summaryrefslogtreecommitdiffstats
path: root/target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch')
-rw-r--r--target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch1400
1 files changed, 1400 insertions, 0 deletions
diff --git a/target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch b/target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
new file mode 100644
index 0000000000..ba844fed0f
--- /dev/null
+++ b/target/linux/ramips/patches-5.10/410-mtd-rawnand-add-driver-support-for-MT7621-nand-flash.patch
@@ -0,0 +1,1400 @@
+From e84e2430ee0e483842b4ff013ae8a6e7e2fa2734 Mon Sep 17 00:00:00 2001
+From: Weijie Gao <weijie.gao@mediatek.com>
+Date: Wed, 1 Apr 2020 02:07:58 +0800
+Subject: [PATCH 1/2] mtd: rawnand: add driver support for MT7621 nand
+ flash controller
+
+This patch adds NAND flash controller driver for MediaTek MT7621 SoC.
+
+The NAND flash controller is similar with controllers described in
+mtk_nand.c, except that the controller from MT7621 doesn't support DMA
+transmission, and some registers' offset and fields are different.
+
+Signed-off-by: Weijie Gao <weijie.gao@mediatek.com>
+---
+ drivers/mtd/nand/raw/Kconfig | 8 +
+ drivers/mtd/nand/raw/Makefile | 1 +
+ drivers/mtd/nand/raw/mt7621_nand.c | 1348 ++++++++++++++++++++++++++++++++++++
+ 3 files changed, 1357 insertions(+)
+ create mode 100644 drivers/mtd/nand/raw/mt7621_nand.c
+
+--- a/drivers/mtd/nand/raw/Kconfig
++++ b/drivers/mtd/nand/raw/Kconfig
+@@ -391,6 +391,14 @@ config MTD_NAND_QCOM
+ Enables support for NAND flash chips on SoCs containing the EBI2 NAND
+ controller. This controller is found on IPQ806x SoC.
+
++config MTD_NAND_MT7621
++ tristate "MT7621 NAND controller"
++ depends on SOC_MT7621 || COMPILE_TEST
++ depends on HAS_IOMEM
++ help
++ Enables support for NAND controller on MT7621 SoC.
++ This driver uses PIO mode for data transmission instead of DMA mode.
++
+ config MTD_NAND_MTK
+ tristate "MTK NAND controller"
+ depends on ARCH_MEDIATEK || COMPILE_TEST
+--- a/drivers/mtd/nand/raw/Makefile
++++ b/drivers/mtd/nand/raw/Makefile
+@@ -52,6 +52,7 @@ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_n
+ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
+ obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
++obj-$(CONFIG_MTD_NAND_MT7621) += mt7621_nand.o
+ obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+ obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
+ obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
+--- /dev/null
++++ b/drivers/mtd/nand/raw/mt7621_nand.c
+@@ -0,0 +1,1350 @@
++// SPDX-License-Identifier: GPL-2.0
++/*
++ * MediaTek MT7621 NAND Flash Controller driver
++ *
++ * Copyright (C) 2020 MediaTek Inc. All Rights Reserved.
++ *
++ * Author: Weijie Gao <weijie.gao@mediatek.com>
++ */
++
++#include <linux/io.h>
++#include <linux/clk.h>
++#include <linux/init.h>
++#include <linux/errno.h>
++#include <linux/sizes.h>
++#include <linux/iopoll.h>
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/mtd/mtd.h>
++#include <linux/mtd/rawnand.h>
++#include <linux/mtd/partitions.h>
++#include <linux/platform_device.h>
++#include <asm/addrspace.h>
++
++/* NFI core registers */
++#define NFI_CNFG 0x000
++#define CNFG_OP_MODE_S 12
++#define CNFG_OP_MODE_M GENMASK(14, 12)
++#define CNFG_OP_CUSTOM 6
++#define CNFG_AUTO_FMT_EN BIT(9)
++#define CNFG_HW_ECC_EN BIT(8)
++#define CNFG_BYTE_RW BIT(6)
++#define CNFG_READ_MODE BIT(1)
++
++#define NFI_PAGEFMT 0x004
++#define PAGEFMT_FDM_ECC_S 12
++#define PAGEFMT_FDM_ECC_M GENMASK(15, 12)
++#define PAGEFMT_FDM_S 8
++#define PAGEFMT_FDM_M GENMASK(11, 8)
++#define PAGEFMT_SPARE_S 4
++#define PAGEFMT_SPARE_M GENMASK(5, 4)
++#define PAGEFMT_PAGE_S 0
++#define PAGEFMT_PAGE_M GENMASK(1, 0)
++
++#define NFI_CON 0x008
++#define CON_NFI_SEC_S 12
++#define CON_NFI_SEC_M GENMASK(15, 12)
++#define CON_NFI_BWR BIT(9)
++#define CON_NFI_BRD BIT(8)
++#define CON_NFI_RST BIT(1)
++#define CON_FIFO_FLUSH BIT(0)
++
++#define NFI_ACCCON 0x00c
++#define ACCCON_POECS_S 28
++#define ACCCON_POECS_MAX 0x0f
++#define ACCCON_POECS_DEF 3
++#define ACCCON_PRECS_S 22
++#define ACCCON_PRECS_MAX 0x3f
++#define ACCCON_PRECS_DEF 3
++#define ACCCON_C2R_S 16
++#define ACCCON_C2R_MAX 0x3f
++#define ACCCON_C2R_DEF 7
++#define ACCCON_W2R_S 12
++#define ACCCON_W2R_MAX 0x0f
++#define ACCCON_W2R_DEF 7
++#define ACCCON_WH_S 8
++#define ACCCON_WH_MAX 0x0f
++#define ACCCON_WH_DEF 15
++#define ACCCON_WST_S 4
++#define ACCCON_WST_MAX 0x0f
++#define ACCCON_WST_DEF 15
