summaryrefslogtreecommitdiffstats
path: root/tools/perf/util/arm-spe.c
blob: 7b36ba6b4079d0102848950eb8b1baff1f49d9fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
// SPDX-License-Identifier: GPL-2.0
/*
 * Arm Statistical Profiling Extensions (SPE) support
 * Copyright (c) 2017-2018, Arm Ltd.
 */

#include <byteswap.h>
#include <endian.h>
#include <errno.h>
#include <inttypes.h>
#include <linux/bitops.h>
#include <linux/kernel.h>
#include <linux/log2.h>
#include <linux/types.h>
#include <linux/zalloc.h>
#include <stdlib.h>
#include <unistd.h>

#include "auxtrace.h"
#include "color.h"
#include "debug.h"
#include "evlist.h"
#include "evsel.h"
#include "machine.h"
#include "session.h"
#include "symbol.h"
#include "thread.h"
#include "thread-stack.h"
#include "tsc.h"
#include "tool.h"
#include "util/synthetic-events.h"

#include "arm-spe.h"
#include "arm-spe-decoder/arm-spe-decoder.h"
#include "arm-spe-decoder/arm-spe-pkt-decoder.h"

#include "../../arch/arm64/include/asm/cputype.h"
#define MAX_TIMESTAMP (~0ULL)

struct arm_spe {
	struct auxtrace			auxtrace;
	struct auxtrace_queues		queues;
	struct auxtrace_heap		heap;
	struct itrace_synth_opts        synth_opts;
	u32				auxtrace_type;
	struct perf_session		*session;
	struct machine			*machine;
	u32				pmu_type;
	u64				midr;

	struct perf_tsc_conversion	tc;

	u8				timeless_decoding;
	u8				data_queued;

	u64				sample_type;
	u8				sample_flc;
	u8				sample_llc;
	u8				sample_tlb;
	u8				sample_branch;
	u8				sample_remote_access;
	u8				sample_memory;
	u8				sample_instructions;
	u64				instructions_sample_period;

	u64				l1d_miss_id;
	u64				l1d_access_id;
	u64				llc_miss_id;
	u64				llc_access_id;
	u64				tlb_miss_id;
	u64				tlb_access_id;
	u64				branch_miss_id;
	u64				remote_access_id;
	u64				memory_id;
	u64				instructions_id;

	u64				kernel_start;

	unsigned long			num_events;
	u8				use_ctx_pkt_for_pid;
};

struct arm_spe_queue {
	struct arm_spe			*spe;
	unsigned int			queue_nr;
	struct auxtrace_buffer		*buffer;
	struct auxtrace_buffer		*old_buffer;
	union perf_event		*event_buf;
	bool				on_heap;
	bool				done;
	pid_t				pid;
	pid_t				tid;
	int				cpu;
	struct arm_spe_decoder		*decoder;
	u64				time;
	u64				timestamp;
	struct thread			*thread;
	u64				period_instructions;
};

static void arm_spe_dump(struct arm_spe *spe __maybe_unused,
			 unsigned char *buf, size_t len)
{
	struct arm_spe_pkt packet;
	size_t pos = 0;
	int ret, pkt_len, i;
	char desc[ARM_SPE_PKT_DESC_MAX];
	const char *color = PERF_COLOR_BLUE;

	color_fprintf(stdout, color,
		      ". ... ARM SPE data: size %#zx bytes\n",
		      len);

	while (len) {
		ret = arm_spe_get_packet(buf, len, &packet);
		if (ret > 0)
			pkt_len = ret;
		else
			pkt_len = 1;
		printf(".");
		color_fprintf(stdout, color, "  %08x: ", pos);
		for (i = 0; i < pkt_len; i++)
			color_fprintf(stdout, color, " %02x", buf[i]);
		for (; i < 16; i++)
			color_fprintf(stdout, color, "   ");
		if (ret > 0) {
			ret = arm_spe_pkt_desc(&packet, desc,
					       ARM_SPE_PKT_DESC_MAX);
			if (!ret)
				color_fprintf(stdout, color, " %s\n", desc);
		} else {
			color_fprintf(stdout, color, " Bad packet!\n");
		}
		pos += pkt_len;
		buf += pkt_len;
		len -= pkt_len;
	}
}

static void arm_spe_dump_event(struct arm_spe *spe, unsigned char *buf,
			       size_t len)
{
	printf(".\n");
	arm_spe_dump(spe, buf, len);
}

static int arm_spe_get_trace(struct arm_spe_buffer *b, void *data)
{
	struct arm_spe_queue *speq = data;
	struct auxtrace_buffer *buffer = speq->buffer;
	struct auxtrace_buffer *old_buffer = speq->old_buffer;
	struct auxtrace_queue *queue;

	queue = &speq->spe->queues.queue_array[speq->queue_nr];

	buffer = auxtrace_buffer__next(queue, buffer);
	/* If no more data, drop the previous auxtrace_buffer and return */
	if (!buffer) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
		b->len = 0;
		return 0;
	}

	speq->buffer = buffer;

