(cache);
		return NULL;
	}

	cache->key.objectid = 0;
	cache->key.offset = length;
	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
	cache->full_stripe_len = fs_info->sectorsize;
	cache->fs_info = fs_info;

	INIT_LIST_HEAD(&cache->list);
	INIT_LIST_HEAD(&cache->cluster_list);
	INIT_LIST_HEAD(&cache->bg_list);
	btrfs_init_free_space_ctl(cache);
	mutex_init(&cache->free_space_lock);

	return cache;
}

void btrfs_free_dummy_block_group(struct btrfs_block_group_cache *cache)
{
	if (!cache)
		return;
	__btrfs_remove_free_space_cache(cache->free_space_ctl);
	kfree(cache->free_space_ctl);
	kfree(cache);
}

void btrfs_init_dummy_trans(struct btrfs_trans_handle *trans)
{
	memset(trans, 0, sizeof(*trans));
	trans->transid = 1;
	trans->type = __TRANS_DUMMY;
}

int btrfs_run_sanity_tests(void)
{
	int ret, i;
	u32 sectorsize, nodesize;
	u32 test_sectorsize[] = {
		PAGE_SIZE,
	};
	ret = btrfs_init_test_fs();
	if (ret)
		return ret;
	for (i = 0; i < ARRAY_SIZE(test_sectorsize); i++) {
		sectorsize = test_sectorsize[i];
		for (nodesize = sectorsize;
		     nodesize <= BTRFS_MAX_METADATA_BLOCKSIZE;
		     nodesize <<= 1) {
			pr_info("BTRFS: selftest: sectorsize: %u  nodesize: %u\n",
				sectorsize, nodesize);
			ret = btrfs_test_free_space_cache(sectorsize, nodesize);
			if (ret)
				goto out;
			ret = btrfs_test_extent_buffer_operations(sectorsize,
				nodesize);
			if (ret)
				goto out;
			ret = btrfs_test_extent_io(sectorsize, nodesize);
			if (ret)
				goto out;
			ret = btrfs_test_inodes(sectorsize, nodesize);
			if (ret)
				goto out;
			ret = btrfs_test_qgroups(sectorsize, nodesize);
			if (ret)
				goto out;
			ret = btrfs_test_free_space_tree(sectorsize, nodesize);
			if (ret)
				goto out;
		}
	}
	ret = btrfs_test_extent_map();

out:
	btrfs_destroy_test_fs();
	return ret;
}