++#define ACCCON_WST_MIN 3
++#define ACCCON_RLT_S 0
++#define ACCCON_RLT_MAX 0x0f
++#define ACCCON_RLT_DEF 15
++#define ACCCON_RLT_MIN 3
++
++#define NFI_CMD 0x020
++
++#define NFI_ADDRNOB 0x030
++#define ADDR_ROW_NOB_S 4
++#define ADDR_ROW_NOB_M GENMASK(6, 4)
++#define ADDR_COL_NOB_S 0
++#define ADDR_COL_NOB_M GENMASK(2, 0)
++
++#define NFI_COLADDR 0x034
++#define NFI_ROWADDR 0x038
++
++#define NFI_STRDATA 0x040
++#define STR_DATA BIT(0)
++
++#define NFI_CNRNB 0x044
++#define CB2R_TIME_S 4
++#define CB2R_TIME_M GENMASK(7, 4)
++#define STR_CNRNB BIT(0)
++
++#define NFI_DATAW 0x050
++#define NFI_DATAR 0x054
++
++#define NFI_PIO_DIRDY 0x058
++#define PIO_DIRDY BIT(0)
++
++#define NFI_STA 0x060
++#define STA_NFI_FSM_S 16
++#define STA_NFI_FSM_M GENMASK(19, 16)
++#define STA_FSM_CUSTOM_DATA 14
++#define STA_BUSY BIT(8)
++#define STA_ADDR BIT(1)
++#define STA_CMD BIT(0)
++
++#define NFI_ADDRCNTR 0x070
++#define SEC_CNTR_S 12
++#define SEC_CNTR_M GENMASK(15, 12)
++#define SEC_ADDR_S 0
++#define SEC_ADDR_M GENMASK(9, 0)
++
++#define NFI_CSEL 0x090
++#define CSEL_S 0
++#define CSEL_M GENMASK(1, 0)
++
++#define NFI_FDM0L 0x0a0
++#define NFI_FDML(n) (0x0a0 + ((n) << 3))
++
++#define NFI_FDM0M 0x0a4
++#define NFI_FDMM(n) (0x0a4 + ((n) << 3))
++
++#define NFI_MASTER_STA 0x210
++#define MAS_ADDR GENMASK(11, 9)
++#define MAS_RD GENMASK(8, 6)
++#define MAS_WR GENMASK(5, 3)
++#define MAS_RDDLY GENMASK(2, 0)
++
++/* ECC engine registers */
++#define ECC_ENCCON 0x000
++#define ENC_EN BIT(0)
++
++#define ECC_ENCCNFG 0x004
++#define ENC_CNFG_MSG_S 16
++#define ENC_CNFG_MSG_M GENMASK(28, 16)
++#define ENC_MODE_S 4
++#define ENC_MODE_M GENMASK(5, 4)
++#define ENC_MODE_NFI 1
++#define ENC_TNUM_S 0
++#define ENC_TNUM_M GENMASK(2, 0)
++
++#define ECC_ENCIDLE 0x00c
++#define ENC_IDLE BIT(0)
++
++#define ECC_DECCON 0x100
++#define DEC_EN BIT(0)
++
++#define ECC_DECCNFG 0x104
++#define DEC_EMPTY_EN BIT(31)
++#define DEC_CS_S 16
++#define DEC_CS_M GENMASK(28, 16)
++#define DEC_CON_S 12
++#define DEC_CON_M GENMASK(13, 12)
++#define DEC_CON_EL 2
++#define DEC_MODE_S 4
++#define DEC_MODE_M GENMASK(5, 4)
++#define DEC_MODE_NFI 1
++#define DEC_TNUM_S 0
++#define DEC_TNUM_M GENMASK(2, 0)
++
++#define ECC_DECIDLE 0x10c
++#define DEC_IDLE BIT(1)
++
++#define ECC_DECENUM 0x114
++#define ERRNUM_S 2
++#define ERRNUM_M GENMASK(3, 0)
++
++#define ECC_DECDONE 0x118
++#define DEC_DONE7 BIT(7)
++#define DEC_DONE6 BIT(6)
++#define DEC_DONE5 BIT(5)
++#define DEC_DONE4 BIT(4)
++#define DEC_DONE3 BIT(3)
++#define DEC_DONE2 BIT(2)
++#define DEC_DONE1 BIT(1)
++#define DEC_DONE0 BIT(0)
++
++#define ECC_DECEL(n) (0x11c + (n) * 4)
++#define DEC_EL_ODD_S 16
++#define DEC_EL_EVEN_S 0
++#define DEC_EL_M 0x1fff
++#define DEC_EL_BYTE_POS_S 3
++#define DEC_EL_BIT_POS_M GENMASK(3, 0)
++
++#define ECC_FDMADDR 0x13c
++
++/* ENCIDLE and DECIDLE */
++#define ECC_IDLE BIT(0)
++
++#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
++ ((tpoecs) << ACCCON_POECS_S | (tprecs) << ACCCON_PRECS_S | \
++ (tc2r) << ACCCON_C2R_S | (tw2r) << ACCCON_W2R_S | \
++ (twh) << ACCCON_WH_S | (twst) << ACCCON_WST_S | (trlt))
++
++#define MASTER_STA_MASK (MAS_ADDR | MAS_RD | MAS_WR | \
++ MAS_RDDLY)
++#define NFI_RESET_TIMEOUT 1000000
++#define NFI_CORE_TIMEOUT 500000
++#define ECC_ENGINE_TIMEOUT 500000
++
++#define ECC_SECTOR_SIZE 512
++#define ECC_PARITY_BITS 13
++
++#define NFI_FDM_SIZE 8
++
++#define MT7621_NFC_NAME "mt7621-nand"
++
++struct mt7621_nfc {
++ struct nand_controller controller;
++ struct nand_chip nand;
++ struct clk *nfi_clk;
++ struct device *dev;
++
++ void __iomem *nfi_regs;
++ void __iomem *ecc_regs;
++
++ u32 spare_per_sector;
++};
++
++static const u16 mt7621_nfi_page_size[] = { SZ_512, SZ_2K, SZ_4K };
++static const u8 mt7621_nfi_spare_size[] = { 16, 26, 27, 28 };
++static const u8 mt7621_ecc_strength[] = { 4, 6, 8, 10, 12 };
++
++static inline u32 nfi_read32(struct mt7621_nfc *nfc, u32 reg)
++{
++ return readl(nfc->nfi_regs + reg);
++}
++
++static inline void nfi_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
++{
++ writel(val, nfc->nfi_regs + reg);
++}
++
++static inline u16 nfi_read16(struct mt7621_nfc *nfc, u32 reg)
++{
++ return readw(nfc->nfi_regs + reg);
++}
++
++static inline void nfi_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
++{
++ writew(val, nfc->nfi_regs + reg);
++}
++
++static inline void ecc_write16(struct mt7621_nfc *nfc, u32 reg, u16 val)
++{
++ writew(val, nfc->ecc_regs + reg);
++}
++
++static inline u32 ecc_read32(struct mt7621_nfc *nfc, u32 reg)