	/* If the aux_buffer doesn't have data associated, try to load it */
	if (!buffer->data) {
		/* get the file desc associated with the perf data file */
		int fd = perf_data__fd(speq->spe->session->data);

		buffer->data = auxtrace_buffer__get_data(buffer, fd);
		if (!buffer->data)
			return -ENOMEM;
	}

	b->len = buffer->size;
	b->buf = buffer->data;

	if (b->len) {
		if (old_buffer)
			auxtrace_buffer__drop_data(old_buffer);
		speq->old_buffer = buffer;
	} else {
		auxtrace_buffer__drop_data(buffer);
		return arm_spe_get_trace(b, data);
	}

	return 0;
}

static struct arm_spe_queue *arm_spe__alloc_queue(struct arm_spe *spe,
		unsigned int queue_nr)
{
	struct arm_spe_params params = { .get_trace = 0, };
	struct arm_spe_queue *speq;

	speq = zalloc(sizeof(*speq));
	if (!speq)
		return NULL;

	speq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
	if (!speq->event_buf)
		goto out_free;

	speq->spe = spe;
	speq->queue_nr = queue_nr;
	speq->pid = -1;
	speq->tid = -1;
	speq->cpu = -1;
	speq->period_instructions = 0;

	/* params set */
	params.get_trace = arm_spe_get_trace;
	params.data = speq;

	/* create new decoder */
	speq->decoder = arm_spe_decoder_new(&params);
	if (!speq->decoder)
		goto out_free;

	return speq;

out_free:
	zfree(&speq->event_buf);
	free(speq);

	return NULL;
}

static inline u8 arm_spe_cpumode(struct arm_spe *spe, u64 ip)
{
	return ip >= spe->kernel_start ?
		PERF_RECORD_MISC_KERNEL :
		PERF_RECORD_MISC_USER;
}

static void arm_spe_set_pid_tid_cpu(struct arm_spe *spe,
				    struct auxtrace_queue *queue)
{
	struct arm_spe_queue *speq = queue->priv;
	pid_t tid;

	tid = machine__get_current_tid(spe->machine, speq->cpu);
	if (tid != -1) {
		speq->tid = tid;
		thread__zput(speq->thread);
	} else
		speq->tid = queue->tid;

	if ((!speq->thread) && (speq->tid != -1)) {
		speq->thread = machine__find_thread(spe->machine, -1,
						    speq->tid);
	}

	if (speq->thread) {
		speq->pid = speq->thread->pid_;
		if (queue->cpu == -1)
			speq->cpu = speq->thread->cpu;
	}
}

static int arm_spe_set_tid(struct arm_spe_queue *speq, pid_t tid)
{
	struct arm_spe *spe = speq->spe;
	int err = machine__set_current_tid(spe->machine, speq->cpu, -1, tid);

	if (err)
		return err;

	arm_spe_set_pid_tid_cpu(spe, &spe->queues.queue_array[speq->queue_nr]);

	return 0;
}

static struct simd_flags arm_spe__synth_simd_flags(const struct arm_spe_record *record)
{
	struct simd_flags simd_flags = {};

	if ((record->op & ARM_SPE_OP_LDST) && (record->op & ARM_SPE_OP_SVE_LDST))
		simd_flags.arch |= SIMD_OP_FLAGS_ARCH_SVE;

	if ((record->op & ARM_SPE_OP_OTHER) && (record->op & ARM_SPE_OP_SVE_OTHER))
		simd_flags.arch |= SIMD_OP_FLAGS_ARCH_SVE;

	if (record->type & ARM_SPE_SVE_PARTIAL_PRED)
		simd_flags.pred |= SIMD_OP_FLAGS_PRED_PARTIAL;

	if (record->type & ARM_SPE_SVE_EMPTY_PRED)
		simd_flags.pred |= SIMD_OP_FLAGS_PRED_EMPTY;

	return simd_flags;
}

static void arm_spe_prep_sample(struct arm_spe *spe,
				struct arm_spe_queue *speq,
				union perf_event *event,
				struct perf_sample *sample)
{
	struct arm_spe_record *record = &speq->decoder->record;

	if (!spe->timeless_decoding)
		sample->time = tsc_to_perf_time(record->timestamp, &spe->tc);

	sample->ip = record->from_ip;
	sample->cpumode = arm_spe_cpumode(spe, sample->ip);
	sample->pid = speq->pid;
	sample->tid = speq->tid;
	sample->period = 1;
	sample->cpu = speq->cpu;
	sample->simd_flags = arm_spe__synth_simd_flags(record);

	event->sample.header.type = PERF_RECORD_SAMPLE;
	event->sample.header.misc = sample->cpumode;
	event->sample.header.size = sizeof(struct perf_event_header);
}

static int arm_spe__inject_event(union perf_event *event, struct perf_sample *sample, u64 type)
{
	event->header.size = perf_event__sample_event_size(sample, type, 0);
	return perf_event__synthesize_sample(event, type, 0, sample);
}

static inline int
arm_spe_deliver_synth_event(struct arm_spe *spe,
			    struct arm_spe_queue *speq __maybe_unused,
			    union perf_event *event,
			    struct perf_sample *sample)
{
	int ret;

