1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
*
* Scatterlist handling helpers.
*/
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/kmemleak.h>
/**
* sg_next - return the next scatterlist entry in a list
* @sg: The current sg entry
*
* Description:
* Usually the next entry will be @sg@ + 1, but if this sg element is part
* of a chained scatterlist, it could jump to the start of a new
* scatterlist array.
*
**/
struct scatterlist *sg_next(struct scatterlist *sg)
{
if (sg_is_last(sg))
return NULL;
sg++;
if (unlikely(sg_is_chain(sg)))
sg = sg_chain_ptr(sg);
return sg;
}
EXPORT_SYMBOL(sg_next);
/**
* sg_nents - return total count of entries in scatterlist
* @sg: The scatterlist
*
* Description:
* Allows to know how many entries are in sg, taking into acount
* chaining as well
*
**/
int sg_nents(struct scatterlist *sg)
{
int nents;
for (nents = 0; sg; sg = sg_next(sg))
nents++;
return nents;
}
EXPORT_SYMBOL(sg_nents);
/**
* sg_nents_for_len - return total count of entries in scatterlist
* needed to satisfy the supplied length
* @sg: The scatterlist
* @len: The total required length
*
* Description:
* Determines the number of entries in sg that are required to meet
* the supplied length, taking into acount chaining as well
*
* Returns:
* the number of sg entries needed, negative error on failure
*
**/
int sg_nents_for_len(struct scatterlist *sg, u64 len)
{
int nents;
u64 total;
if (!len)
return 0;
for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
nents++;
total += sg->length;
if (total >= len)
return nents;
}
return -EINVAL;
}
EXPORT_SYMBOL(sg_nents_for_len);
/**
* sg_last - return the last scatterlist entry in a list
* @sgl: First entry in the scatterlist
* @nents: Number of entries in the scatterlist
*
* Description:
* Should only be used casually, it (currently) scans the entire list
* to get the last entry.
*
* Note that the @sgl@ pointer passed in need not be the first one,
* the important bit is that @nents@ denotes the number of entries that
* exist from @sgl@.
*
**/
struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
{
struct scatterlist *sg, *ret = NULL;
unsigned int i;
for_each_sg(sgl, sg, nents, i)
ret = sg;
BUG_ON(!sg_is_last(ret));
return ret;
}
EXPORT_SYMBOL(sg_last);
/**
* sg_init_table - Initialize SG table
* @sgl: The SG table
* @nents: Number of entries in table
*
* Notes:
* If this is part of a chained sg table, sg_mark_end() should be
* used only on the last table part.
*
**/
void sg_init_table(struct scatterlist *sgl, unsigned int nents)
{
memset(sgl, 0, sizeof(*sgl) * nents);
sg_init_marker(sgl, nents);
}
EXPORT_SYMBOL(sg_init_table);
/**
* sg_init_one - Initialize a single entry sg list
* @sg: SG entry
* @buf: Virtual address for IO
* @buflen: IO length
*
**/
void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
{
sg_init_table(sg, 1);
sg_set_buf(sg, buf, buflen);
}
EXPORT_SYMBOL(sg_init_one);
/*
* The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
* helpers.
*/
static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
/*
* Kmemleak doesn't track page allocations as they are not
* commonly used (in a raw form) for kernel data structures.
* As we chain together a list of pages and then a normal
* kmalloc (tracked by kmemleak), in order to for that last
* allocation not to become decoupled (and thus a
* false-positive) we need to inform kmemleak of all the
* intermediate allocations.
*/
void *ptr = (void *) __get_free_page(gfp_mask);
kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
return ptr;
} else
return kmalloc_array(nents, sizeof(struct scatterlist),
gfp_mask);
}
static void sg_kfree(struct scatterlist *sg, unsigned int nents)
{
if (nents == SG_MAX_SINGLE_ALLOC) {
kmemleak_free(sg);
free_page((unsigned long) sg);
} else
kfree(sg);
}
/**
* __sg_free_table - Free a previously mapped sg table
* @table: The sg table header to use
* @max_ents: The maximum number of entries per single scatterlist
* @nents_first_chunk: Number of entries int the (preallocated) first
* scatterlist chunk, 0 means no such preallocated first chunk
* @free_fn: Free function
*
* Description:
* Free an sg table previously allocated and setup with
* __sg_alloc_table(). The @max_ents value must be identical to
* that previously used with __sg_alloc_table().