++{
++ return readl(nfc->ecc_regs + reg);
++}
++
++static inline void ecc_write32(struct mt7621_nfc *nfc, u32 reg, u32 val)
++{
++ return writel(val, nfc->ecc_regs + reg);
++}
++
++static inline u8 *oob_fdm_ptr(struct nand_chip *nand, int sect)
++{
++ return nand->oob_poi + sect * NFI_FDM_SIZE;
++}
++
++static inline u8 *oob_ecc_ptr(struct mt7621_nfc *nfc, int sect)
++{
++ struct nand_chip *nand = &nfc->nand;
++
++ return nand->oob_poi + nand->ecc.steps * NFI_FDM_SIZE +
++ sect * (nfc->spare_per_sector - NFI_FDM_SIZE);
++}
++
++static inline u8 *page_data_ptr(struct nand_chip *nand, const u8 *buf,
++ int sect)
++{
++ return (u8 *)buf + sect * nand->ecc.size;
++}
++
++static int mt7621_ecc_wait_idle(struct mt7621_nfc *nfc, u32 reg)
++{
++ struct device *dev = nfc->dev;
++ u32 val;
++ int ret;
++
++ ret = readw_poll_timeout_atomic(nfc->ecc_regs + reg, val,
++ val & ECC_IDLE, 10,
++ ECC_ENGINE_TIMEOUT);
++ if (ret) {
++ dev_warn(dev, "ECC engine timed out entering idle mode\n");
++ return -EIO;
++ }
++
++ return 0;
++}
++
++static int mt7621_ecc_decoder_wait_done(struct mt7621_nfc *nfc, u32 sect)
++{
++ struct device *dev = nfc->dev;
++ u32 val;
++ int ret;
++
++ ret = readw_poll_timeout_atomic(nfc->ecc_regs + ECC_DECDONE, val,
++ val & (1 << sect), 10,
++ ECC_ENGINE_TIMEOUT);
++
++ if (ret) {
++ dev_warn(dev, "ECC decoder for sector %d timed out\n",
++ sect);
++ return -ETIMEDOUT;
++ }
++
++ return 0;
++}
++
++static void mt7621_ecc_encoder_op(struct mt7621_nfc *nfc, bool enable)
++{
++ mt7621_ecc_wait_idle(nfc, ECC_ENCIDLE);
++ ecc_write16(nfc, ECC_ENCCON, enable ? ENC_EN : 0);
++}
++
++static void mt7621_ecc_decoder_op(struct mt7621_nfc *nfc, bool enable)
++{
++ mt7621_ecc_wait_idle(nfc, ECC_DECIDLE);
++ ecc_write16(nfc, ECC_DECCON, enable ? DEC_EN : 0);
++}
++
++static int mt7621_ecc_correct_check(struct mt7621_nfc *nfc, u8 *sector_buf,
++ u8 *fdm_buf, u32 sect)
++{
++ struct nand_chip *nand = &nfc->nand;
++ u32 decnum, num_error_bits, fdm_end_bits;
++ u32 error_locations, error_bit_loc;
++ u32 error_byte_pos, error_bit_pos;
++ int bitflips = 0;
++ u32 i;
++
++ decnum = ecc_read32(nfc, ECC_DECENUM);
++ num_error_bits = (decnum >> (sect << ERRNUM_S)) & ERRNUM_M;
++ fdm_end_bits = (nand->ecc.size + NFI_FDM_SIZE) << 3;
++
++ if (!num_error_bits)
++ return 0;
++
++ if (num_error_bits == ERRNUM_M)
++ return -1;
++
++ for (i = 0; i < num_error_bits; i++) {
++ error_locations = ecc_read32(nfc, ECC_DECEL(i / 2));
++ error_bit_loc = (error_locations >> ((i % 2) * DEC_EL_ODD_S)) &
++ DEC_EL_M;
++ error_byte_pos = error_bit_loc >> DEC_EL_BYTE_POS_S;
++ error_bit_pos = error_bit_loc & DEC_EL_BIT_POS_M;
++
++ if (error_bit_loc < (nand->ecc.size << 3)) {
++ if (sector_buf) {
++ sector_buf[error_byte_pos] ^=
++ (1 << error_bit_pos);
++ }
++ } else if (error_bit_loc < fdm_end_bits) {
++ if (fdm_buf) {
++ fdm_buf[error_byte_pos - nand->ecc.size] ^=
++ (1 << error_bit_pos);
++ }
++ }
++
++ bitflips++;
++ }
++
++ return bitflips;
++}
++
++static int mt7621_nfc_wait_write_completion(struct mt7621_nfc *nfc,
++ struct nand_chip *nand)
++{
++ struct device *dev = nfc->dev;
++ u16 val;
++ int ret;
++
++ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_ADDRCNTR, val,
++ ((val & SEC_CNTR_M) >> SEC_CNTR_S) >= nand->ecc.steps, 10,
++ NFI_CORE_TIMEOUT);
++
++ if (ret) {
++ dev_warn(dev, "NFI core write operation timed out\n");
++ return -ETIMEDOUT;
++ }
++
++ return ret;
++}
++
++static void mt7621_nfc_hw_reset(struct mt7621_nfc *nfc)
++{
++ u32 val;
++ int ret;
++
++ /* reset all registers and force the NFI master to terminate */
++ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
++
++ /* wait for the master to finish the last transaction */
++ ret = readw_poll_timeout(nfc->nfi_regs + NFI_MASTER_STA, val,
++ !(val & MASTER_STA_MASK), 50,
++ NFI_RESET_TIMEOUT);
++ if (ret) {
++ dev_warn(nfc->dev, "Failed to reset NFI master in %dms\n",
++ NFI_RESET_TIMEOUT);
++ }
++
++ /* ensure any status register affected by the NFI master is reset */
++ nfi_write16(nfc, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
++ nfi_write16(nfc, NFI_STRDATA, 0);
++}
++
++static inline void mt7621_nfc_hw_init(struct mt7621_nfc *nfc)
++{
++ u32 acccon;
++
++ /*
++ * CNRNB: nand ready/busy register
++ * -------------------------------
++ * 7:4: timeout register for polling the NAND busy/ready signal
++ * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
++ */
++ nfi_write16(nfc, NFI_CNRNB, CB2R_TIME_M | STR_CNRNB);
++