	if (spe->synth_opts.inject) {
		ret = arm_spe__inject_event(event, sample, spe->sample_type);
		if (ret)
			return ret;
	}

	ret = perf_session__deliver_synth_event(spe->session, event, sample);
	if (ret)
		pr_err("ARM SPE: failed to deliver event, error %d\n", ret);

	return ret;
}

static int arm_spe__synth_mem_sample(struct arm_spe_queue *speq,
				     u64 spe_events_id, u64 data_src)
{
	struct arm_spe *spe = speq->spe;
	struct arm_spe_record *record = &speq->decoder->record;
	union perf_event *event = speq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	arm_spe_prep_sample(spe, speq, event, &sample);

	sample.id = spe_events_id;
	sample.stream_id = spe_events_id;
	sample.addr = record->virt_addr;
	sample.phys_addr = record->phys_addr;
	sample.data_src = data_src;
	sample.weight = record->latency;

	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}

static int arm_spe__synth_branch_sample(struct arm_spe_queue *speq,
					u64 spe_events_id)
{
	struct arm_spe *spe = speq->spe;
	struct arm_spe_record *record = &speq->decoder->record;
	union perf_event *event = speq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	arm_spe_prep_sample(spe, speq, event, &sample);

	sample.id = spe_events_id;
	sample.stream_id = spe_events_id;
	sample.addr = record->to_ip;
	sample.weight = record->latency;

	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}

static int arm_spe__synth_instruction_sample(struct arm_spe_queue *speq,
					     u64 spe_events_id, u64 data_src)
{
	struct arm_spe *spe = speq->spe;
	struct arm_spe_record *record = &speq->decoder->record;
	union perf_event *event = speq->event_buf;
	struct perf_sample sample = { .ip = 0, };

	/*
	 * Handles perf instruction sampling period.
	 */
	speq->period_instructions++;
	if (speq->period_instructions < spe->instructions_sample_period)
		return 0;
	speq->period_instructions = 0;

	arm_spe_prep_sample(spe, speq, event, &sample);

	sample.id = spe_events_id;
	sample.stream_id = spe_events_id;
	sample.addr = record->virt_addr;
	sample.phys_addr = record->phys_addr;
	sample.data_src = data_src;
	sample.period = spe->instructions_sample_period;
	sample.weight = record->latency;

	return arm_spe_deliver_synth_event(spe, speq, event, &sample);
}

static const struct midr_range neoverse_spe[] = {
	MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N1),
	MIDR_ALL_VERSIONS(MIDR_NEOVERSE_N2),
	MIDR_ALL_VERSIONS(MIDR_NEOVERSE_V1),
	{},
};

static void arm_spe__synth_data_source_neoverse(const struct arm_spe_record *record,
						union perf_mem_data_src *data_src)
{
	/*
	 * Even though four levels of cache hierarchy are possible, no known
	 * production Neoverse systems currently include more than three levels
	 * so for the time being we assume three exist. If a production system
	 * is built with four the this function would have to be changed to
	 * detect the number of levels for reporting.
	 */

	/*
	 * We have no data on the hit level or data source for stores in the
	 * Neoverse SPE records.
	 */
	if (record->op & ARM_SPE_OP_ST) {
		data_src->mem_lvl = PERF_MEM_LVL_NA;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_NA;
		data_src->mem_snoop = PERF_MEM_SNOOP_NA;
		return;
	}

	switch (record->source) {
	case ARM_SPE_NV_L1D:
		data_src->mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_L1;
		data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
		break;
	case ARM_SPE_NV_L2:
		data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
		data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
		break;
	case ARM_SPE_NV_PEER_CORE:
		data_src->mem_lvl = PERF_MEM_LVL_L2 | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_L2;
		data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
		break;
	/*
	 * We don't know if this is L1, L2 but we do know it was a cache-2-cache
	 * transfer, so set SNOOPX_PEER
	 */
	case ARM_SPE_NV_LOCAL_CLUSTER:
	case ARM_SPE_NV_PEER_CLUSTER:
		data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
		data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
		break;
	/*
	 * System cache is assumed to be L3
	 */
	case ARM_SPE_NV_SYS_CACHE:
		data_src->mem_lvl = PERF_MEM_LVL_L3 | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_L3;
		data_src->mem_snoop = PERF_MEM_SNOOP_HIT;
		break;
	/*
	 * We don't know what level it hit in, except it came from the other
	 * socket
	 */
	case ARM_SPE_NV_REMOTE:
		data_src->mem_lvl = PERF_MEM_LVL_REM_CCE1;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_ANY_CACHE;
		data_src->mem_remote = PERF_MEM_REMOTE_REMOTE;
		data_src->mem_snoopx = PERF_MEM_SNOOPX_PEER;
		break;
	case ARM_SPE_NV_DRAM:
		data_src->mem_lvl = PERF_MEM_LVL_LOC_RAM | PERF_MEM_LVL_HIT;
		data_src->mem_lvl_num = PERF_MEM_LVLNUM_RAM;
		data_src->mem_snoop = PERF_MEM_SNOOP_NONE;
		break;
	default:
		break;
	}
}

