summaryrefslogtreecommitdiffstats
path: root/StandaloneMmPkg
diff options
context:
space:
mode:
authorSupreeth Venkatesh <supreeth.venkatesh@arm.com>2018-07-13 23:05:24 +0800
committerJiewen Yao <jiewen.yao@intel.com>2018-07-20 10:55:46 +0800
commit2c868eef731586de781adb96a1ce837de76c0dae (patch)
tree3a9af2628c839cd8a879fe4dcbc3ac8dd1af6f4b /StandaloneMmPkg
parent880086a2b59075563cff2cf1af58910a273cd30d (diff)
downloadedk2-2c868eef731586de781adb96a1ce837de76c0dae.tar.gz
edk2-2c868eef731586de781adb96a1ce837de76c0dae.tar.bz2
edk2-2c868eef731586de781adb96a1ce837de76c0dae.zip
StandaloneMmPkg/MemoryAllocationLib: Add MM memory allocation library.
This patch implements management mode memory allocation services. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Supreeth Venkatesh <supreeth.venkatesh@arm.com> Reviewed-by: Achin Gupta <achin.gupta@arm.com> Reviewed-by: Jiewen Yao <Jiewen.yao@intel.com> Signed-off-by: Sughosh Ganu <sughosh.ganu@arm.com>
Diffstat (limited to 'StandaloneMmPkg')
-rw-r--r--StandaloneMmPkg/Include/Guid/MmCoreData.h133
-rw-r--r--StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h62
-rw-r--r--StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c908
-rw-r--r--StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf49
-rw-r--r--StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h38
5 files changed, 1190 insertions, 0 deletions
diff --git a/StandaloneMmPkg/Include/Guid/MmCoreData.h b/StandaloneMmPkg/Include/Guid/MmCoreData.h
new file mode 100644
index 0000000000..a1168f95f7
--- /dev/null
+++ b/StandaloneMmPkg/Include/Guid/MmCoreData.h
@@ -0,0 +1,133 @@
+/** @file
+ MM Core data.
+
+Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
+Copyright (c) 2018, ARM Limited. All rights reserved.<BR>
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#ifndef __MM_CORE_DATA_H__
+#define __MM_CORE_DATA_H__
+
+#define MM_CORE_DATA_HOB_GUID \
+ { 0xa160bf99, 0x2aa4, 0x4d7d, { 0x99, 0x93, 0x89, 0x9c, 0xb1, 0x2d, 0xf3, 0x76 }}
+
+extern EFI_GUID gMmCoreDataHobGuid;
+
+typedef struct {
+ //
+ // Address pointer to MM_CORE_PRIVATE_DATA
+ //
+ EFI_PHYSICAL_ADDRESS Address;
+} MM_CORE_DATA_HOB_DATA;
+
+
+///
+/// Define values for the communications buffer used when gEfiEventDxeDispatchGuid is
+/// event signaled. This event is signaled by the DXE Core each time the DXE Core
+/// dispatcher has completed its work. When this event is signaled, the MM Core
+/// if notified, so the MM Core can dispatch MM drivers. If COMM_BUFFER_MM_DISPATCH_ERROR
+/// is returned in the communication buffer, then an error occurred dispatching MM
+/// Drivers. If COMM_BUFFER_MM_DISPATCH_SUCCESS is returned, then the MM Core
+/// dispatched all the drivers it could. If COMM_BUFFER_MM_DISPATCH_RESTART is
+/// returned, then the MM Core just dispatched the MM Driver that registered
+/// the MM Entry Point enabling the use of MM Mode. In this case, the MM Core
+/// should be notified again to dispatch more MM Drivers using MM Mode.
+///
+#define COMM_BUFFER_MM_DISPATCH_ERROR 0x00
+#define COMM_BUFFER_MM_DISPATCH_SUCCESS 0x01
+#define COMM_BUFFER_MM_DISPATCH_RESTART 0x02
+
+///
+/// Signature for the private structure shared between the MM IPL and the MM Core
+///
+#define MM_CORE_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('m', 'm', 'i', 'c')
+
+///
+/// Private structure that is used to share information between the MM IPL and
+/// the MM Core. This structure is allocated from memory of type EfiRuntimeServicesData.
+/// Since runtime memory types are converted to available memory when a legacy boot
+/// is performed, the MM Core must not access any fields of this structure if a legacy
+/// boot is performed. As a result, the MM IPL must create an event notification
+/// for the Legacy Boot event and notify the MM Core that a legacy boot is being
+/// performed. The MM Core can then use this information to filter accesses to
+/// thos structure.
+///
+typedef struct {
+ UINT64 Signature;
+
+ ///
+ /// The number of MMRAM ranges passed from the MM IPL to the MM Core. The MM
+ /// Core uses these ranges of MMRAM to initialize the MM Core memory manager.