++ mt7621_nfc_hw_reset(nfc);
++
++ /* Apply default access timing */
++ acccon = ACCTIMING(ACCCON_POECS_DEF, ACCCON_PRECS_DEF, ACCCON_C2R_DEF,
++ ACCCON_W2R_DEF, ACCCON_WH_DEF, ACCCON_WST_DEF,
++ ACCCON_RLT_DEF);
++
++ nfi_write32(nfc, NFI_ACCCON, acccon);
++}
++
++static int mt7621_nfc_send_command(struct mt7621_nfc *nfc, u8 command)
++{
++ struct device *dev = nfc->dev;
++ u32 val;
++ int ret;
++
++ nfi_write32(nfc, NFI_CMD, command);
++
++ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
++ !(val & STA_CMD), 10,
++ NFI_CORE_TIMEOUT);
++ if (ret) {
++ dev_warn(dev, "NFI core timed out entering command mode\n");
++ return -EIO;
++ }
++
++ return 0;
++}
++
++static int mt7621_nfc_send_address_byte(struct mt7621_nfc *nfc, int addr)
++{
++ struct device *dev = nfc->dev;
++ u32 val;
++ int ret;
++
++ nfi_write32(nfc, NFI_COLADDR, addr);
++ nfi_write32(nfc, NFI_ROWADDR, 0);
++ nfi_write16(nfc, NFI_ADDRNOB, 1);
++
++ ret = readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
++ !(val & STA_ADDR), 10,
++ NFI_CORE_TIMEOUT);
++ if (ret) {
++ dev_warn(dev, "NFI core timed out entering address mode\n");
++ return -EIO;
++ }
++
++ return 0;
++}
++
++static int mt7621_nfc_send_address(struct mt7621_nfc *nfc, const u8 *addr,
++ unsigned int naddrs)
++{
++ int ret;
++
++ while (naddrs) {
++ ret = mt7621_nfc_send_address_byte(nfc, *addr);
++ if (ret)
++ return ret;
++
++ addr++;
++ naddrs--;
++ }
++
++ return 0;
++}
++
++static void mt7621_nfc_wait_pio_ready(struct mt7621_nfc *nfc)
++{
++ struct device *dev = nfc->dev;
++ int ret;
++ u16 val;
++
++ ret = readw_poll_timeout_atomic(nfc->nfi_regs + NFI_PIO_DIRDY, val,
++ val & PIO_DIRDY, 10,
++ NFI_CORE_TIMEOUT);
++ if (ret < 0)
++ dev_err(dev, "NFI core PIO mode not ready\n");
++}
++
++static u32 mt7621_nfc_pio_read(struct mt7621_nfc *nfc, bool br)
++{
++ u32 reg;
++
++ /* after each byte read, the NFI_STA reg is reset by the hardware */
++ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S;
++ if (reg != STA_FSM_CUSTOM_DATA) {
++ reg = nfi_read16(nfc, NFI_CNFG);
++ reg |= CNFG_READ_MODE | CNFG_BYTE_RW;
++ if (!br)
++ reg &= ~CNFG_BYTE_RW;
++ nfi_write16(nfc, NFI_CNFG, reg);
++
++ /*
++ * set to max sector to allow the HW to continue reading over
++ * unaligned accesses
++ */
++ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BRD);
++
++ /* trigger to fetch data */
++ nfi_write16(nfc, NFI_STRDATA, STR_DATA);
++ }
++
++ mt7621_nfc_wait_pio_ready(nfc);
++
++ return nfi_read32(nfc, NFI_DATAR);
++}
++
++static void mt7621_nfc_read_data(struct mt7621_nfc *nfc, u8 *buf, u32 len)
++{
++ while (((uintptr_t)buf & 3) && len) {
++ *buf = mt7621_nfc_pio_read(nfc, true);
++ buf++;
++ len--;
++ }
++
++ while (len >= 4) {
++ *(u32 *)buf = mt7621_nfc_pio_read(nfc, false);
++ buf += 4;
++ len -= 4;
++ }
++
++ while (len) {
++ *buf = mt7621_nfc_pio_read(nfc, true);
++ buf++;
++ len--;
++ }
++}
++
++static void mt7621_nfc_read_data_discard(struct mt7621_nfc *nfc, u32 len)
++{
++ while (len >= 4) {
++ mt7621_nfc_pio_read(nfc, false);
++ len -= 4;
++ }
++
++ while (len) {
++ mt7621_nfc_pio_read(nfc, true);
++ len--;
++ }
++}
++
++static void mt7621_nfc_pio_write(struct mt7621_nfc *nfc, u32 val, bool bw)
++{
++ u32 reg;
++
++ reg = (nfi_read32(nfc, NFI_STA) & STA_NFI_FSM_M) >> STA_NFI_FSM_S;
++ if (reg != STA_FSM_CUSTOM_DATA) {
++ reg = nfi_read16(nfc, NFI_CNFG);
++ reg &= ~(CNFG_READ_MODE | CNFG_BYTE_RW);
++ if (bw)
++ reg |= CNFG_BYTE_RW;
++ nfi_write16(nfc, NFI_CNFG, reg);
++
++ nfi_write16(nfc, NFI_CON, CON_NFI_SEC_M | CON_NFI_BWR);
++ nfi_write16(nfc, NFI_STRDATA, STR_DATA);
++ }
++
++ mt7621_nfc_wait_pio_ready(nfc);
++ nfi_write32(nfc, NFI_DATAW, val);
++}
++
++static void mt7621_nfc_write_data(struct mt7621_nfc *nfc, const u8 *buf,
++ u32 len)
++{
++ while (((uintptr_t)buf & 3) && len) {
++ mt7621_nfc_pio_write(nfc, *buf, true);
++ buf++;
++ len--;
++ }
++
++ while (len >= 4) {
++ mt7621_nfc_pio_write(nfc, *(const u32 *)buf, false);
++ buf += 4;
++ len -= 4;
++ }
++
++ while (len) {
++ mt7621_nfc_pio_write(nfc, *buf, true);
++ buf++;
++ len--;
++ }
++}
++
++static void mt7621_nfc_write_data_empty(struct mt7621_nfc *nfc, u32 len)
++{
++ while (len >= 4) {
++ mt7621_nfc_pio_write(nfc, 0xffffffff, false);
++ len -= 4;
++ }
++
++ while (len) {
++ mt7621_nfc_pio_write(nfc, 0xff, true);
++ len--;
++ }
++}
++
++static int mt7621_nfc_dev_ready(struct mt7621_nfc *nfc,
++ unsigned int timeout_ms)
++{
++ u32 val;
++
++ return readl_poll_timeout_atomic(nfc->nfi_regs + NFI_STA, val,