static void arm_spe__synth_data_source_generic(const struct arm_spe_record *record,
					       union perf_mem_data_src *data_src)
{
	if (record->type & (ARM_SPE_LLC_ACCESS | ARM_SPE_LLC_MISS)) {
		data_src->mem_lvl = PERF_MEM_LVL_L3;

		if (record->type & ARM_SPE_LLC_MISS)
			data_src->mem_lvl |= PERF_MEM_LVL_MISS;
		else
			data_src->mem_lvl |= PERF_MEM_LVL_HIT;
	} else if (record->type & (ARM_SPE_L1D_ACCESS | ARM_SPE_L1D_MISS)) {
		data_src->mem_lvl = PERF_MEM_LVL_L1;

		if (record->type & ARM_SPE_L1D_MISS)
			data_src->mem_lvl |= PERF_MEM_LVL_MISS;
		else
			data_src->mem_lvl |= PERF_MEM_LVL_HIT;
	}

	if (record->type & ARM_SPE_REMOTE_ACCESS)
		data_src->mem_lvl |= PERF_MEM_LVL_REM_CCE1;
}

static u64 arm_spe__synth_data_source(const struct arm_spe_record *record, u64 midr)
{
	union perf_mem_data_src	data_src = { .mem_op = PERF_MEM_OP_NA };
	bool is_neoverse = is_midr_in_range_list(midr, neoverse_spe);

	if (record->op & ARM_SPE_OP_LD)
		data_src.mem_op = PERF_MEM_OP_LOAD;
	else if (record->op & ARM_SPE_OP_ST)
		data_src.mem_op = PERF_MEM_OP_STORE;
	else
		return 0;

	if (is_neoverse)
		arm_spe__synth_data_source_neoverse(record, &data_src);
	else
		arm_spe__synth_data_source_generic(record, &data_src);

	if (record->type & (ARM_SPE_TLB_ACCESS | ARM_SPE_TLB_MISS)) {
		data_src.mem_dtlb = PERF_MEM_TLB_WK;

		if (record->type & ARM_SPE_TLB_MISS)
			data_src.mem_dtlb |= PERF_MEM_TLB_MISS;
		else
			data_src.mem_dtlb |= PERF_MEM_TLB_HIT;
	}

	return data_src.val;
}

static int arm_spe_sample(struct arm_spe_queue *speq)
{
	const struct arm_spe_record *record = &speq->decoder->record;
	struct arm_spe *spe = speq->spe;
	u64 data_src;
	int err;

	data_src = arm_spe__synth_data_source(record, spe->midr);

	if (spe->sample_flc) {
		if (record->type & ARM_SPE_L1D_MISS) {
			err = arm_spe__synth_mem_sample(speq, spe->l1d_miss_id,
							data_src);
			if (err)
				return err;
		}

		if (record->type & ARM_SPE_L1D_ACCESS) {
			err = arm_spe__synth_mem_sample(speq, spe->l1d_access_id,
							data_src);
			if (err)
				return err;
		}
	}

	if (spe->sample_llc) {
		if (record->type & ARM_SPE_LLC_MISS) {
			err = arm_spe__synth_mem_sample(speq, spe->llc_miss_id,
							data_src);
			if (err)
				return err;
		}

		if (record->type & ARM_SPE_LLC_ACCESS) {
			err = arm_spe__synth_mem_sample(speq, spe->llc_access_id,
							data_src);
			if (err)
				return err;
		}
	}

	if (spe->sample_tlb) {
		if (record->type & ARM_SPE_TLB_MISS) {
			err = arm_spe__synth_mem_sample(speq, spe->tlb_miss_id,
							data_src);
			if (err)
				return err;
		}

		if (record->type & ARM_SPE_TLB_ACCESS) {
			err = arm_spe__synth_mem_sample(speq, spe->tlb_access_id,
							data_src);
			if (err)
				return err;
		}
	}

	if (spe->sample_branch && (record->type & ARM_SPE_BRANCH_MISS)) {
		err = arm_spe__synth_branch_sample(speq, spe->branch_miss_id);
		if (err)
			return err;
	}

	if (spe->sample_remote_access &&
	    (record->type & ARM_SPE_REMOTE_ACCESS)) {
		err = arm_spe__synth_mem_sample(speq, spe->remote_access_id,
						data_src);
		if (err)
			return err;
	}