+ ///
+ UINT64 MmramRangeCount;
+
+ ///
+ /// A table of MMRAM ranges passed from the MM IPL to the MM Core. The MM
+ /// Core uses these ranges of MMRAM to initialize the MM Core memory manager.
+ ///
+ EFI_PHYSICAL_ADDRESS MmramRanges;
+
+ ///
+ /// The MM Foundation Entry Point. The MM Core fills in this field when the
+ /// MM Core is initialized. The MM IPL is responsbile for registering this entry
+ /// point with the MM Configuration Protocol. The MM Configuration Protocol may
+ /// not be available at the time the MM IPL and MM Core are started, so the MM IPL
+ /// sets up a protocol notification on the MM Configuration Protocol and registers
+ /// the MM Foundation Entry Point as soon as the MM Configuration Protocol is
+ /// available.
+ ///
+ EFI_PHYSICAL_ADDRESS MmEntryPoint;
+
+ ///
+ /// Boolean flag set to TRUE while an MMI is being processed by the MM Core.
+ ///
+ BOOLEAN MmEntryPointRegistered;
+
+ ///
+ /// Boolean flag set to TRUE while an MMI is being processed by the MM Core.
+ ///
+ BOOLEAN InMm;
+
+ ///
+ /// This field is set by the MM Core then the MM Core is initialized. This field is
+ /// used by the MM Base 2 Protocol and MM Communication Protocol implementations in
+ /// the MM IPL.
+ ///
+ EFI_PHYSICAL_ADDRESS Mmst;
+
+ ///
+ /// This field is used by the MM Communicatioon Protocol to pass a buffer into
+ /// a software MMI handler and for the software MMI handler to pass a buffer back to
+ /// the caller of the MM Communication Protocol.
+ ///
+ EFI_PHYSICAL_ADDRESS CommunicationBuffer;
+
+ ///
+ /// This field is used by the MM Communicatioon Protocol to pass the size of a buffer,
+ /// in bytes, into a software MMI handler and for the software MMI handler to pass the
+ /// size, in bytes, of a buffer back to the caller of the MM Communication Protocol.
+ ///
+ UINT64 BufferSize;
+
+ ///
+ /// This field is used by the MM Communication Protocol to pass the return status from
+ /// a software MMI handler back to the caller of the MM Communication Protocol.
+ ///
+ UINT64 ReturnStatus;
+
+ EFI_PHYSICAL_ADDRESS MmCoreImageBase;
+ UINT64 MmCoreImageSize;
+ EFI_PHYSICAL_ADDRESS MmCoreEntryPoint;
+
+ EFI_PHYSICAL_ADDRESS StandaloneBfvAddress;
+} MM_CORE_PRIVATE_DATA;
+
+#endif
diff --git a/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h b/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h
new file mode 100644
index 0000000000..15818b5a8a
--- /dev/null
+++ b/StandaloneMmPkg/Include/Guid/MmramMemoryReserve.h
@@ -0,0 +1,62 @@
+/** @file
+ Definition of GUIDed HOB for reserving MMRAM regions.
+
+ This file defines:
+ * the GUID used to identify the GUID HOB for reserving MMRAM regions.
+ * the data structure of MMRAM descriptor to describe MMRAM candidate regions
+ * values of state of MMRAM candidate regions
+ * the GUID specific data structure of HOB for reserving MMRAM regions.
+ This GUIDed HOB can be used to convey the existence of the T-SEG reservation and H-SEG usage
+
+Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.<BR>
+Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
+
+This program and the accompanying materials are licensed and made available under
+the terms and conditions of the BSD License that accompanies this distribution.
+The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php.
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+ @par Revision Reference:
+ GUIDs defined in MmCis spec version 0.9.
+
+**/
+
+#ifndef _EFI_MM_PEI_MMRAM_MEMORY_RESERVE_H_
+#define _EFI_MM_PEI_MMRAM_MEMORY_RESERVE_H_
+
+#define EFI_MM_PEI_MMRAM_MEMORY_RESERVE \
+ { \
+ 0x0703f912, 0xbf8d, 0x4e2a, {0xbe, 0x07, 0xab, 0x27, 0x25, 0x25, 0xc5, 0x92 } \
+ }
+
+/**
+* GUID specific data structure of HOB for reserving MMRAM regions.
+*
+* Inconsistent with specification here:
+* EFI_HOB_MMRAM_DESCRIPTOR_BLOCK has been changed to EFI_MMRAM_HOB_DESCRIPTOR_BLOCK.
+* This inconsistency is kept in code in order for backward compatibility.
+**/
+typedef struct {
+ ///
+ /// Designates the number of possible regions in the system
+ /// that can be usable for MMRAM.
+ ///
+ /// Inconsistent with specification here:
+ /// In Framework MM CIS 0.91 specification, it defines the field type as UINTN.
+ /// However, HOBs are supposed to be CPU neutral, so UINT32 should be used instead.