++ !(val & STA_BUSY), 10,
++ timeout_ms * 1000);
++}
++
++static int mt7621_nfc_exec_instr(struct nand_chip *nand,
++ const struct nand_op_instr *instr)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++
++ switch (instr->type) {
++ case NAND_OP_CMD_INSTR:
++ mt7621_nfc_hw_reset(nfc);
++ nfi_write16(nfc, NFI_CNFG, CNFG_OP_CUSTOM << CNFG_OP_MODE_S);
++ return mt7621_nfc_send_command(nfc, instr->ctx.cmd.opcode);
++ case NAND_OP_ADDR_INSTR:
++ return mt7621_nfc_send_address(nfc, instr->ctx.addr.addrs,
++ instr->ctx.addr.naddrs);
++ case NAND_OP_DATA_IN_INSTR:
++ mt7621_nfc_read_data(nfc, instr->ctx.data.buf.in,
++ instr->ctx.data.len);
++ return 0;
++ case NAND_OP_DATA_OUT_INSTR:
++ mt7621_nfc_write_data(nfc, instr->ctx.data.buf.out,
++ instr->ctx.data.len);
++ return 0;
++ case NAND_OP_WAITRDY_INSTR:
++ return mt7621_nfc_dev_ready(nfc,
++ instr->ctx.waitrdy.timeout_ms);
++ default:
++ WARN_ONCE(1, "unsupported NAND instruction type: %d\n",
++ instr->type);
++
++ return -EINVAL;
++ }
++}
++
++static int mt7621_nfc_exec_op(struct nand_chip *nand,
++ const struct nand_operation *op, bool check_only)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ int i, ret;
++
++ if (check_only)
++ return 0;
++
++ /* Only CS0 available */
++ nfi_write16(nfc, NFI_CSEL, 0);
++
++ for (i = 0; i < op->ninstrs; i++) {
++ ret = mt7621_nfc_exec_instr(nand, &op->instrs[i]);
++ if (ret)
++ return ret;
++ }
++
++ return 0;
++}
++
++static int mt7621_nfc_setup_data_interface(struct nand_chip *nand, int csline,
++ const struct nand_data_interface *conf)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ const struct nand_sdr_timings *timings;
++ u32 acccon, temp, rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
++
++ if (!nfc->nfi_clk)
++ return -ENOTSUPP;
++
++ timings = nand_get_sdr_timings(conf);
++ if (IS_ERR(timings))
++ return -ENOTSUPP;
++
++ rate = clk_get_rate(nfc->nfi_clk);
++
++ /* turn clock rate into KHZ */
++ rate /= 1000;
++
++ tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
++ tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
++ tpoecs = min_t(u32, tpoecs, ACCCON_POECS_MAX);
++
++ tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
++ tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
++ tprecs = min_t(u32, tprecs, ACCCON_PRECS_MAX);
++
++ /* sdr interface has no tCR which means CE# low to RE# low */
++ tc2r = 0;
++
++ tw2r = timings->tWHR_min / 1000;
++ tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
++ tw2r = DIV_ROUND_UP(tw2r - 1, 2);
++ tw2r = min_t(u32, tw2r, ACCCON_W2R_MAX);
++
++ twh = max(timings->tREH_min, timings->tWH_min) / 1000;
++ twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
++ twh = min_t(u32, twh, ACCCON_WH_MAX);
++
++ /* Calculate real WE#/RE# hold time in nanosecond */
++ temp = (twh + 1) * 1000000 / rate;
++ /* nanosecond to picosecond */
++ temp *= 1000;
++
++ /*
++ * WE# low level time should be expaned to meet WE# pulse time
++ * and WE# cycle time at the same time.
++ */
++ if (temp < timings->tWC_min)
++ twst = timings->tWC_min - temp;
++ else
++ twst = 0;
++ twst = max(timings->tWP_min, twst) / 1000;
++ twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
++ twst = min_t(u32, twst, ACCCON_WST_MAX);
++
++ /*
++ * RE# low level time should be expaned to meet RE# pulse time
++ * and RE# cycle time at the same time.
++ */
++ if (temp < timings->tRC_min)
++ trlt = timings->tRC_min - temp;
++ else
++ trlt = 0;
++ trlt = max(trlt, timings->tRP_min) / 1000;
++ trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
++ trlt = min_t(u32, trlt, ACCCON_RLT_MAX);
++
++ if (csline == NAND_DATA_IFACE_CHECK_ONLY) {
++ if (twst < ACCCON_WST_MIN || trlt < ACCCON_RLT_MIN)
++ return -ENOTSUPP;
++ }
++
++ acccon = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
++
++ dev_info(nfc->dev, "Using programmed access timing: %08x\n", acccon);
++
++ nfi_write32(nfc, NFI_ACCCON, acccon);
++
++ return 0;
++}
++
++static int mt7621_nfc_calc_ecc_strength(struct mt7621_nfc *nfc,
++ u32 avail_ecc_bytes)
++{
++ struct nand_chip *nand = &nfc->nand;
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ u32 strength;
++ int i;
++
++ strength = avail_ecc_bytes * 8 / ECC_PARITY_BITS;
++
++ /* Find the closest supported ecc strength */
++ for (i = ARRAY_SIZE(mt7621_ecc_strength) - 1; i >= 0; i--) {
++ if (mt7621_ecc_strength[i] <= strength)
++ break;
++ }
++
++ if (unlikely(i < 0)) {
++ dev_err(nfc->dev, "OOB size (%u) is not supported\n",
++ mtd->oobsize);