	/*
	 * When data_src is zero it means the record is not a memory operation,
	 * skip to synthesize memory sample for this case.
	 */
	if (spe->sample_memory && data_src) {
		err = arm_spe__synth_mem_sample(speq, spe->memory_id, data_src);
		if (err)
			return err;
	}

	if (spe->sample_instructions) {
		err = arm_spe__synth_instruction_sample(speq, spe->instructions_id, data_src);
		if (err)
			return err;
	}

	return 0;
}

static int arm_spe_run_decoder(struct arm_spe_queue *speq, u64 *timestamp)
{
	struct arm_spe *spe = speq->spe;
	struct arm_spe_record *record;
	int ret;

	if (!spe->kernel_start)
		spe->kernel_start = machine__kernel_start(spe->machine);

	while (1) {
		/*
		 * The usual logic is firstly to decode the packets, and then
		 * based the record to synthesize sample; but here the flow is
		 * reversed: it calls arm_spe_sample() for synthesizing samples
		 * prior to arm_spe_decode().
		 *
		 * Two reasons for this code logic:
		 * 1. Firstly, when setup queue in arm_spe__setup_queue(), it
		 * has decoded trace data and generated a record, but the record
		 * is left to generate sample until run to here, so it's correct
		 * to synthesize sample for the left record.
		 * 2. After decoding trace data, it needs to compare the record
		 * timestamp with the coming perf event, if the record timestamp
		 * is later than the perf event, it needs bail out and pushs the
		 * record into auxtrace heap, thus the record can be deferred to
		 * synthesize sample until run to here at the next time; so this
		 * can correlate samples between Arm SPE trace data and other
		 * perf events with correct time ordering.
		 */

		/*
		 * Update pid/tid info.
		 */
		record = &speq->decoder->record;
		if (!spe->timeless_decoding && record->context_id != (u64)-1) {
			ret = arm_spe_set_tid(speq, record->context_id);
			if (ret)
				return ret;

			spe->use_ctx_pkt_for_pid = true;
		}

		ret = arm_spe_sample(speq);
		if (ret)
			return ret;

		ret = arm_spe_decode(speq->decoder);
		if (!ret) {
			pr_debug("No data or all data has been processed.\n");
			return 1;
		}

		/*
		 * Error is detected when decode SPE trace data, continue to
		 * the next trace data and find out more records.
		 */
		if (ret < 0)
			continue;

		record = &speq->decoder->record;

		/* Update timestamp for the last record */
		if (record->timestamp > speq->timestamp)
			speq->timestamp = record->timestamp;

		/*
		 * If the timestamp of the queue is later than timestamp of the
		 * coming perf event, bail out so can allow the perf event to
		 * be processed ahead.
		 */
		if (!spe->timeless_decoding && speq->timestamp >= *timestamp) {
			*timestamp = speq->timestamp;
			return 0;
		}
	}

	return 0;
}

static int arm_spe__setup_queue(struct arm_spe *spe,
			       struct auxtrace_queue *queue,
			       unsigned int queue_nr)
{
	struct arm_spe_queue *speq = queue->priv;
	struct arm_spe_record *record;

	if (list_empty(&queue->head) || speq)
		return 0;

	speq = arm_spe__alloc_queue(spe, queue_nr);

	if (!speq)
		return -ENOMEM;

	queue->priv = speq;

	if (queue->cpu != -1)
		speq->cpu = queue->cpu;

	if (!speq->on_heap) {
		int ret;

		if (spe->timeless_decoding)
			return 0;

retry:
		ret = arm_spe_decode(speq->decoder);

		if (!ret)
			return 0;

		if (ret < 0)
			goto retry;

		record = &speq->decoder->record;

		speq->timestamp = record->timestamp;
		ret = auxtrace_heap__add(&spe->heap, queue_nr, speq->timestamp);
		if (ret)
			return ret;
		speq->on_heap = true;
	}

	return 0;
}

static int arm_spe__setup_queues(struct arm_spe *spe)
{
	unsigned int i;
	int ret;

	for (i = 0; i < spe->queues.nr_queues; i++) {
		ret = arm_spe__setup_queue(spe, &spe->queues.queue_array[i], i);
		if (ret)
			return ret;
	}

	return 0;
}

static int arm_spe__update_queues(struct arm_spe *spe)
{
	if (spe->queues.new_data) {
		spe->queues.new_data = false;
		return arm_spe__setup_queues(spe);
	}

	return 0;
}

static bool arm_spe__is_timeless_decoding(struct arm_spe *spe)
{
	struct evsel *evsel;
	struct evlist *evlist = spe->session->evlist;
	bool timeless_decoding = true;

	/*
	 * Circle through the list of event and complain if we find one
	 * with the time bit set.
	 */
	evlist__for_each_entry(evlist, evsel) {
		if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
			timeless_decoding = false;
	}

	return timeless_decoding;
}

static int arm_spe_process_queues(struct arm_spe *spe, u64 timestamp)
{
	unsigned int queue_nr;
	u64 ts;
	int ret;

	while (1) {
		struct auxtrace_queue *queue;
		struct arm_spe_queue *speq;

		if (!spe->heap.heap_cnt)
			return 0;

		if (spe->heap.heap_array[0].ordinal >= timestamp)
			return 0;

		queue_nr = spe->heap.heap_array[0].queue_nr;
		queue = &spe->queues.queue_array[queue_nr];
		speq = queue->priv;

		auxtrace_heap__pop(&spe->heap);

		if (spe->heap.heap_cnt) {
			ts = spe->heap.heap_array[0].ordinal + 1;
			if (ts > timestamp)
				ts = timestamp;
		} else {
			ts = timestamp;
		}