+ ///
+ UINT32 NumberOfMmReservedRegions;
+ ///
+ /// Used throughout this protocol to describe the candidate
+ /// regions for MMRAM that are supported by this platform.
+ ///
+ EFI_MMRAM_DESCRIPTOR Descriptor[1];
+} EFI_MMRAM_HOB_DESCRIPTOR_BLOCK;
+
+extern EFI_GUID gEfiMmPeiSmramMemoryReserveGuid;
+
+#endif
+
diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c
new file mode 100644
index 0000000000..6ab9859b68
--- /dev/null
+++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.c
@@ -0,0 +1,908 @@
+/** @file
+ Support routines for memory allocation routines based on Standalone MM Core internal functions.
+
+ Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
+ Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
+
+ This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include <PiMm.h>
+
+#include <Guid/MmramMemoryReserve.h>
+#include <Library/MemoryAllocationLib.h>
+#include <Library/BaseMemoryLib.h>
+#include <Library/DebugLib.h>
+#include <Library/HobLib.h>
+#include "StandaloneMmCoreMemoryAllocationServices.h"
+
+EFI_MM_SYSTEM_TABLE *gMmst = NULL;
+
+/**
+ Allocates one or more 4KB pages of a certain memory type.
+
+ Allocates the number of 4KB pages of a certain memory type and returns a pointer to the allocated
+ buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL is returned.
+ If there is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ @param MemoryType The type of memory to allocate.
+ @param Pages The number of 4 KB pages to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalAllocatePages (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN Pages
+ )
+{
+ EFI_STATUS Status;
+ EFI_PHYSICAL_ADDRESS Memory;
+
+ if (Pages == 0) {
+ return NULL;
+ }
+
+ Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory);
+ if (EFI_ERROR (Status)) {
+ return NULL;
+ }
+ return (VOID *) (UINTN) Memory;
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiBootServicesData.
+
+ Allocates the number of 4KB pages of type EfiBootServicesData and returns a pointer to the
+ allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
+ is returned. If there is not enough memory remaining to satisfy the request, then NULL is
+ returned.
+
+ @param Pages The number of 4 KB pages to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocatePages (
+ IN UINTN Pages
+ )
+{
+ return InternalAllocatePages (EfiRuntimeServicesData, Pages);
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiRuntimeServicesData.
+
+ Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the
+ allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
+ is returned. If there is not enough memory remaining to satisfy the request, then NULL is
+ returned.
+
+ @param Pages The number of 4 KB pages to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateRuntimePages (
+ IN UINTN Pages
+ )
+{
+ return InternalAllocatePages (EfiRuntimeServicesData, Pages);
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiReservedMemoryType.
+
+ Allocates the number of 4KB pages of type EfiReservedMemoryType and returns a pointer to the
+ allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL
+ is returned. If there is not enough memory remaining to satisfy the request, then NULL is
+ returned.
+
+ @param Pages The number of 4 KB pages to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateReservedPages (
+ IN UINTN Pages
+ )
+{
+ return NULL;
+}
+
+/**
+ Frees one or more 4KB pages that were previously allocated with one of the page allocation
+ functions in the Memory Allocation Library.
+
+ Frees the number of 4KB pages specified by Pages from the buffer specified by Buffer. Buffer
+ must have been allocated on a previous call to the page allocation services of the Memory
+ Allocation Library. If it is not possible to free allocated pages, then this function will
+ perform no actions.
+
+ If Buffer was not allocated with a page allocation function in the Memory Allocation Library,
+ then ASSERT().
+ If Pages is zero, then ASSERT().
+
+ @param Buffer Pointer to the buffer of pages to free.
+ @param Pages The number of 4 KB pages to free.
+
+**/
+VOID
+EFIAPI
+FreePages (
+ IN VOID *Buffer,
+ IN UINTN Pages
+ )
+{
+ EFI_STATUS Status;
+
+ ASSERT (Pages != 0);
+ Status = gMmst->MmFreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) Buffer, Pages);
+ ASSERT_EFI_ERROR (Status);
+}
+
+/**
+ Allocates one or more 4KB pages of a certain memory type at a specified alignment.
+
+ Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment
+ specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is returned.
+ If there is not enough memory at the specified alignment remaining to satisfy the request, then
+ NULL is returned.
+ If Alignment is not a power of two and Alignment is not zero, then ASSERT().
+ If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().
+
+ @param MemoryType The type of memory to allocate.
+ @param Pages The number of 4 KB pages to allocate.
+ @param Alignment The requested alignment of the allocation. Must be a power of two.
+ If Alignment is zero, then byte alignment is used.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalAllocateAlignedPages (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN Pages,
+ IN UINTN Alignment
+ )
+{
+ EFI_STATUS Status;
+ EFI_PHYSICAL_ADDRESS Memory;
+ UINTN AlignedMemory;
+ UINTN AlignmentMask;
+ UINTN UnalignedPages;
+ UINTN RealPages;
+
+ //
+ // Alignment must be a power of two or zero.