++ return -EINVAL;
++ }
++
++ nand->ecc.strength = mt7621_ecc_strength[i];
++ nand->ecc.bytes =
++ DIV_ROUND_UP(nand->ecc.strength * ECC_PARITY_BITS, 8);
++
++ dev_info(nfc->dev, "ECC strength adjusted to %u bits\n",
++ nand->ecc.strength);
++
++ return i;
++}
++
++static int mt7621_nfc_set_spare_per_sector(struct mt7621_nfc *nfc)
++{
++ struct nand_chip *nand = &nfc->nand;
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ u32 size;
++ int i;
++
++ size = nand->ecc.bytes + NFI_FDM_SIZE;
++
++ /* Find the closest supported spare size */
++ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_spare_size); i++) {
++ if (mt7621_nfi_spare_size[i] >= size)
++ break;
++ }
++
++ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_spare_size))) {
++ dev_err(nfc->dev, "OOB size (%u) is not supported\n",
++ mtd->oobsize);
++ return -EINVAL;
++ }
++
++ nfc->spare_per_sector = mt7621_nfi_spare_size[i];
++
++ return i;
++}
++
++static int mt7621_nfc_ecc_init(struct mt7621_nfc *nfc)
++{
++ struct nand_chip *nand = &nfc->nand;
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ u32 spare_per_sector, encode_block_size, decode_block_size;
++ u32 ecc_enccfg, ecc_deccfg;
++ int ecc_cap;
++
++ /* Only hardware ECC mode is supported */
++ if (nand->ecc.mode != NAND_ECC_HW_SYNDROME) {
++ dev_err(nfc->dev, "Only hardware ECC mode is supported\n");
++ return -EINVAL;
++ }
++
++ nand->ecc.size = ECC_SECTOR_SIZE;
++ nand->ecc.steps = mtd->writesize / nand->ecc.size;
++
++ spare_per_sector = mtd->oobsize / nand->ecc.steps;
++
++ ecc_cap = mt7621_nfc_calc_ecc_strength(nfc,
++ spare_per_sector - NFI_FDM_SIZE);
++ if (ecc_cap < 0)
++ return ecc_cap;
++
++ /* Sector + FDM */
++ encode_block_size = (nand->ecc.size + NFI_FDM_SIZE) * 8;
++ ecc_enccfg = ecc_cap | (ENC_MODE_NFI << ENC_MODE_S) |
++ (encode_block_size << ENC_CNFG_MSG_S);
++
++ /* Sector + FDM + ECC parity bits */
++ decode_block_size = ((nand->ecc.size + NFI_FDM_SIZE) * 8) +
++ nand->ecc.strength * ECC_PARITY_BITS;
++ ecc_deccfg = ecc_cap | (DEC_MODE_NFI << DEC_MODE_S) |
++ (decode_block_size << DEC_CS_S) |
++ (DEC_CON_EL << DEC_CON_S) | DEC_EMPTY_EN;
++
++ mt7621_ecc_encoder_op(nfc, false);
++ ecc_write32(nfc, ECC_ENCCNFG, ecc_enccfg);
++
++ mt7621_ecc_decoder_op(nfc, false);
++ ecc_write32(nfc, ECC_DECCNFG, ecc_deccfg);
++
++ return 0;
++}
++
++static int mt7621_nfc_set_page_format(struct mt7621_nfc *nfc)
++{
++ struct nand_chip *nand = &nfc->nand;
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ int i, spare_size;
++ u32 pagefmt;
++
++ spare_size = mt7621_nfc_set_spare_per_sector(nfc);
++ if (spare_size < 0)
++ return spare_size;
++
++ for (i = 0; i < ARRAY_SIZE(mt7621_nfi_page_size); i++) {
++ if (mt7621_nfi_page_size[i] == mtd->writesize)
++ break;
++ }
++
++ if (unlikely(i >= ARRAY_SIZE(mt7621_nfi_page_size))) {
++ dev_err(nfc->dev, "Page size (%u) is not supported\n",
++ mtd->writesize);
++ return -EINVAL;
++ }
++
++ pagefmt = i | (spare_size << PAGEFMT_SPARE_S) |
++ (NFI_FDM_SIZE << PAGEFMT_FDM_S) |
++ (NFI_FDM_SIZE << PAGEFMT_FDM_ECC_S);
++
++ nfi_write16(nfc, NFI_PAGEFMT, pagefmt);
++
++ return 0;
++}
++
++static int mt7621_nfc_attach_chip(struct nand_chip *nand)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ int ret;
++
++ if (nand->options & NAND_BUSWIDTH_16) {
++ dev_err(nfc->dev, "16-bit buswidth is not supported");
++ return -EINVAL;
++ }
++
++ ret = mt7621_nfc_ecc_init(nfc);
++ if (ret)
++ return ret;
++
++ return mt7621_nfc_set_page_format(nfc);
++}
++
++static const struct nand_controller_ops mt7621_nfc_controller_ops = {
++ .attach_chip = mt7621_nfc_attach_chip,
++ .exec_op = mt7621_nfc_exec_op,
++ .setup_data_interface = mt7621_nfc_setup_data_interface,
++};
++
++static int mt7621_nfc_ooblayout_free(struct mtd_info *mtd, int section,
++ struct mtd_oob_region *oob_region)
++{
++ struct nand_chip *nand = mtd_to_nand(mtd);
++
++ if (section >= nand->ecc.steps)
++ return -ERANGE;
++
++ oob_region->length = NFI_FDM_SIZE - 1;
++ oob_region->offset = section * NFI_FDM_SIZE + 1;
++
++ return 0;
++}
++
++static int mt7621_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
++ struct mtd_oob_region *oob_region)
++{
++ struct nand_chip *nand = mtd_to_nand(mtd);
++
++ if (section)
++ return -ERANGE;
++
++ oob_region->offset = NFI_FDM_SIZE * nand->ecc.steps;
++ oob_region->length = mtd->oobsize - oob_region->offset;
++
++ return 0;
++}
++
++static const struct mtd_ooblayout_ops mt7621_nfc_ooblayout_ops = {
++ .free = mt7621_nfc_ooblayout_free,