		/*
		 * A previous context-switch event has set pid/tid in the machine's context, so
		 * here we need to update the pid/tid in the thread and SPE queue.
		 */
		if (!spe->use_ctx_pkt_for_pid)
			arm_spe_set_pid_tid_cpu(spe, queue);

		ret = arm_spe_run_decoder(speq, &ts);
		if (ret < 0) {
			auxtrace_heap__add(&spe->heap, queue_nr, ts);
			return ret;
		}

		if (!ret) {
			ret = auxtrace_heap__add(&spe->heap, queue_nr, ts);
			if (ret < 0)
				return ret;
		} else {
			speq->on_heap = false;
		}
	}

	return 0;
}

static int arm_spe_process_timeless_queues(struct arm_spe *spe, pid_t tid,
					    u64 time_)
{
	struct auxtrace_queues *queues = &spe->queues;
	unsigned int i;
	u64 ts = 0;

	for (i = 0; i < queues->nr_queues; i++) {
		struct auxtrace_queue *queue = &spe->queues.queue_array[i];
		struct arm_spe_queue *speq = queue->priv;

		if (speq && (tid == -1 || speq->tid == tid)) {
			speq->time = time_;
			arm_spe_set_pid_tid_cpu(spe, queue);
			arm_spe_run_decoder(speq, &ts);
		}
	}
	return 0;
}

static int arm_spe_context_switch(struct arm_spe *spe, union perf_event *event,
				  struct perf_sample *sample)
{
	pid_t pid, tid;
	int cpu;

	if (!(event->header.misc & PERF_RECORD_MISC_SWITCH_OUT))
		return 0;

	pid = event->context_switch.next_prev_pid;
	tid = event->context_switch.next_prev_tid;
	cpu = sample->cpu;

	if (tid == -1)
		pr_warning("context_switch event has no tid\n");

	return machine__set_current_tid(spe->machine, cpu, pid, tid);
}

static int arm_spe_process_event(struct perf_session *session,
				 union perf_event *event,
				 struct perf_sample *sample,
				 struct perf_tool *tool)
{
	int err = 0;
	u64 timestamp;
	struct arm_spe *spe = container_of(session->auxtrace,
			struct arm_spe, auxtrace);

	if (dump_trace)
		return 0;

	if (!tool->ordered_events) {
		pr_err("SPE trace requires ordered events\n");
		return -EINVAL;
	}

	if (sample->time && (sample->time != (u64) -1))
		timestamp = perf_time_to_tsc(sample->time, &spe->tc);
	else
		timestamp = 0;

	if (timestamp || spe->timeless_decoding) {
		err = arm_spe__update_queues(spe);
		if (err)
			return err;
	}

	if (spe->timeless_decoding) {
		if (event->header.type == PERF_RECORD_EXIT) {
			err = arm_spe_process_timeless_queues(spe,
					event->fork.tid,
					sample->time);
		}
	} else if (timestamp) {
		err = arm_spe_process_queues(spe, timestamp);
		if (err)
			return err;

		if (!spe->use_ctx_pkt_for_pid &&
		    (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE ||
		    event->header.type == PERF_RECORD_SWITCH))
			err = arm_spe_context_switch(spe, event, sample);
	}

	return err;
}

static int arm_spe_process_auxtrace_event(struct perf_session *session,
					  union perf_event *event,
					  struct perf_tool *tool __maybe_unused)
{
	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
					     auxtrace);

	if (!spe->data_queued) {
		struct auxtrace_buffer *buffer;
		off_t data_offset;
		int fd = perf_data__fd(session->data);
		int err;

		if (perf_data__is_pipe(session->data)) {
			data_offset = 0;
		} else {
			data_offset = lseek(fd, 0, SEEK_CUR);
			if (data_offset == -1)
				return -errno;
		}

		err = auxtrace_queues__add_event(&spe->queues, session, event,
				data_offset, &buffer);
		if (err)
			return err;

		/* Dump here now we have copied a piped trace out of the pipe */
		if (dump_trace) {
			if (auxtrace_buffer__get_data(buffer, fd)) {
				arm_spe_dump_event(spe, buffer->data,
						buffer->size);
				auxtrace_buffer__put_data(buffer);
			}
		}
	}

	return 0;
}

static int arm_spe_flush(struct perf_session *session __maybe_unused,
			 struct perf_tool *tool __maybe_unused)
{
	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
			auxtrace);
	int ret;

	if (dump_trace)
		return 0;

	if (!tool->ordered_events)
		return -EINVAL;

	ret = arm_spe__update_queues(spe);
	if (ret < 0)
		return ret;

	if (spe->timeless_decoding)
		return arm_spe_process_timeless_queues(spe, -1,
				MAX_TIMESTAMP - 1);

	ret = arm_spe_process_queues(spe, MAX_TIMESTAMP);
	if (ret)
		return ret;

	if (!spe->use_ctx_pkt_for_pid)
		ui__warning("Arm SPE CONTEXT packets not found in the traces.\n"
			    "Matching of TIDs to SPE events could be inaccurate.\n");

	return 0;
}

static void arm_spe_free_queue(void *priv)
{
	struct arm_spe_queue *speq = priv;

	if (!speq)
		return;
	thread__zput(speq->thread);
	arm_spe_decoder_free(speq->decoder);
	zfree(&speq->event_buf);
	free(speq);
}

