summaryrefslogtreecommitdiffstats
path: root/lib/zstd/common/fse_decompress.c
blob: a0d06095be83de601e292f3154235bfcde946dae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/* ******************************************************************
 * FSE : Finite State Entropy decoder
 * Copyright (c) Yann Collet, Facebook, Inc.
 *
 *  You can contact the author at :
 *  - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
 *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
****************************************************************** */


/* **************************************************************
*  Includes
****************************************************************/
#include "debug.h"      /* assert */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h"


/* **************************************************************
*  Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */


/* **************************************************************
*  Templates
****************************************************************/
/*
  designed to be included
  for type-specific functions (template emulation in C)
  Objective is to write these functions only once, for improved maintenance
*/

/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
#  error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
#  error "FSE_FUNCTION_TYPE must be defined"
#endif

/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)


/* Function templates */
FSE_DTable* FSE_createDTable (unsigned tableLog)
{
    if (tableLog > FSE_TABLELOG_ABSOLUTE_MAX) tableLog = FSE_TABLELOG_ABSOLUTE_MAX;
    return (FSE_DTable*)ZSTD_malloc( FSE_DTABLE_SIZE_U32(tableLog) * sizeof (U32) );
}

void FSE_freeDTable (FSE_DTable* dt)
{
    ZSTD_free(dt);
}

static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
    void* const tdPtr = dt+1;   /* because *dt is unsigned, 32-bits aligned on 32-bits */
    FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
    U16* symbolNext = (U16*)workSpace;
    BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1);

    U32 const maxSV1 = maxSymbolValue + 1;
    U32 const tableSize = 1 << tableLog;
    U32 highThreshold = tableSize-1;

    /* Sanity Checks */
    if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge);
    if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
    if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);

    /* Init, lay down lowprob symbols */
    {   FSE_DTableHeader DTableH;
        DTableH.tableLog = (U16)tableLog;
        DTableH.fastMode = 1;
        {   S16 const largeLimit= (S16)(1 << (tableLog-1));
            U32 s;
            for (s=0; s<maxSV1; s++) {
                if (normalizedCounter[s]==-1) {
                    tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
                    symbolNext[s] = 1;
                } else {
                    if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
                    symbolNext[s] = normalizedCounter[s];
        }   }   }
        ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
    }

    /* Spread symbols */
    if (highThreshold == tableSize - 1) {
        size_t const tableMask = tableSize-1;
        size_t const step = FSE_TABLESTEP(tableSize);
        /* First lay down the symbols in order.
         * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
         * misses since small blocks generally have small table logs, so nearly
         * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
         * our buffer to handle the over-write.
         */
        {
            U64 const add = 0x0101010101010101ull;
            size_t pos = 0;
            U64 sv = 0;
            U32 s;
            for (s=0; s<maxSV1; ++s, sv += add) {
                int i;
                int const n = normalizedCounter[s];
                MEM_write64(spread + pos, sv);
                for (i = 8; i < n; i += 8) {
                    MEM_write64(spread + pos + i, sv);
                }
                pos += n;
            }
        }
        /* Now we spread those positions across the table.
         * The benefit of doing it in two stages is that we avoid the the
         * variable size inner loop, which caused lots of branch misses.
         * Now we can run through all the positions without any branch misses.
         * We unroll the loop twice, since that is what emperically worked best.
         */
        {
            size_t position = 0;
            size_t s;
            size_t const unroll = 2;
            assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
            for (s = 0; s < (size_t)tableSize; s += unroll) {
                size_t u;
                for (u = 0; u < unroll; ++u) {
                    size_t const uPosition = (position + (u * step)) & tableMask;
                    tableDecode[uPosition].symbol = spread[s + u];
                }
                position = (position + (unroll * step)) & tableMask;
            }
            assert(position == 0);
        }
    } else {
        U32 const tableMask = tableSize-1;
        U32 const step = FSE_TABLESTEP(tableSize);
        U32 s, position = 0;
        for (s=0; s<maxSV1; s++) {
            int i;
            for (i=0; i<normalizedCounter[s]; i++) {
                tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
                position = (position + step) & tableMask;
                while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
        }   }
        if (position!=0) return ERROR(GENERIC);   /* position must reach all cells once, otherwise normalizedCounter is incorrect */
    }

    /* Build Decoding table */
    {   U32 u;
        for (u=0; u<tableSize; u++) {
            FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
            U32 const nextState = symbolNext[symbol]++;
            tableDecode[u].nbBits = (BYTE) (tableLog - BIT_highbit32(nextState) );
            tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
    }   }

    return 0;
}

size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
    return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize);
}