++ .ecc = mt7621_nfc_ooblayout_ecc,
++};
++
++static void mt7621_nfc_write_fdm(struct mt7621_nfc *nfc)
++{
++ struct nand_chip *nand = &nfc->nand;
++ u32 vall, valm;
++ u8 *oobptr;
++ int i, j;
++
++ for (i = 0; i < nand->ecc.steps; i++) {
++ vall = 0;
++ valm = 0;
++ oobptr = oob_fdm_ptr(nand, i);
++
++ for (j = 0; j < 4; j++)
++ vall |= (u32)oobptr[j] << (j * 8);
++
++ for (j = 0; j < 4; j++)
++ valm |= (u32)oobptr[j + 4] << ((j - 4) * 8);
++
++ nfi_write32(nfc, NFI_FDML(i), vall);
++ nfi_write32(nfc, NFI_FDMM(i), valm);
++ }
++}
++
++static void mt7621_nfc_read_sector_fdm(struct mt7621_nfc *nfc, u32 sect)
++{
++ struct nand_chip *nand = &nfc->nand;
++ u32 vall, valm;
++ u8 *oobptr;
++ int i;
++
++ vall = nfi_read32(nfc, NFI_FDML(sect));
++ valm = nfi_read32(nfc, NFI_FDMM(sect));
++ oobptr = oob_fdm_ptr(nand, sect);
++
++ for (i = 0; i < 4; i++)
++ oobptr[i] = (vall >> (i * 8)) & 0xff;
++
++ for (i = 0; i < 4; i++)
++ oobptr[i + 4] = (valm >> (i * 8)) & 0xff;
++}
++
++static int mt7621_nfc_read_page_hwecc(struct nand_chip *nand, uint8_t *buf,
++ int oob_required, int page)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ int bitflips = 0;
++ int rc, i;
++
++ nand_read_page_op(nand, page, 0, NULL, 0);
++
++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
++ CNFG_READ_MODE | CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
++
++ mt7621_ecc_decoder_op(nfc, true);
++
++ nfi_write16(nfc, NFI_CON,
++ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S));
++
++ for (i = 0; i < nand->ecc.steps; i++) {
++ if (buf)
++ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
++ nand->ecc.size);
++ else
++ mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
++
++ rc = mt7621_ecc_decoder_wait_done(nfc, i);
++
++ mt7621_nfc_read_sector_fdm(nfc, i);
++
++ if (rc < 0) {
++ bitflips = -EIO;
++ continue;
++ }
++
++ rc = mt7621_ecc_correct_check(nfc,
++ buf ? page_data_ptr(nand, buf, i) : NULL,
++ oob_fdm_ptr(nand, i), i);
++
++ if (rc < 0) {
++ dev_warn(nfc->dev,
++ "Uncorrectable ECC error at page %d.%d\n",
++ page, i);
++ bitflips = -EBADMSG;
++ mtd->ecc_stats.failed++;
++ } else if (bitflips >= 0) {
++ bitflips += rc;
++ mtd->ecc_stats.corrected += rc;
++ }
++ }
++
++ mt7621_ecc_decoder_op(nfc, false);
++
++ nfi_write16(nfc, NFI_CON, 0);
++
++ return bitflips;
++}
++
++static int mt7621_nfc_read_page_raw(struct nand_chip *nand, uint8_t *buf,
++ int oob_required, int page)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ int i;
++
++ nand_read_page_op(nand, page, 0, NULL, 0);
++
++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
++ CNFG_READ_MODE);
++
++ nfi_write16(nfc, NFI_CON,
++ CON_NFI_BRD | (nand->ecc.steps << CON_NFI_SEC_S));
++
++ for (i = 0; i < nand->ecc.steps; i++) {
++ /* Read data */
++ if (buf)
++ mt7621_nfc_read_data(nfc, page_data_ptr(nand, buf, i),
++ nand->ecc.size);
++ else
++ mt7621_nfc_read_data_discard(nfc, nand->ecc.size);
++
++ /* Read FDM */
++ mt7621_nfc_read_data(nfc, oob_fdm_ptr(nand, i), NFI_FDM_SIZE);
++
++ /* Read ECC parity data */
++ mt7621_nfc_read_data(nfc, oob_ecc_ptr(nfc, i),
++ nfc->spare_per_sector - NFI_FDM_SIZE);
++ }
++
++ nfi_write16(nfc, NFI_CON, 0);
++
++ return 0;
++}
++
++static int mt7621_nfc_read_oob_hwecc(struct nand_chip *nand, int page)
++{
++ return mt7621_nfc_read_page_hwecc(nand, NULL, 1, page);
++}
++
++static int mt7621_nfc_read_oob_raw(struct nand_chip *nand, int page)
++{
++ return mt7621_nfc_read_page_raw(nand, NULL, 1, page);
++}
++
++static int mt7621_nfc_check_empty_page(struct nand_chip *nand, const u8 *buf)
++{
++ struct mtd_info *mtd = nand_to_mtd(nand);
++ uint32_t i, j;
++ u8 *oobptr;
++
++ if (buf) {
++ for (i = 0; i < mtd->writesize; i++)
++ if (buf[i] != 0xff)
++ return 0;
++ }
++
++ for (i = 0; i < nand->ecc.steps; i++) {
++ oobptr = oob_fdm_ptr(nand, i);
++ for (j = 0; j < NFI_FDM_SIZE; j++)
++ if (oobptr[j] != 0xff)
++ return 0;
++ }
++
++ return 1;
++}
++
++static int mt7621_nfc_write_page_hwecc(struct nand_chip *nand,
++ const uint8_t *buf, int oob_required,
++ int page)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ struct mtd_info *mtd = nand_to_mtd(nand);
++
++ if (mt7621_nfc_check_empty_page(nand, buf)) {
++ /*
++ * MT7621 ECC engine always generates parity code for input
++ * pages, even for empty pages. Doing so will write back ECC
++ * parity code to the oob region, which means such pages will
++ * no longer be empty pages.
++ *
++ * To avoid this, stop write operation if current page is an
++ * empty page.
