summaryrefslogtreecommitdiffstats
path: root/tools/lib/bpf/bpf_core_read.h
blob: 7009dc90e012a5851d2d382022e3754f62751b2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
#ifndef __BPF_CORE_READ_H__
#define __BPF_CORE_READ_H__

/*
 * enum bpf_field_info_kind is passed as a second argument into
 * __builtin_preserve_field_info() built-in to get a specific aspect of
 * a field, captured as a first argument. __builtin_preserve_field_info(field,
 * info_kind) returns __u32 integer and produces BTF field relocation, which
 * is understood and processed by libbpf during BPF object loading. See
 * selftests/bpf for examples.
 */
enum bpf_field_info_kind {
	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
	BPF_FIELD_BYTE_SIZE = 1,
	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
	BPF_FIELD_SIGNED = 3,
	BPF_FIELD_LSHIFT_U64 = 4,
	BPF_FIELD_RSHIFT_U64 = 5,
};

#define __CORE_RELO(src, field, info)					      \
	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)

#if __BYTE_ORDER == __LITTLE_ENDIAN
#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
	bpf_probe_read((void *)dst,					      \
		       __CORE_RELO(src, fld, BYTE_SIZE),		      \
		       (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
#else
/* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
 * for big-endian we need to adjust destination pointer accordingly, based on
 * field byte size
 */
#define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
	bpf_probe_read((void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)),  \
		       __CORE_RELO(src, fld, BYTE_SIZE),		      \
		       (const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
#endif

/*
 * Extract bitfield, identified by s->field, and return its value as u64.
 * All this is done in relocatable manner, so bitfield changes such as
 * signedness, bit size, offset changes, this will be handled automatically.
 * This version of macro is using bpf_probe_read() to read underlying integer
 * storage. Macro functions as an expression and its return type is
 * bpf_probe_read()'s return value: 0, on success, <0 on error.
 */
#define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
	unsigned long long val = 0;					      \
									      \
	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
	if (__CORE_RELO(s, field, SIGNED))				      \
		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
	else								      \
		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
	val;								      \
})

/*
 * Extract bitfield, identified by s->field, and return its value as u64.
 * This version of macro is using direct memory reads and should be used from
 * BPF program types that support such functionality (e.g., typed raw
 * tracepoints).
 */
#define BPF_CORE_READ_BITFIELD(s, field) ({				      \
	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
	unsigned long long val;						      \
									      \
	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
	case 1: val = *(const unsigned char *)p;			      \
	case 2: val = *(const unsigned short *)p;			      \
	case 4: val = *(const unsigned int *)p;				      \
	case 8: val = *(const unsigned long long *)p;			      \
	}								      \
	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
	if (__CORE_RELO(s, field, SIGNED))				      \
		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
	else								      \
		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
	val;								      \
})

/*
 * Convenience macro to check that field actually exists in target kernel's.
 * Returns:
 *    1, if matching field is present in target kernel;
 *    0, if no matching field found.
 */
#define bpf_core_field_exists(field)					    \
	__builtin_preserve_field_info(field, BPF_FIELD_EXISTS)

/*
 * Convenience macro to get byte size of a field. Works for integers,
 * struct/unions, pointers, arrays, and enums.
 */
#define bpf_core_field_size(field)					    \
	__builtin_preserve_field_info(field, BPF_FIELD_BYTE_SIZE)

/*
 * bpf_core_read() abstracts away bpf_probe_read() call and captures offset
 * relocation for source address using __builtin_preserve_access_index()
 * built-in, provided by Clang.
 *
 * __builtin_preserve_access_index() takes as an argument an expression of
 * taking an address of a field within struct/union. It makes compiler emit
 * a relocation, which records BTF type ID describing root struct/union and an
 * accessor string which describes exact embedded field that was used to take
 * an address. See detailed description of this relocation format and
 * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
 *
 * This relocation allows libbpf to adjust BPF instruction to use correct
 * actual field offset, based on target kernel BTF type that matches original
 * (local) BTF, used to record relocation.
 */
#define bpf_core_read(dst, sz, src)					    \
	bpf_probe_read(dst, sz,						    \
		       (const void *)__builtin_preserve_access_index(src))

/*
 * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
 * additionally emitting BPF CO-RE field relocation for specified source
 * argument.
 */
#define bpf_core_read_str(dst, sz, src)					    \
	bpf_probe_read_str(dst, sz,					    \
			   (const void *)__builtin_preserve_access_index(src))

#define ___concat(a, b) a ## b
#define ___apply(fn, n) ___concat(fn, n)
#define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N