+ //
+ ASSERT ((Alignment & (Alignment - 1)) == 0);
+
+ if (Pages == 0) {
+ return NULL;
+ }
+ if (Alignment > EFI_PAGE_SIZE) {
+ //
+ // Calculate the total number of pages since alignment is larger than page size.
+ //
+ AlignmentMask = Alignment - 1;
+ RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
+ //
+ // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
+ //
+ ASSERT (RealPages > Pages);
+
+ Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, RealPages, &Memory);
+ if (EFI_ERROR (Status)) {
+ return NULL;
+ }
+ AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
+ UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);
+ if (UnalignedPages > 0) {
+ //
+ // Free first unaligned page(s).
+ //
+ Status = gMmst->MmFreePages (Memory, UnalignedPages);
+ ASSERT_EFI_ERROR (Status);
+ }
+ Memory = (EFI_PHYSICAL_ADDRESS) (AlignedMemory + EFI_PAGES_TO_SIZE (Pages));
+ UnalignedPages = RealPages - Pages - UnalignedPages;
+ if (UnalignedPages > 0) {
+ //
+ // Free last unaligned page(s).
+ //
+ Status = gMmst->MmFreePages (Memory, UnalignedPages);
+ ASSERT_EFI_ERROR (Status);
+ }
+ } else {
+ //
+ // Do not over-allocate pages in this case.
+ //
+ Status = gMmst->MmAllocatePages (AllocateAnyPages, MemoryType, Pages, &Memory);
+ if (EFI_ERROR (Status)) {
+ return NULL;
+ }
+ AlignedMemory = (UINTN) Memory;
+ }
+ return (VOID *) AlignedMemory;
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiBootServicesData at a specified alignment.
+
+ Allocates the number of 4KB pages specified by Pages of type EfiBootServicesData with an
+ alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is
+ returned. If there is not enough memory at the specified alignment remaining to satisfy the
+ request, then NULL is returned.
+
+ If Alignment is not a power of two and Alignment is not zero, then ASSERT().
+ If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().
+
+ @param Pages The number of 4 KB pages to allocate.
+ @param Alignment The requested alignment of the allocation. Must be a power of two.
+ If Alignment is zero, then byte alignment is used.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateAlignedPages (
+ IN UINTN Pages,
+ IN UINTN Alignment
+ )
+{
+ return InternalAllocateAlignedPages (EfiRuntimeServicesData, Pages, Alignment);
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiRuntimeServicesData at a specified alignment.
+
+ Allocates the number of 4KB pages specified by Pages of type EfiRuntimeServicesData with an
+ alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is
+ returned. If there is not enough memory at the specified alignment remaining to satisfy the
+ request, then NULL is returned.
+
+ If Alignment is not a power of two and Alignment is not zero, then ASSERT().
+ If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().
+
+ @param Pages The number of 4 KB pages to allocate.
+ @param Alignment The requested alignment of the allocation. Must be a power of two.
+ If Alignment is zero, then byte alignment is used.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateAlignedRuntimePages (
+ IN UINTN Pages,
+ IN UINTN Alignment
+ )
+{
+ return InternalAllocateAlignedPages (EfiRuntimeServicesData, Pages, Alignment);
+}
+
+/**
+ Allocates one or more 4KB pages of type EfiReservedMemoryType at a specified alignment.
+
+ Allocates the number of 4KB pages specified by Pages of type EfiReservedMemoryType with an
+ alignment specified by Alignment. The allocated buffer is returned. If Pages is 0, then NULL is
+ returned. If there is not enough memory at the specified alignment remaining to satisfy the
+ request, then NULL is returned.
+
+ If Alignment is not a power of two and Alignment is not zero, then ASSERT().
+ If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().
+
+ @param Pages The number of 4 KB pages to allocate.
+ @param Alignment The requested alignment of the allocation. Must be a power of two.
+ If Alignment is zero, then byte alignment is used.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateAlignedReservedPages (
+ IN UINTN Pages,
+ IN UINTN Alignment
+ )
+{
+ return NULL;
+}
+
+/**
+ Frees one or more 4KB pages that were previously allocated with one of the aligned page
+ allocation functions in the Memory Allocation Library.
+
+ Frees the number of 4KB pages specified by Pages from the buffer specified by Buffer. Buffer
+ must have been allocated on a previous call to the aligned page allocation services of the Memory
+ Allocation Library. If it is not possible to free allocated pages, then this function will
+ perform no actions.
+
+ If Buffer was not allocated with an aligned page allocation function in the Memory Allocation
+ Library, then ASSERT().
+ If Pages is zero, then ASSERT().
+
+ @param Buffer Pointer to the buffer of pages to free.
+ @param Pages The number of 4 KB pages to free.