++ */
++ return 0;
++ }
++
++ nand_prog_page_begin_op(nand, page, 0, NULL, 0);
++
++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S) |
++ CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
++
++ mt7621_ecc_encoder_op(nfc, true);
++
++ mt7621_nfc_write_fdm(nfc);
++
++ nfi_write16(nfc, NFI_CON,
++ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S));
++
++ if (buf)
++ mt7621_nfc_write_data(nfc, buf, mtd->writesize);
++ else
++ mt7621_nfc_write_data_empty(nfc, mtd->writesize);
++
++ mt7621_nfc_wait_write_completion(nfc, nand);
++
++ mt7621_ecc_encoder_op(nfc, false);
++
++ nfi_write16(nfc, NFI_CON, 0);
++
++ return nand_prog_page_end_op(nand);
++}
++
++static int mt7621_nfc_write_page_raw(struct nand_chip *nand,
++ const uint8_t *buf, int oob_required,
++ int page)
++{
++ struct mt7621_nfc *nfc = nand_get_controller_data(nand);
++ int i;
++
++ nand_prog_page_begin_op(nand, page, 0, NULL, 0);
++
++ nfi_write16(nfc, NFI_CNFG, (CNFG_OP_CUSTOM << CNFG_OP_MODE_S));
++
++ nfi_write16(nfc, NFI_CON,
++ CON_NFI_BWR | (nand->ecc.steps << CON_NFI_SEC_S));
++
++ for (i = 0; i < nand->ecc.steps; i++) {
++ /* Write data */
++ if (buf)
++ mt7621_nfc_write_data(nfc, page_data_ptr(nand, buf, i),
++ nand->ecc.size);
++ else
++ mt7621_nfc_write_data_empty(nfc, nand->ecc.size);
++
++ /* Write FDM */
++ mt7621_nfc_write_data(nfc, oob_fdm_ptr(nand, i),
++ NFI_FDM_SIZE);
++
++ /* Write dummy ECC parity data */
++ mt7621_nfc_write_data_empty(nfc, nfc->spare_per_sector -
++ NFI_FDM_SIZE);
++ }
++
++ mt7621_nfc_wait_write_completion(nfc, nand);
++
++ nfi_write16(nfc, NFI_CON, 0);
++
++ return nand_prog_page_end_op(nand);
++}
++
++static int mt7621_nfc_write_oob_hwecc(struct nand_chip *nand, int page)
++{
++ return mt7621_nfc_write_page_hwecc(nand, NULL, 1, page);
++}
++
++static int mt7621_nfc_write_oob_raw(struct nand_chip *nand, int page)
++{
++ return mt7621_nfc_write_page_raw(nand, NULL, 1, page);
++}
++
++static int mt7621_nfc_init_chip(struct mt7621_nfc *nfc)
++{
++ struct nand_chip *nand = &nfc->nand;
++ struct mtd_info *mtd;
++ int ret;
++
++ nand->controller = &nfc->controller;
++ nand_set_controller_data(nand, (void *)nfc);
++ nand_set_flash_node(nand, nfc->dev->of_node);
++
++ nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_NO_SUBPAGE_WRITE;
++ if (!nfc->nfi_clk)
++ nand->options |= NAND_KEEP_TIMINGS;
++
++ nand->ecc.mode = NAND_ECC_HW_SYNDROME;
++ nand->ecc.read_page = mt7621_nfc_read_page_hwecc;
++ nand->ecc.read_page_raw = mt7621_nfc_read_page_raw;
++ nand->ecc.write_page = mt7621_nfc_write_page_hwecc;
++ nand->ecc.write_page_raw = mt7621_nfc_write_page_raw;
++ nand->ecc.read_oob = mt7621_nfc_read_oob_hwecc;
++ nand->ecc.read_oob_raw = mt7621_nfc_read_oob_raw;
++ nand->ecc.write_oob = mt7621_nfc_write_oob_hwecc;
++ nand->ecc.write_oob_raw = mt7621_nfc_write_oob_raw;
++
++ mtd = nand_to_mtd(nand);
++ mtd->owner = THIS_MODULE;
++ mtd->dev.parent = nfc->dev;
++ mtd->name = MT7621_NFC_NAME;
++ mtd_set_ooblayout(mtd, &mt7621_nfc_ooblayout_ops);
++
++ mt7621_nfc_hw_init(nfc);
++
++ ret = nand_scan(nand, 1);
++ if (ret)
++ return ret;
++
++ ret = mtd_device_register(mtd, NULL, 0);
++ if (ret) {
++ dev_err(nfc->dev, "Failed to register MTD: %d\n", ret);
++ nand_release(nand);
++ return ret;
++ }
++
++ return 0;
++}
++
++static int mt7621_nfc_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct mt7621_nfc *nfc;
++ struct resource *res;
++ int ret;
++
++ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
++ if (!nfc)
++ return -ENOMEM;
++
++ nand_controller_init(&nfc->controller);
++ nfc->controller.ops = &mt7621_nfc_controller_ops;
++ nfc->dev = dev;
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nfi");
++ nfc->nfi_regs = devm_ioremap_resource(dev, res);
++ if (IS_ERR(nfc->nfi_regs)) {
++ ret = PTR_ERR(nfc->nfi_regs);
++ return ret;
++ }
++
++ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ecc");
++ nfc->ecc_regs = devm_ioremap_resource(dev, res);
++ if (IS_ERR(nfc->ecc_regs)) {
++ ret = PTR_ERR(nfc->ecc_regs);
++ return ret;
++ }
++
++ nfc->nfi_clk = devm_clk_get(dev, "nfi_clk");
++ if (IS_ERR(nfc->nfi_clk)) {
++ dev_warn(dev, "nfi clk not provided\n");
++ nfc->nfi_clk = NULL;
++ } else {
++ ret = clk_prepare_enable(nfc->nfi_clk);
++ if (ret) {
++ dev_err(dev, "Failed to enable nfi core clock\n");
++ return ret;
++ }
++ }
++
++ platform_set_drvdata(pdev, nfc);
++
++ ret = mt7621_nfc_init_chip(nfc);
++ if (ret) {
++ dev_err(dev, "Failed to initialize nand chip\n");
++ goto clk_disable;
++ }
++
++ return 0;
++
++clk_disable:
++ clk_disable_unprepare(nfc->nfi_clk);
++
++ return ret;
++}
++
++static int mt7621_nfc_remove(struct platform_device *pdev)
++{
++ struct mt7621_nfc *nfc = platform_get_drvdata(pdev);
++
++ nand_release(&nfc->nand);
++ clk_disable_unprepare(nfc->nfi_clk);
++
++ return 0;
++}
++
++static const struct of_device_id mt7621_nfc_id_table[] = {
++ { .compatible = "mediatek,mt7621-nfc" },
++ { },
++};
++MODULE_DEVICE_TABLE(of, match);
++
++static struct platform_driver mt7621_nfc_driver = {
++ .probe = mt7621_nfc_probe,
++ .remove = mt7621_nfc_remove,
++ .driver = {
++ .name = MT7621_NFC_NAME,
++ .owner = THIS_MODULE,
++ .of_match_table = mt7621_nfc_id_table,
++ },
++};
++module_platform_driver(mt7621_nfc_driver);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Weijie Gao <weijie.gao@mediatek.com>");
++MODULE_DESCRIPTION("MediaTek MT7621 NAND Flash Controller driver");