/*
 * return number of provided arguments; used for switch-based variadic macro
 * definitions (see ___last, ___arrow, etc below)
 */
#define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
/*
 * return 0 if no arguments are passed, N - otherwise; used for
 * recursively-defined macros to specify termination (0) case, and generic
 * (N) case (e.g., ___read_ptrs, ___core_read)
 */
#define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)

#define ___last1(x) x
#define ___last2(a, x) x
#define ___last3(a, b, x) x
#define ___last4(a, b, c, x) x
#define ___last5(a, b, c, d, x) x
#define ___last6(a, b, c, d, e, x) x
#define ___last7(a, b, c, d, e, f, x) x
#define ___last8(a, b, c, d, e, f, g, x) x
#define ___last9(a, b, c, d, e, f, g, h, x) x
#define ___last10(a, b, c, d, e, f, g, h, i, x) x
#define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)

#define ___nolast2(a, _) a
#define ___nolast3(a, b, _) a, b
#define ___nolast4(a, b, c, _) a, b, c
#define ___nolast5(a, b, c, d, _) a, b, c, d
#define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
#define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
#define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
#define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
#define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
#define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)

#define ___arrow1(a) a
#define ___arrow2(a, b) a->b
#define ___arrow3(a, b, c) a->b->c
#define ___arrow4(a, b, c, d) a->b->c->d
#define ___arrow5(a, b, c, d, e) a->b->c->d->e
#define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
#define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
#define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
#define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
#define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
#define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)

#define ___type(...) typeof(___arrow(__VA_ARGS__))

#define ___read(read_fn, dst, src_type, src, accessor)			    \
	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)

/* "recursively" read a sequence of inner pointers using local __t var */
#define ___rd_first(src, a) ___read(bpf_core_read, &__t, ___type(src), src, a);
#define ___rd_last(...)							    \
	___read(bpf_core_read, &__t,					    \
		___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
#define ___rd_p1(...) const void *__t; ___rd_first(__VA_ARGS__)
#define ___rd_p2(...) ___rd_p1(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p3(...) ___rd_p2(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p4(...) ___rd_p3(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p5(...) ___rd_p4(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p6(...) ___rd_p5(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p7(...) ___rd_p6(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p8(...) ___rd_p7(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___rd_p9(...) ___rd_p8(___nolast(__VA_ARGS__)) ___rd_last(__VA_ARGS__)
#define ___read_ptrs(src, ...)						    \
	___apply(___rd_p, ___narg(__VA_ARGS__))(src, __VA_ARGS__)

#define ___core_read0(fn, dst, src, a)					    \
	___read(fn, dst, ___type(src), src, a);
#define ___core_readN(fn, dst, src, ...)				    \
	___read_ptrs(src, ___nolast(__VA_ARGS__))			    \
	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
		___last(__VA_ARGS__));
#define ___core_read(fn, dst, src, a, ...)				    \
	___apply(___core_read, ___empty(__VA_ARGS__))(fn, dst,		    \
						      src, a, ##__VA_ARGS__)

/*
 * BPF_CORE_READ_INTO() is a more performance-conscious variant of
 * BPF_CORE_READ(), in which final field is read into user-provided storage.
 * See BPF_CORE_READ() below for more details on general usage.
 */
#define BPF_CORE_READ_INTO(dst, src, a, ...)				    \
	({								    \
		___core_read(bpf_core_read, dst, src, a, ##__VA_ARGS__)	    \
	})

/*
 * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
 * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
 * corresponding error code) bpf_core_read_str() for final string read.
 */
#define BPF_CORE_READ_STR_INTO(dst, src, a, ...)			    \
	({								    \
		___core_read(bpf_core_read_str, dst, src, a, ##__VA_ARGS__) \
	})

/*
 * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
 * when there are few pointer chasing steps.
 * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
 *	int x = s->a.b.c->d.e->f->g;
 * can be succinctly achieved using BPF_CORE_READ as:
 *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
 *
 * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
 * CO-RE relocatable bpf_probe_read() wrapper) calls, logically equivalent to:
 * 1. const void *__t = s->a.b.c;
 * 2. __t = __t->d.e;
 * 3. __t = __t->f;
 * 4. return __t->g;
 *
 * Equivalence is logical, because there is a heavy type casting/preservation
 * involved, as well as all the reads are happening through bpf_probe_read()
 * calls using __builtin_preserve_access_index() to emit CO-RE relocations.
 *
 * N.B. Only up to 9 "field accessors" are supported, which should be more
 * than enough for any practical purpose.
 */
#define BPF_CORE_READ(src, a, ...)					    \
	({								    \
		___type(src, a, ##__VA_ARGS__) __r;			    \
		BPF_CORE_READ_INTO(&__r, src, a, ##__VA_ARGS__);	    \
		__r;							    \
	})

#endif