+
+**/
+VOID
+EFIAPI
+FreeAlignedPages (
+ IN VOID *Buffer,
+ IN UINTN Pages
+ )
+{
+ EFI_STATUS Status;
+
+ ASSERT (Pages != 0);
+ Status = gMmst->MmFreePages ((EFI_PHYSICAL_ADDRESS) (UINTN) Buffer, Pages);
+ ASSERT_EFI_ERROR (Status);
+}
+
+/**
+ Allocates a buffer of a certain pool type.
+
+ Allocates the number bytes specified by AllocationSize of a certain pool type and returns a
+ pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is
+ returned. If there is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ @param MemoryType The type of memory to allocate.
+ @param AllocationSize The number of bytes to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalAllocatePool (
+ IN EFI_MEMORY_TYPE MemoryType,
+ IN UINTN AllocationSize
+ )
+{
+ EFI_STATUS Status;
+ VOID *Memory;
+
+ Memory = NULL;
+
+ Status = gMmst->MmAllocatePool (MemoryType, AllocationSize, &Memory);
+ if (EFI_ERROR (Status)) {
+ Memory = NULL;
+ }
+ return Memory;
+}
+
+/**
+ Allocates a buffer of type EfiBootServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiBootServicesData and returns a
+ pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is
+ returned. If there is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocatePool (
+ IN UINTN AllocationSize
+ )
+{
+ return InternalAllocatePool (EfiRuntimeServicesData, AllocationSize);
+}
+
+/**
+ Allocates a buffer of type EfiRuntimeServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData and returns
+ a pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is
+ returned. If there is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateRuntimePool (
+ IN UINTN AllocationSize
+ )
+{
+ return InternalAllocatePool (EfiRuntimeServicesData, AllocationSize);
+}
+
+/**
+ Allocates a buffer of type EfiReservedMemoryType.
+
+ Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType and returns
+ a pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is
+ returned. If there is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateReservedPool (
+ IN UINTN AllocationSize
+ )
+{
+ return NULL;
+}
+
+/**
+ Allocates and zeros a buffer of a certain pool type.
+
+ Allocates the number bytes specified by AllocationSize of a certain pool type, clears the buffer
+ with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a valid
+ buffer of 0 size is returned. If there is not enough memory remaining to satisfy the request,
+ then NULL is returned.
+
+ @param PoolType The type of memory to allocate.
+ @param AllocationSize The number of bytes to allocate and zero.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalAllocateZeroPool (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN AllocationSize
+ )
+{
+ VOID *Memory;
+
+ Memory = InternalAllocatePool (PoolType, AllocationSize);
+ if (Memory != NULL) {
+ Memory = ZeroMem (Memory, AllocationSize);
+ }
+ return Memory;
+}
+
+/**
+ Allocates and zeros a buffer of type EfiBootServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiBootServicesData, clears the
+ buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a
+ valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the
+ request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate and zero.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateZeroPool (
+ IN UINTN AllocationSize
+ )
+{
+ return InternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize);
+}
+
+/**
+ Allocates and zeros a buffer of type EfiRuntimeServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData, clears the
+ buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a
+ valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the
+ request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate and zero.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateRuntimeZeroPool (
+ IN UINTN AllocationSize
+ )
+{
+ return InternalAllocateZeroPool (EfiRuntimeServicesData, AllocationSize);
+}
+
+/**
+ Allocates and zeros a buffer of type EfiReservedMemoryType.
+
+ Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType, clears the
+ buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a
+ valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the
+ request, then NULL is returned.
+
+ @param AllocationSize The number of bytes to allocate and zero.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateReservedZeroPool (
+ IN UINTN AllocationSize
+ )
+{
+ return NULL;
+}
+
+/**
+ Copies a buffer to an allocated buffer of a certain pool type.
+
+ Allocates the number bytes specified by AllocationSize of a certain pool type, copies
+ AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the
+ allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there
+ is not enough memory remaining to satisfy the request, then NULL is returned.
+ If Buffer is NULL, then ASSERT().
+ If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
+
+ @param PoolType The type of pool to allocate.
+ @param AllocationSize The number of bytes to allocate and zero.
+ @param Buffer The buffer to copy to the allocated buffer.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalAllocateCopyPool (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN AllocationSize,
+ IN CONST VOID *Buffer
+ )
+{
+ VOID *Memory;
+
+ ASSERT (Buffer != NULL);
+ ASSERT (AllocationSize <= (MAX_ADDRESS - (UINTN) Buffer + 1));
+
+ Memory = InternalAllocatePool (PoolType, AllocationSize);
+ if (Memory != NULL) {
+ Memory = CopyMem (Memory, Buffer, AllocationSize);
+ }
+ return Memory;
+}
+
+/**
+ Copies a buffer to an allocated buffer of type EfiBootServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiBootServicesData, copies
+ AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the
+ allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there
+ is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ If Buffer is NULL, then ASSERT().