static void arm_spe_free_events(struct perf_session *session)
{
	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
					     auxtrace);
	struct auxtrace_queues *queues = &spe->queues;
	unsigned int i;

	for (i = 0; i < queues->nr_queues; i++) {
		arm_spe_free_queue(queues->queue_array[i].priv);
		queues->queue_array[i].priv = NULL;
	}
	auxtrace_queues__free(queues);
}

static void arm_spe_free(struct perf_session *session)
{
	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe,
					     auxtrace);

	auxtrace_heap__free(&spe->heap);
	arm_spe_free_events(session);
	session->auxtrace = NULL;
	free(spe);
}

static bool arm_spe_evsel_is_auxtrace(struct perf_session *session,
				      struct evsel *evsel)
{
	struct arm_spe *spe = container_of(session->auxtrace, struct arm_spe, auxtrace);

	return evsel->core.attr.type == spe->pmu_type;
}

static const char * const arm_spe_info_fmts[] = {
	[ARM_SPE_PMU_TYPE]		= "  PMU Type           %"PRId64"\n",
};

static void arm_spe_print_info(__u64 *arr)
{
	if (!dump_trace)
		return;

	fprintf(stdout, arm_spe_info_fmts[ARM_SPE_PMU_TYPE], arr[ARM_SPE_PMU_TYPE]);
}

struct arm_spe_synth {
	struct perf_tool dummy_tool;
	struct perf_session *session;
};

static int arm_spe_event_synth(struct perf_tool *tool,
			       union perf_event *event,
			       struct perf_sample *sample __maybe_unused,
			       struct machine *machine __maybe_unused)
{
	struct arm_spe_synth *arm_spe_synth =
		      container_of(tool, struct arm_spe_synth, dummy_tool);

	return perf_session__deliver_synth_event(arm_spe_synth->session,
						 event, NULL);
}

static int arm_spe_synth_event(struct perf_session *session,
			       struct perf_event_attr *attr, u64 id)
{
	struct arm_spe_synth arm_spe_synth;

	memset(&arm_spe_synth, 0, sizeof(struct arm_spe_synth));
	arm_spe_synth.session = session;

	return perf_event__synthesize_attr(&arm_spe_synth.dummy_tool, attr, 1,
					   &id, arm_spe_event_synth);
}

static void arm_spe_set_event_name(struct evlist *evlist, u64 id,
				    const char *name)
{
	struct evsel *evsel;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel->core.id && evsel->core.id[0] == id) {
			if (evsel->name)
				zfree(&evsel->name);
			evsel->name = strdup(name);
			break;
		}
	}
}

static int
arm_spe_synth_events(struct arm_spe *spe, struct perf_session *session)
{
	struct evlist *evlist = session->evlist;
	struct evsel *evsel;
	struct perf_event_attr attr;
	bool found = false;
	u64 id;
	int err;

	evlist__for_each_entry(evlist, evsel) {
		if (evsel->core.attr.type == spe->pmu_type) {
			found = true;
			break;
		}
	}

	if (!found) {
		pr_debug("No selected events with SPE trace data\n");
		return 0;
	}

	memset(&attr, 0, sizeof(struct perf_event_attr));
	attr.size = sizeof(struct perf_event_attr);
	attr.type = PERF_TYPE_HARDWARE;
	attr.sample_type = evsel->core.attr.sample_type &
				(PERF_SAMPLE_MASK | PERF_SAMPLE_PHYS_ADDR);
	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
			    PERF_SAMPLE_PERIOD | PERF_SAMPLE_DATA_SRC |
			    PERF_SAMPLE_WEIGHT | PERF_SAMPLE_ADDR;
	if (spe->timeless_decoding)
		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
	else
		attr.sample_type |= PERF_SAMPLE_TIME;

	spe->sample_type = attr.sample_type;

	attr.exclude_user = evsel->core.attr.exclude_user;
	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
	attr.exclude_hv = evsel->core.attr.exclude_hv;
	attr.exclude_host = evsel->core.attr.exclude_host;
	attr.exclude_guest = evsel->core.attr.exclude_guest;
	attr.sample_id_all = evsel->core.attr.sample_id_all;
	attr.read_format = evsel->core.attr.read_format;

	/* create new id val to be a fixed offset from evsel id */
	id = evsel->core.id[0] + 1000000000;

	if (!id)
		id = 1;

	if (spe->synth_opts.flc) {
		spe->sample_flc = true;

		/* Level 1 data cache miss */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->l1d_miss_id = id;
		arm_spe_set_event_name(evlist, id, "l1d-miss");
		id += 1;

		/* Level 1 data cache access */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->l1d_access_id = id;
		arm_spe_set_event_name(evlist, id, "l1d-access");
		id += 1;
	}

	if (spe->synth_opts.llc) {
		spe->sample_llc = true;

		/* Last level cache miss */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->llc_miss_id = id;
		arm_spe_set_event_name(evlist, id, "llc-miss");
		id += 1;