*
**/
void __sg_free_table(struct sg_table *table, unsigned int max_ents,
unsigned int nents_first_chunk, sg_free_fn *free_fn)
{
struct scatterlist *sgl, *next;
unsigned curr_max_ents = nents_first_chunk ?: max_ents;
if (unlikely(!table->sgl))
return;
sgl = table->sgl;
while (table->orig_nents) {
unsigned int alloc_size = table->orig_nents;
unsigned int sg_size;
/*
* If we have more than max_ents segments left,
* then assign 'next' to the sg table after the current one.
* sg_size is then one less than alloc size, since the last
* element is the chain pointer.
*/
if (alloc_size > curr_max_ents) {
next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
alloc_size = curr_max_ents;
sg_size = alloc_size - 1;
} else {
sg_size = alloc_size;
next = NULL;
}
table->orig_nents -= sg_size;
if (nents_first_chunk)
nents_first_chunk = 0;
else
free_fn(sgl, alloc_size);
sgl = next;
curr_max_ents = max_ents;
}
table->sgl = NULL;
}
EXPORT_SYMBOL(__sg_free_table);
/**
* sg_free_table - Free a previously allocated sg table
* @table: The mapped sg table header
*
**/
void sg_free_table(struct sg_table *table)
{
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
}
EXPORT_SYMBOL(sg_free_table);
/**
* __sg_alloc_table - Allocate and initialize an sg table with given allocator
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @max_ents: The maximum number of entries the allocator returns per call
* @nents_first_chunk: Number of entries int the (preallocated) first
* scatterlist chunk, 0 means no such preallocated chunk provided by user
* @gfp_mask: GFP allocation mask
* @alloc_fn: Allocator to use
*
* Description:
* This function returns a @table @nents long. The allocator is
* defined to return scatterlist chunks of maximum size @max_ents.
* Thus if @nents is bigger than @max_ents, the scatterlists will be
* chained in units of @max_ents.
*
* Notes:
* If this function returns non-0 (eg failure), the caller must call
* __sg_free_table() to cleanup any leftover allocations.
*
**/
int __sg_alloc_table(struct sg_table *table, unsigned int nents,
unsigned int max_ents, struct scatterlist *first_chunk,
unsigned int nents_first_chunk, gfp_t gfp_mask,
sg_alloc_fn *alloc_fn)
{
struct scatterlist *sg, *prv;
unsigned int left;
unsigned curr_max_ents = nents_first_chunk ?: max_ents;
unsigned prv_max_ents;
memset(table, 0, sizeof(*table));
if (nents == 0)
return -EINVAL;
#ifdef CONFIG_ARCH_NO_SG_CHAIN
if (WARN_ON_ONCE(nents > max_ents))
return -EINVAL;
#endif
left = nents;
prv = NULL;
do {
unsigned int sg_size, alloc_size = left;
if (alloc_size > curr_max_ents) {
alloc_size = curr_max_ents;
sg_size = alloc_size - 1;
} else
sg_size = alloc_size;
left -= sg_size;
if (first_chunk) {
sg = first_chunk;
first_chunk = NULL;
} else {
sg = alloc_fn(alloc_size, gfp_mask);
}
if (unlikely(!sg)) {
/*
* Adjust entry count to reflect that the last
* entry of the previous table won't be used for
* linkage. Without this, sg_kfree() may get
* confused.
*/
if (prv)
table->nents = ++table->orig_nents;
return -ENOMEM;
}
sg_init_table(sg, alloc_size);
table->nents = table->orig_nents += sg_size;
/*
* If this is the first mapping, assign the sg table header.
* If this is not the first mapping, chain previous part.