+ If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
+
+ @param AllocationSize The number of bytes to allocate and zero.
+ @param Buffer The buffer to copy to the allocated buffer.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateCopyPool (
+ IN UINTN AllocationSize,
+ IN CONST VOID *Buffer
+ )
+{
+ return InternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer);
+}
+
+/**
+ Copies a buffer to an allocated buffer of type EfiRuntimeServicesData.
+
+ Allocates the number bytes specified by AllocationSize of type EfiRuntimeServicesData, copies
+ AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the
+ allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there
+ is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ If Buffer is NULL, then ASSERT().
+ If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
+
+ @param AllocationSize The number of bytes to allocate and zero.
+ @param Buffer The buffer to copy to the allocated buffer.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateRuntimeCopyPool (
+ IN UINTN AllocationSize,
+ IN CONST VOID *Buffer
+ )
+{
+ return InternalAllocateCopyPool (EfiRuntimeServicesData, AllocationSize, Buffer);
+}
+
+/**
+ Copies a buffer to an allocated buffer of type EfiReservedMemoryType.
+
+ Allocates the number bytes specified by AllocationSize of type EfiReservedMemoryType, copies
+ AllocationSize bytes from Buffer to the newly allocated buffer, and returns a pointer to the
+ allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is returned. If there
+ is not enough memory remaining to satisfy the request, then NULL is returned.
+
+ If Buffer is NULL, then ASSERT().
+ If AllocationSize is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
+
+ @param AllocationSize The number of bytes to allocate and zero.
+ @param Buffer The buffer to copy to the allocated buffer.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+AllocateReservedCopyPool (
+ IN UINTN AllocationSize,
+ IN CONST VOID *Buffer
+ )
+{
+ return NULL;
+}
+
+/**
+ Reallocates a buffer of a specified memory type.
+
+ Allocates and zeros the number bytes specified by NewSize from memory of the type
+ specified by PoolType. If OldBuffer is not NULL, then the smaller of OldSize and
+ NewSize bytes are copied from OldBuffer to the newly allocated buffer, and
+ OldBuffer is freed. A pointer to the newly allocated buffer is returned.
+ If NewSize is 0, then a valid buffer of 0 size is returned. If there is not
+ enough memory remaining to satisfy the request, then NULL is returned.
+
+ If the allocation of the new buffer is successful and the smaller of NewSize and OldSize
+ is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT().
+
+ @param PoolType The type of pool to allocate.
+ @param OldSize The size, in bytes, of OldBuffer.
+ @param NewSize The size, in bytes, of the buffer to reallocate.
+ @param OldBuffer The buffer to copy to the allocated buffer. This is an optional
+ parameter that may be NULL.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+InternalReallocatePool (
+ IN EFI_MEMORY_TYPE PoolType,
+ IN UINTN OldSize,
+ IN UINTN NewSize,
+ IN VOID *OldBuffer OPTIONAL
+ )
+{
+ VOID *NewBuffer;
+
+ NewBuffer = InternalAllocateZeroPool (PoolType, NewSize);
+ if (NewBuffer != NULL && OldBuffer != NULL) {
+ CopyMem (NewBuffer, OldBuffer, MIN (OldSize, NewSize));
+ FreePool (OldBuffer);
+ }
+ return NewBuffer;
+}
+
+/**
+ Reallocates a buffer of type EfiBootServicesData.
+
+ Allocates and zeros the number bytes specified by NewSize from memory of type
+ EfiBootServicesData. If OldBuffer is not NULL, then the smaller of OldSize and
+ NewSize bytes are copied from OldBuffer to the newly allocated buffer, and
+ OldBuffer is freed. A pointer to the newly allocated buffer is returned.
+ If NewSize is 0, then a valid buffer of 0 size is returned. If there is not
+ enough memory remaining to satisfy the request, then NULL is returned.
+
+ If the allocation of the new buffer is successful and the smaller of NewSize and OldSize
+ is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT().
+
+ @param OldSize The size, in bytes, of OldBuffer.
+ @param NewSize The size, in bytes, of the buffer to reallocate.
+ @param OldBuffer The buffer to copy to the allocated buffer. This is an optional
+ parameter that may be NULL.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+ReallocatePool (
+ IN UINTN OldSize,
+ IN UINTN NewSize,
+ IN VOID *OldBuffer OPTIONAL
+ )
+{
+ return InternalReallocatePool (EfiRuntimeServicesData, OldSize, NewSize, OldBuffer);
+}
+
+/**
+ Reallocates a buffer of type EfiRuntimeServicesData.
+
+ Allocates and zeros the number bytes specified by NewSize from memory of type
+ EfiRuntimeServicesData. If OldBuffer is not NULL, then the smaller of OldSize and
+ NewSize bytes are copied from OldBuffer to the newly allocated buffer, and
+ OldBuffer is freed. A pointer to the newly allocated buffer is returned.