		/* Last level cache access */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->llc_access_id = id;
		arm_spe_set_event_name(evlist, id, "llc-access");
		id += 1;
	}

	if (spe->synth_opts.tlb) {
		spe->sample_tlb = true;

		/* TLB miss */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->tlb_miss_id = id;
		arm_spe_set_event_name(evlist, id, "tlb-miss");
		id += 1;

		/* TLB access */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->tlb_access_id = id;
		arm_spe_set_event_name(evlist, id, "tlb-access");
		id += 1;
	}

	if (spe->synth_opts.branches) {
		spe->sample_branch = true;

		/* Branch miss */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->branch_miss_id = id;
		arm_spe_set_event_name(evlist, id, "branch-miss");
		id += 1;
	}

	if (spe->synth_opts.remote_access) {
		spe->sample_remote_access = true;

		/* Remote access */
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->remote_access_id = id;
		arm_spe_set_event_name(evlist, id, "remote-access");
		id += 1;
	}

	if (spe->synth_opts.mem) {
		spe->sample_memory = true;

		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->memory_id = id;
		arm_spe_set_event_name(evlist, id, "memory");
		id += 1;
	}

	if (spe->synth_opts.instructions) {
		if (spe->synth_opts.period_type != PERF_ITRACE_PERIOD_INSTRUCTIONS) {
			pr_warning("Only instruction-based sampling period is currently supported by Arm SPE.\n");
			goto synth_instructions_out;
		}
		if (spe->synth_opts.period > 1)
			pr_warning("Arm SPE has a hardware-based sample period.\n"
				   "Additional instruction events will be discarded by --itrace\n");

		spe->sample_instructions = true;
		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
		attr.sample_period = spe->synth_opts.period;
		spe->instructions_sample_period = attr.sample_period;
		err = arm_spe_synth_event(session, &attr, id);
		if (err)
			return err;
		spe->instructions_id = id;
		arm_spe_set_event_name(evlist, id, "instructions");
	}
synth_instructions_out:

	return 0;
}

int arm_spe_process_auxtrace_info(union perf_event *event,
				  struct perf_session *session)
{
	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
	size_t min_sz = sizeof(u64) * ARM_SPE_AUXTRACE_PRIV_MAX;
	struct perf_record_time_conv *tc = &session->time_conv;
	const char *cpuid = perf_env__cpuid(session->evlist->env);
	u64 midr = strtol(cpuid, NULL, 16);
	struct arm_spe *spe;
	int err;

	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
					min_sz)
		return -EINVAL;

	spe = zalloc(sizeof(struct arm_spe));
	if (!spe)
		return -ENOMEM;

	err = auxtrace_queues__init(&spe->queues);
	if (err)
		goto err_free;

	spe->session = session;
	spe->machine = &session->machines.host; /* No kvm support */
	spe->auxtrace_type = auxtrace_info->type;
	spe->pmu_type = auxtrace_info->priv[ARM_SPE_PMU_TYPE];
	spe->midr = midr;

	spe->timeless_decoding = arm_spe__is_timeless_decoding(spe);

	/*
	 * The synthesized event PERF_RECORD_TIME_CONV has been handled ahead
	 * and the parameters for hardware clock are stored in the session
	 * context.  Passes these parameters to the struct perf_tsc_conversion
	 * in "spe->tc", which is used for later conversion between clock
	 * counter and timestamp.
	 *
	 * For backward compatibility, copies the fields starting from
	 * "time_cycles" only if they are contained in the event.
	 */
	spe->tc.time_shift = tc->time_shift;
	spe->tc.time_mult = tc->time_mult;
	spe->tc.time_zero = tc->time_zero;

	if (event_contains(*tc, time_cycles)) {
		spe->tc.time_cycles = tc->time_cycles;
		spe->tc.time_mask = tc->time_mask;
		spe->tc.cap_user_time_zero = tc->cap_user_time_zero;
		spe->tc.cap_user_time_short = tc->cap_user_time_short;
	}

	spe->auxtrace.process_event = arm_spe_process_event;
	spe->auxtrace.process_auxtrace_event = arm_spe_process_auxtrace_event;
	spe->auxtrace.flush_events = arm_spe_flush;
	spe->auxtrace.free_events = arm_spe_free_events;
	spe->auxtrace.free = arm_spe_free;
	spe->auxtrace.evsel_is_auxtrace = arm_spe_evsel_is_auxtrace;
	session->auxtrace = &spe->auxtrace;

	arm_spe_print_info(&auxtrace_info->priv[0]);

	if (dump_trace)
		return 0;

	if (session->itrace_synth_opts && session->itrace_synth_opts->set)
		spe->synth_opts = *session->itrace_synth_opts;
	else
		itrace_synth_opts__set_default(&spe->synth_opts, false);

	err = arm_spe_synth_events(spe, session);
	if (err)
		goto err_free_queues;

	err = auxtrace_queues__process_index(&spe->queues, session);
	if (err)
		goto err_free_queues;

	if (spe->queues.populated)
		spe->data_queued = true;

	return 0;

err_free_queues:
	auxtrace_queues__free(&spe->queues);
	session->auxtrace = NULL;
err_free:
	free(spe);
	return err;
}