*/
if (prv)
sg_chain(prv, prv_max_ents, sg);
else
table->sgl = sg;
/*
* If no more entries after this one, mark the end
*/
if (!left)
sg_mark_end(&sg[sg_size - 1]);
prv = sg;
prv_max_ents = curr_max_ents;
curr_max_ents = max_ents;
} while (left);
return 0;
}
EXPORT_SYMBOL(__sg_alloc_table);
/**
* sg_alloc_table - Allocate and initialize an sg table
* @table: The sg table header to use
* @nents: Number of entries in sg list
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table. If @nents@ is larger than
* SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
*
**/
int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
{
int ret;
ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
NULL, 0, gfp_mask, sg_kmalloc);
if (unlikely(ret))
__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
return ret;
}
EXPORT_SYMBOL(sg_alloc_table);
/**
* __sg_alloc_table_from_pages - Allocate and initialize an sg table from
* an array of pages
* @sgt: The sg table header to use
* @pages: Pointer to an array of page pointers
* @n_pages: Number of pages in the pages array
* @offset: Offset from start of the first page to the start of a buffer
* @size: Number of valid bytes in the buffer (after offset)
* @max_segment: Maximum size of a scatterlist node in bytes (page aligned)
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table from a list of pages. Contiguous
* ranges of the pages are squashed into a single scatterlist node up to the
* maximum size specified in @max_segment. An user may provide an offset at a
* start and a size of valid data in a buffer specified by the page array.
* The returned sg table is released by sg_free_table.
*
* Returns:
* 0 on success, negative error on failure
*/
int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
unsigned int n_pages, unsigned int offset,
unsigned long size, unsigned int max_segment,
gfp_t gfp_mask)
{
unsigned int chunks, cur_page, seg_len, i;
int ret;
struct scatterlist *s;
if (WARN_ON(!max_segment || offset_in_page(max_segment)))
return -EINVAL;
/* compute number of contiguous chunks */
chunks = 1;
seg_len = 0;
for (i = 1; i < n_pages; i++) {
seg_len += PAGE_SIZE;
if (seg_len >= max_segment ||
page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
chunks++;
seg_len = 0;
}
}
ret = sg_alloc_table(sgt, chunks, gfp_mask);
if (unlikely(ret))
return ret;
/* merging chunks and putting them into the scatterlist */
cur_page = 0;
for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
unsigned int j, chunk_size;
/* look for the end of the current chunk */
seg_len = 0;
for (j = cur_page + 1; j < n_pages; j++) {
seg_len += PAGE_SIZE;
if (seg_len >= max_segment ||
page_to_pfn(pages[j]) !=
page_to_pfn(pages[j - 1]) + 1)
break;
}
chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
sg_set_page(s, pages[cur_page],
min_t(unsigned long, size, chunk_size), offset);
size -= chunk_size;
offset = 0;
cur_page = j;
}
return 0;
}
EXPORT_SYMBOL(__sg_alloc_table_from_pages);
/**
* sg_alloc_table_from_pages - Allocate and initialize an sg table from
* an array of pages
* @sgt: The sg table header to use
* @pages: Pointer to an array of page pointers
* @n_pages: Number of pages in the pages array
* @offset: Offset from start of the first page to the start of a buffer
* @size: Number of valid bytes in the buffer (after offset)
* @gfp_mask: GFP allocation mask
*
* Description:
* Allocate and initialize an sg table from a list of pages. Contiguous
* ranges of the pages are squashed into a single scatterlist node. A user
* may provide an offset at a start and a size of valid data in a buffer
* specified by the page array. The returned sg table is released by
* sg_free_table.