+ If NewSize is 0, then a valid buffer of 0 size is returned. If there is not
+ enough memory remaining to satisfy the request, then NULL is returned.
+
+ If the allocation of the new buffer is successful and the smaller of NewSize and OldSize
+ is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT().
+
+ @param OldSize The size, in bytes, of OldBuffer.
+ @param NewSize The size, in bytes, of the buffer to reallocate.
+ @param OldBuffer The buffer to copy to the allocated buffer. This is an optional
+ parameter that may be NULL.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+ReallocateRuntimePool (
+ IN UINTN OldSize,
+ IN UINTN NewSize,
+ IN VOID *OldBuffer OPTIONAL
+ )
+{
+ return InternalReallocatePool (EfiRuntimeServicesData, OldSize, NewSize, OldBuffer);
+}
+
+/**
+ Reallocates a buffer of type EfiReservedMemoryType.
+
+ Allocates and zeros the number bytes specified by NewSize from memory of type
+ EfiReservedMemoryType. If OldBuffer is not NULL, then the smaller of OldSize and
+ NewSize bytes are copied from OldBuffer to the newly allocated buffer, and
+ OldBuffer is freed. A pointer to the newly allocated buffer is returned.
+ If NewSize is 0, then a valid buffer of 0 size is returned. If there is not
+ enough memory remaining to satisfy the request, then NULL is returned.
+
+ If the allocation of the new buffer is successful and the smaller of NewSize and OldSize
+ is greater than (MAX_ADDRESS - OldBuffer + 1), then ASSERT().
+
+ @param OldSize The size, in bytes, of OldBuffer.
+ @param NewSize The size, in bytes, of the buffer to reallocate.
+ @param OldBuffer The buffer to copy to the allocated buffer. This is an optional
+ parameter that may be NULL.
+
+ @return A pointer to the allocated buffer or NULL if allocation fails.
+
+**/
+VOID *
+EFIAPI
+ReallocateReservedPool (
+ IN UINTN OldSize,
+ IN UINTN NewSize,
+ IN VOID *OldBuffer OPTIONAL
+ )
+{
+ return NULL;
+}
+
+/**
+ Frees a buffer that was previously allocated with one of the pool allocation functions in the
+ Memory Allocation Library.
+
+ Frees the buffer specified by Buffer. Buffer must have been allocated on a previous call to the
+ pool allocation services of the Memory Allocation Library. If it is not possible to free pool
+ resources, then this function will perform no actions.
+
+ If Buffer was not allocated with a pool allocation function in the Memory Allocation Library,
+ then ASSERT().
+
+ @param Buffer Pointer to the buffer to free.
+
+**/
+VOID
+EFIAPI
+FreePool (
+ IN VOID *Buffer
+ )
+{
+ EFI_STATUS Status;
+
+ Status = gMmst->MmFreePool (Buffer);
+ ASSERT_EFI_ERROR (Status);
+}
+
+/**
+ The constructor function calls MmInitializeMemoryServices to initialize
+ memory in MMRAM and caches EFI_MM_SYSTEM_TABLE pointer.
+
+ @param ImageHandle The firmware allocated handle for the EFI image.
+ @param SystemTable A pointer to the Management mode System Table.
+
+ @retval EFI_SUCCESS The constructor always returns EFI_SUCCESS.
+
+**/
+EFI_STATUS
+EFIAPI
+MemoryAllocationLibConstructor (
+ IN EFI_HANDLE ImageHandle,
+ IN EFI_MM_SYSTEM_TABLE *MmSystemTable
+ )
+{
+ MM_CORE_PRIVATE_DATA *MmCorePrivate;
+ EFI_HOB_GUID_TYPE *GuidHob;
+ MM_CORE_DATA_HOB_DATA *DataInHob;
+ VOID *HobStart;
+ EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *MmramRangesHobData;
+ EFI_MMRAM_DESCRIPTOR *MmramRanges;
+ UINT32 MmramRangeCount;
+ EFI_HOB_GUID_TYPE *MmramRangesHob;
+
+ HobStart = GetHobList ();
+ DEBUG ((DEBUG_INFO, "StandaloneMmCoreMemoryAllocationLibConstructor - 0x%x\n", HobStart));
+
+ //
+ // Extract MM Core Private context from the Hob. If absent search for
+ // a Hob containing the MMRAM ranges
+ //
+ GuidHob = GetNextGuidHob (&gMmCoreDataHobGuid, HobStart);
+ if (GuidHob == NULL) {
+ MmramRangesHob = GetNextGuidHob (&gEfiMmPeiMmramMemoryReserveGuid, HobStart);
+ if (MmramRangesHob == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ MmramRangesHobData = GET_GUID_HOB_DATA (MmramRangesHob);
+ if (MmramRangesHobData == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ MmramRanges = MmramRangesHobData->Descriptor;