#ifndef FSE_COMMONDEFS_ONLY

/*-*******************************************************
*  Decompression (Byte symbols)
*********************************************************/
size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    void* dPtr = dt + 1;
    FSE_decode_t* const cell = (FSE_decode_t*)dPtr;

    DTableH->tableLog = 0;
    DTableH->fastMode = 0;

    cell->newState = 0;
    cell->symbol = symbolValue;
    cell->nbBits = 0;

    return 0;
}


size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
{
    void* ptr = dt;
    FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
    void* dPtr = dt + 1;
    FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
    const unsigned tableSize = 1 << nbBits;
    const unsigned tableMask = tableSize - 1;
    const unsigned maxSV1 = tableMask+1;
    unsigned s;

    /* Sanity checks */
    if (nbBits < 1) return ERROR(GENERIC);         /* min size */

    /* Build Decoding Table */
    DTableH->tableLog = (U16)nbBits;
    DTableH->fastMode = 1;
    for (s=0; s<maxSV1; s++) {
        dinfo[s].newState = 0;
        dinfo[s].symbol = (BYTE)s;
        dinfo[s].nbBits = (BYTE)nbBits;
    }

    return 0;
}

FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
          void* dst, size_t maxDstSize,
    const void* cSrc, size_t cSrcSize,
    const FSE_DTable* dt, const unsigned fast)
{
    BYTE* const ostart = (BYTE*) dst;
    BYTE* op = ostart;
    BYTE* const omax = op + maxDstSize;
    BYTE* const olimit = omax-3;

    BIT_DStream_t bitD;
    FSE_DState_t state1;
    FSE_DState_t state2;

    /* Init */
    CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));

    FSE_initDState(&state1, &bitD, dt);
    FSE_initDState(&state2, &bitD, dt);

#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)

    /* 4 symbols per loop */
    for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
        op[0] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            BIT_reloadDStream(&bitD);

        op[1] = FSE_GETSYMBOL(&state2);

        if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }

        op[2] = FSE_GETSYMBOL(&state1);

        if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
            BIT_reloadDStream(&bitD);

        op[3] = FSE_GETSYMBOL(&state2);
    }

    /* tail */
    /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
    while (1) {
        if (op>(omax-2)) return ERROR(dstSize_tooSmall);
        *op++ = FSE_GETSYMBOL(&state1);
        if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
            *op++ = FSE_GETSYMBOL(&state2);
            break;
        }

        if (op>(omax-2)) return ERROR(dstSize_tooSmall);
        *op++ = FSE_GETSYMBOL(&state2);
        if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
            *op++ = FSE_GETSYMBOL(&state1);
            break;
    }   }

    return op-ostart;
}


size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
                            const void* cSrc, size_t cSrcSize,
                            const FSE_DTable* dt)
{
    const void* ptr = dt;
    const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
    const U32 fastMode = DTableH->fastMode;

    /* select fast mode (static) */
    if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
    return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
}


size_t FSE_decompress_wksp(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
    return FSE_decompress_wksp_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, /* bmi2 */ 0);
}

typedef struct {
    short ncount[FSE_MAX_SYMBOL_VALUE + 1];
    FSE_DTable dtable[1]; /* Dynamically sized */
} FSE_DecompressWksp;


FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
        void* dst, size_t dstCapacity,
        const void* cSrc, size_t cSrcSize,
        unsigned maxLog, void* workSpace, size_t wkspSize,
        int bmi2)
{
    const BYTE* const istart = (const BYTE*)cSrc;
    const BYTE* ip = istart;
    unsigned tableLog;
    unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
    FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;

    DEBUG_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
    if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);

    /* normal FSE decoding mode */
    {
        size_t const NCountLength = FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
        if (FSE_isError(NCountLength)) return NCountLength;
        if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
        assert(NCountLength <= cSrcSize);
        ip += NCountLength;
        cSrcSize -= NCountLength;
    }

    if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
    workSpace = wksp->dtable + FSE_DTABLE_SIZE_U32(tableLog);
    wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);

    CHECK_F( FSE_buildDTable_internal(wksp->dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );

    {
        const void* ptr = wksp->dtable;
        const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
        const U32 fastMode = DTableH->fastMode;

        /* select fast mode (static) */
        if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 1);
        return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, wksp->dtable, 0);
    }
}

/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
    return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0);
}

#if DYNAMIC_BMI2
BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
    return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
}
#endif

size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
    if (bmi2) {
        return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
    }
#endif
    (void)bmi2;
    return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}


typedef FSE_DTable DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];



#endif   /* FSE_COMMONDEFS_ONLY */