*
* Returns:
* 0 on success, negative error on failure
*/
int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
unsigned int n_pages, unsigned int offset,
unsigned long size, gfp_t gfp_mask)
{
return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size,
SCATTERLIST_MAX_SEGMENT, gfp_mask);
}
EXPORT_SYMBOL(sg_alloc_table_from_pages);
#ifdef CONFIG_SGL_ALLOC
/**
* sgl_alloc_order - allocate a scatterlist and its pages
* @length: Length in bytes of the scatterlist. Must be at least one
* @order: Second argument for alloc_pages()
* @chainable: Whether or not to allocate an extra element in the scatterlist
* for scatterlist chaining purposes
* @gfp: Memory allocation flags
* @nent_p: [out] Number of entries in the scatterlist that have pages
*
* Returns: A pointer to an initialized scatterlist or %NULL upon failure.
*/
struct scatterlist *sgl_alloc_order(unsigned long long length,
unsigned int order, bool chainable,
gfp_t gfp, unsigned int *nent_p)
{
struct scatterlist *sgl, *sg;
struct page *page;
unsigned int nent, nalloc;
u32 elem_len;
nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
/* Check for integer overflow */
if (length > (nent << (PAGE_SHIFT + order)))
return NULL;
nalloc = nent;
if (chainable) {
/* Check for integer overflow */
if (nalloc + 1 < nalloc)
return NULL;
nalloc++;
}
sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
(gfp & ~GFP_DMA) | __GFP_ZERO);
if (!sgl)
return NULL;
sg_init_table(sgl, nalloc);
sg = sgl;
while (length) {
elem_len = min_t(u64, length, PAGE_SIZE << order);
page = alloc_pages(gfp, order);
if (!page) {
sgl_free(sgl);
return NULL;
}
sg_set_page(sg, page, elem_len, 0);
length -= elem_len;
sg = sg_next(sg);
}
WARN_ONCE(length, "length = %lld\n", length);
if (nent_p)
*nent_p = nent;
return sgl;
}
EXPORT_SYMBOL(sgl_alloc_order);
/**
* sgl_alloc - allocate a scatterlist and its pages
* @length: Length in bytes of the scatterlist
* @gfp: Memory allocation flags
* @nent_p: [out] Number of entries in the scatterlist
*
* Returns: A pointer to an initialized scatterlist or %NULL upon failure.
*/
struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
unsigned int *nent_p)
{
return sgl_alloc_order(length, 0, false, gfp, nent_p);
}
EXPORT_SYMBOL(sgl_alloc);
/**
* sgl_free_n_order - free a scatterlist and its pages
* @sgl: Scatterlist with one or more elements
* @nents: Maximum number of elements to free
* @order: Second argument for __free_pages()
*
* Notes:
* - If several scatterlists have been chained and each chain element is
* freed separately then it's essential to set nents correctly to avoid that a
* page would get freed twice.
* - All pages in a chained scatterlist can be freed at once by setting @nents
* to a high number.
*/
void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
{
struct scatterlist *sg;
struct page *page;
int i;
for_each_sg(sgl, sg, nents, i) {
if (!sg)
break;
page = sg_page(sg);
if (page)
__free_pages(page, order);
}
kfree(sgl);
}
EXPORT_SYMBOL(sgl_free_n_order);
/**
* sgl_free_order - free a scatterlist and its pages
* @sgl: Scatterlist with one or more elements
* @order: Second argument for __free_pages()
*/
void sgl_free_order(struct scatterlist *sgl, int order)
{
sgl_free_n_order(sgl, INT_MAX, order);
}
EXPORT_SYMBOL(sgl_free_order);
/**
* sgl_free - free a scatterlist and its pages
* @sgl: Scatterlist with one or more elements
*/
void sgl_free(struct scatterlist *sgl)
{
sgl_free_order(sgl, 0);
}
EXPORT_SYMBOL(sgl_free);
#endif /* CONFIG_SGL_ALLOC */
void __sg_page_iter_start(struct sg_page_iter *piter,
struct scatterlist *sglist, unsigned int nents,
unsigned long pgoffset)
{
piter->__pg_advance = 0;
piter->__nents = nents;
piter->sg = sglist;
piter->sg_pgoffset = pgoffset;
}
EXPORT_SYMBOL(__sg_page_iter_start);
static int sg_page_count(struct scatterlist *sg)
{
return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
}
bool __sg_page_iter_next(struct sg_page_iter *piter)
{
if (!piter->__nents || !piter->sg)
return false;
piter->sg_pgoffset += piter->__pg_advance;
piter->__pg_advance = 1;
while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
piter->sg_pgoffset -= sg_page_count(piter->sg);
piter->sg = sg_next(piter->sg);
if (!--piter->__nents || !piter->sg)
return false;
}
return true;
}
EXPORT_SYMBOL(__sg_page_iter_next);
static int sg_dma_page_count(struct scatterlist *sg)
{
return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
}
bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
{
struct sg_page_iter *piter = &dma_iter->base;
if (!piter->__nents || !piter->sg)
return false;
piter->sg_pgoffset += piter->__pg_advance;
piter->__pg_advance = 1;
while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
piter->sg = sg_next(piter->sg);
if (!--piter->__nents || !piter->sg)
return false;
}
return true;
}
EXPORT_SYMBOL(__sg_page_iter_dma_next);
/**
* sg_miter_start - start mapping iteration over a sg list
* @miter: sg mapping iter to be started
* @sgl: sg list to iterate over
* @nents: number of sg entries
*
* Description:
* Starts mapping iterator @miter.