+ if (MmramRanges == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ MmramRangeCount = MmramRangesHobData->NumberOfMmReservedRegions;
+ if (MmramRanges == NULL) {
+ return EFI_UNSUPPORTED;
+ }
+
+ } else {
+ DataInHob = GET_GUID_HOB_DATA (GuidHob);
+ MmCorePrivate = (MM_CORE_PRIVATE_DATA *)(UINTN)DataInHob->Address;
+ MmramRanges = (EFI_MMRAM_DESCRIPTOR *)(UINTN)MmCorePrivate->MmramRanges;
+ MmramRangeCount = MmCorePrivate->MmramRangeCount;
+ }
+
+ {
+ UINTN Index;
+
+ DEBUG ((DEBUG_INFO, "MmramRangeCount - 0x%x\n", MmramRangeCount));
+ for (Index = 0; Index < MmramRangeCount; Index++) {
+ DEBUG ((DEBUG_INFO, "MmramRanges[%d]: 0x%016lx - 0x%016lx\n",
+ Index, MmramRanges[Index].CpuStart, MmramRanges[Index].PhysicalSize));
+ }
+ }
+
+ //
+ // Initialize memory service using free MMRAM
+ //
+ DEBUG ((DEBUG_INFO, "MmInitializeMemoryServices\n"));
+ MmInitializeMemoryServices ((UINTN)MmramRangeCount, (VOID *)(UINTN)MmramRanges);
+
+ // Initialize MM Services Table
+ gMmst = MmSystemTable;
+ return EFI_SUCCESS;
+}
diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf
new file mode 100644
index 0000000000..3958655cb4
--- /dev/null
+++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationLib.inf
@@ -0,0 +1,49 @@
+## @file
+# Memory Allocation Library instance dedicated to MM Core.
+# The implementation borrows the MM Core Memory Allocation services as the primitive
+# for memory allocation instead of using MM System Table servces in an indirect way.
+# It is assumed that this library instance must be linked with MM Core in this package.
+#
+# Copyright (c) 2010 - 2015, Intel Corporation. All rights reserved.<BR>
+# Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
+#
+# This program and the accompanying materials
+# are licensed and made available under the terms and conditions of the BSD License
+# which accompanies this distribution. The full text of the license may be found at
+# http://opensource.org/licenses/bsd-license.php
+# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+#
+##
+
+[Defines]
+ INF_VERSION = 0x0001001A
+ BASE_NAME = MemoryAllocationLib
+ FILE_GUID = DCDCBE1D-E760-4E1D-85B4-96E3F0439C41
+ MODULE_TYPE = MM_CORE_STANDALONE
+ VERSION_STRING = 1.0
+ PI_SPECIFICATION_VERSION = 0x00010032
+ LIBRARY_CLASS = MemoryAllocationLib|MM_CORE_STANDALONE
+ CONSTRUCTOR = MemoryAllocationLibConstructor
+
+#
+# The following information is for reference only and not required by the build tools.
+#
+# VALID_ARCHITECTURES = IA32 X64
+#
+
+[Sources]
+ StandaloneMmCoreMemoryAllocationLib.c
+ StandaloneMmCoreMemoryAllocationServices.h
+
+[Packages]
+ MdePkg/MdePkg.dec
+ StandaloneMmPkg/StandaloneMmPkg.dec
+
+[LibraryClasses]
+ BaseMemoryLib
+ DebugLib
+ HobLib
+
+[Guids]
+ gEfiMmPeiMmramMemoryReserveGuid
diff --git a/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h
new file mode 100644
index 0000000000..07abaac2a8
--- /dev/null
+++ b/StandaloneMmPkg/Library/StandaloneMmCoreMemoryAllocationLib/StandaloneMmCoreMemoryAllocationServices.h
@@ -0,0 +1,38 @@
+/** @file
+ Contains function prototypes for Memory Services in the MM Core.
+
+ This header file borrows the StandaloneMmCore Memory Allocation services as the primitive
+ for memory allocation.
+
+ Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
+ Copyright (c) 2016 - 2018, ARM Limited. All rights reserved.<BR>
+
+ This program and the accompanying materials
+ are licensed and made available under the terms and conditions of the BSD License
+ which accompanies this distribution. The full text of the license may be found at
+ http://opensource.org/licenses/bsd-license.php
+
+ THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#ifndef _PI_MM_CORE_MEMORY_ALLOCATION_SERVICES_H_
+#define _PI_MM_CORE_MEMORY_ALLOCATION_SERVICES_H_
+
+#include <Guid/MmCoreData.h>
+
+/**
+ Called to initialize the memory service.
+
+ @param MmramRangeCount Number of MMRAM Regions
+ @param MmramRanges Pointer to MMRAM Descriptors
+
+**/
+VOID
+MmInitializeMemoryServices (
+ IN UINTN MmramRangeCount,
+ IN EFI_MMRAM_DESCRIPTOR *MmramRanges
+ );
+
+#endif