blob: e24c9aff6fed0cdc8abefabc97f0acbf1bf1f01c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SLAB_DEF_H
#define _LINUX_SLAB_DEF_H
#include <linux/kfence.h>
#include <linux/reciprocal_div.h>
/*
* Definitions unique to the original Linux SLAB allocator.
*/
struct kmem_cache {
struct array_cache __percpu *cpu_cache;
/* 1) Cache tunables. Protected by slab_mutex */
unsigned int batchcount;
unsigned int limit;
unsigned int shared;
unsigned int size;
struct reciprocal_value reciprocal_buffer_size;
/* 2) touched by every alloc & free from the backend */
slab_flags_t flags; /* constant flags */
unsigned int num; /* # of objs per slab */
/* 3) cache_grow/shrink */
/* order of pgs per slab (2^n) */
unsigned int gfporder;
/* force GFP flags, e.g. GFP_DMA */
gfp_t allocflags;
size_t colour; /* cache colouring range */
unsigned int colour_off; /* colour offset */
struct kmem_cache *freelist_cache;
unsigned int freelist_size;
/* constructor func */
void (*ctor)(void *obj);
/* 4) cache creation/removal */
const char *name;
struct list_head list;
int refcount;
int object_size;
int align;
/* 5) statistics */
#ifdef CONFIG_DEBUG_SLAB
unsigned long num_active;
unsigned long num_allocations;
unsigned long high_mark;
unsigned long grown;
unsigned long reaped;
unsigned long errors;
unsigned long max_freeable;
unsigned long node_allocs;
unsigned long node_frees;
unsigned long node_overflow;
atomic_t allochit;
atomic_t allocmiss;
atomic_t freehit;
atomic_t freemiss;
/*
* If debugging is enabled, then the allocator can add additional
* fields and/or padding to every object. 'size' contains the total
* object size including these internal fields, while 'obj_offset'
* and 'object_size' contain the offset to the user object and its
* size.
*/
int obj_offset;
#endif /* CONFIG_DEBUG_SLAB */
#ifdef CONFIG_KASAN
struct kasan_cache kasan_info;
#endif
#ifdef CONFIG_SLAB_FREELIST_RANDOM
unsigned int *random_seq;
#endif
unsigned int useroffset; /* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
struct kmem_cache_node *node[MAX_NUMNODES];
};
static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
void *x)
{
void *object = x - (x - slab->s_mem) % cache->size;
void *last_object = slab->s_mem + (cache->num - 1) * cache->size;
if (unlikely(object > last_object))
return last_object;
else
return object;
}
/*
* We want to avoid an expensive divide : (offset / cache->size)
* Using the fact that size is a constant for a particular cache,
* we can replace (offset / cache->size) by
* reciprocal_divide(offset, cache->reciprocal_buffer_size)
*/
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
const struct slab *slab, void *obj)
{
u32 offset = (obj - slab->s_mem);
return reciprocal_divide(offset, cache->reciprocal_buffer_size);
}
static inline int objs_per_slab(const struct kmem_cache *cache,
const struct slab *slab)
{
if (is_kfence_address(slab_address(slab)))
return 1;
return cache->num;
}
#endif /* _LINUX_SLAB_DEF_H */
|