*
* Context:
* Don't care.
*/
void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
unsigned int nents, unsigned int flags)
{
memset(miter, 0, sizeof(struct sg_mapping_iter));
__sg_page_iter_start(&miter->piter, sgl, nents, 0);
WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
miter->__flags = flags;
}
EXPORT_SYMBOL(sg_miter_start);
static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
{
if (!miter->__remaining) {
struct scatterlist *sg;
if (!__sg_page_iter_next(&miter->piter))
return false;
sg = miter->piter.sg;
miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
miter->__offset &= PAGE_SIZE - 1;
miter->__remaining = sg->offset + sg->length -
(miter->piter.sg_pgoffset << PAGE_SHIFT) -
miter->__offset;
miter->__remaining = min_t(unsigned long, miter->__remaining,
PAGE_SIZE - miter->__offset);
}
return true;
}
/**
* sg_miter_skip - reposition mapping iterator
* @miter: sg mapping iter to be skipped
* @offset: number of bytes to plus the current location
*
* Description:
* Sets the offset of @miter to its current location plus @offset bytes.
* If mapping iterator @miter has been proceeded by sg_miter_next(), this
* stops @miter.
*
* Context:
* Don't care if @miter is stopped, or not proceeded yet.
* Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
*
* Returns:
* true if @miter contains the valid mapping. false if end of sg
* list is reached.
*/
bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
{
sg_miter_stop(miter);
while (offset) {
off_t consumed;
if (!sg_miter_get_next_page(miter))
return false;
consumed = min_t(off_t, offset, miter->__remaining);
miter->__offset += consumed;
miter->__remaining -= consumed;
offset -= consumed;
}
return true;
}
EXPORT_SYMBOL(sg_miter_skip);
/**
* sg_miter_next - proceed mapping iterator to the next mapping
* @miter: sg mapping iter to proceed
*
* Description:
* Proceeds @miter to the next mapping. @miter should have been started
* using sg_miter_start(). On successful return, @miter->page,
* @miter->addr and @miter->length point to the current mapping.
*
* Context:
* Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled
* till @miter is stopped. May sleep if !SG_MITER_ATOMIC.
*
* Returns:
* true if @miter contains the next mapping. false if end of sg
* list is reached.
*/
bool sg_miter_next(struct sg_mapping_iter *miter)
{
sg_miter_stop(miter);
/*
* Get to the next page if necessary.
* __remaining, __offset is adjusted by sg_miter_stop
*/
if (!sg_miter_get_next_page(miter))
return false;
miter->page = sg_page_iter_page(&miter->piter);
miter->consumed = miter->length = miter->__remaining;
if (miter->__flags & SG_MITER_ATOMIC)
miter->addr = kmap_atomic(miter->page) + miter->__offset;
else
miter->addr = kmap(miter->page) + miter->__offset;
return true;
}
EXPORT_SYMBOL(sg_miter_next);
/**
* sg_miter_stop - stop mapping iteration
* @miter: sg mapping iter to be stopped
*
* Description:
* Stops mapping iterator @miter. @miter should have been started
* using sg_miter_start(). A stopped iteration can be resumed by
* calling sg_miter_next() on it. This is useful when resources (kmap)
* need to be released during iteration.
*
* Context:
* Preemption disabled if the SG_MITER_ATOMIC is set. Don't care
* otherwise.
*/
void sg_miter_stop(struct sg_mapping_iter *miter)
{
WARN_ON(miter->consumed > miter->length);
/* drop resources from the last iteration */
if (miter->addr) {
miter->__offset += miter->consumed;
miter->__remaining -= miter->consumed;
if ((miter->__flags & SG_MITER_TO_SG) &&
!PageSlab(miter->page))
flush_kernel_dcache_page(miter->page);
if (miter->__flags & SG_MITER_ATOMIC) {
WARN_ON_ONCE(preemptible());
kunmap_atomic(miter->addr);
} else
kunmap(miter->page);
miter->page = NULL;
miter->addr = NULL;
miter->length = 0;
miter->consumed = 0;
}
}
EXPORT_SYMBOL(sg_miter_stop);
/**
* sg_copy_buffer - Copy data between a linear buffer and an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
* @to_buffer: transfer direction (true == from an sg list to a
* buffer, false == from a buffer to an sg list)
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
size_t buflen, off_t skip, bool to_buffer)
{
unsigned int offset = 0;
struct sg_mapping_iter miter;
unsigned int sg_flags = SG_MITER_ATOMIC;
if (to_buffer)
sg_flags |= SG_MITER_FROM_SG;
else
sg_flags |= SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
if (!sg_miter_skip(&miter, skip))
return false;
while ((offset < buflen) && sg_miter_next(&miter)) {
unsigned int len;
len = min(miter.length, buflen - offset);
if (to_buffer)
memcpy(buf + offset, miter.addr, len);
else
memcpy(miter.addr, buf + offset, len);
offset += len;
}
sg_miter_stop(&miter);
return offset;
}
EXPORT_SYMBOL(sg_copy_buffer);
/**
* sg_copy_from_buffer - Copy from a linear buffer to an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
const void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
}
EXPORT_SYMBOL(sg_copy_from_buffer);
/**
* sg_copy_to_buffer - Copy from an SG list to a linear buffer
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy to
* @buflen: The number of bytes to copy
*
* Returns the number of copied bytes.
*
**/
size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen)
{
return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
}
EXPORT_SYMBOL(sg_copy_to_buffer);
/**
* sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy from
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
*
* Returns the number of copied bytes.
*
**/
size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
const void *buf, size_t buflen, off_t skip)
{
return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
}
EXPORT_SYMBOL(sg_pcopy_from_buffer);
/**
* sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
* @sgl: The SG list
* @nents: Number of SG entries
* @buf: Where to copy to
* @buflen: The number of bytes to copy
* @skip: Number of bytes to skip before copying
*
* Returns the number of copied bytes.
*
**/
size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
void *buf, size_t buflen, off_t skip)
{
return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
}
EXPORT_SYMBOL(sg_pcopy_to_buffer);
/**
* sg_zero_buffer - Zero-out a part of a SG list
* @sgl: The SG list
* @nents: Number of SG entries
* @buflen: The number of bytes to zero out
* @skip: Number of bytes to skip before zeroing
*
* Returns the number of bytes zeroed.
**/
size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
size_t buflen, off_t skip)
{
unsigned int offset = 0;
struct sg_mapping_iter miter;
unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
sg_miter_start(&miter, sgl, nents, sg_flags);
if (!sg_miter_skip(&miter, skip))
return false;
while (offset < buflen && sg_miter_next(&miter)) {
unsigned int len;
len = min(miter.length, buflen - offset);
memset(miter.addr, 0, len);
offset += len;
}
sg_miter_stop(&miter);
return offset;
}
EXPORT_SYMBOL(sg_zero_buffer);
|