summaryrefslogtreecommitdiffstats
path: root/CorebootModulePkg/PciSioSerialDxe/SerialIo.c
diff options
context:
space:
mode:
Diffstat (limited to 'CorebootModulePkg/PciSioSerialDxe/SerialIo.c')
-rw-r--r--CorebootModulePkg/PciSioSerialDxe/SerialIo.c1320
1 files changed, 1320 insertions, 0 deletions
diff --git a/CorebootModulePkg/PciSioSerialDxe/SerialIo.c b/CorebootModulePkg/PciSioSerialDxe/SerialIo.c
new file mode 100644
index 0000000000..85d537315c
--- /dev/null
+++ b/CorebootModulePkg/PciSioSerialDxe/SerialIo.c
@@ -0,0 +1,1320 @@
+/** @file
+ SerialIo implementation for PCI or SIO UARTs.
+
+Copyright (c) 2006 - 2015, Intel Corporation. All rights reserved.<BR>
+This program and the accompanying materials
+are licensed and made available under the terms and conditions of the BSD License
+which accompanies this distribution. The full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "Serial.h"
+
+/**
+ Skip the optional Controller device path node and return the
+ pointer to the next device path node.
+
+ @param DevicePath Pointer to the device path.
+ @param ContainsControllerNode Returns TRUE if the Controller device path exists.
+ @param ControllerNumber Returns the Controller Number if Controller device path exists.
+
+ @return Pointer to the next device path node.
+**/
+UART_DEVICE_PATH *
+SkipControllerDevicePathNode (
+ EFI_DEVICE_PATH_PROTOCOL *DevicePath,
+ BOOLEAN *ContainsControllerNode,
+ UINT32 *ControllerNumber
+ )
+{
+ if ((DevicePathType (DevicePath) == HARDWARE_DEVICE_PATH) &&
+ (DevicePathSubType (DevicePath) == HW_CONTROLLER_DP)
+ ) {
+ if (ContainsControllerNode != NULL) {
+ *ContainsControllerNode = TRUE;
+ }
+ if (ControllerNumber != NULL) {
+ *ControllerNumber = ((CONTROLLER_DEVICE_PATH *) DevicePath)->ControllerNumber;
+ }
+ DevicePath = NextDevicePathNode (DevicePath);
+ } else {
+ if (ContainsControllerNode != NULL) {
+ *ContainsControllerNode = FALSE;
+ }
+ }
+ return (UART_DEVICE_PATH *) DevicePath;
+}
+
+/**
+ Checks whether the UART parameters are valid and computes the Divisor.
+
+ @param ClockRate The clock rate of the serial device used to verify
+ the BaudRate. Do not verify the BaudRate if it's 0.
+ @param BaudRate The requested baudrate of the serial device.
+ @param DataBits Number of databits used in serial device.
+ @param Parity The type of parity used in serial device.
+ @param StopBits Number of stopbits used in serial device.
+ @param Divisor Return the divisor if ClockRate is not 0.
+ @param ActualBaudRate Return the actual supported baudrate without
+ exceeding BaudRate. NULL means baudrate degradation
+ is not allowed.
+ If the requested BaudRate is not supported, the routine
+ returns TRUE and the Actual Baud Rate when ActualBaudRate
+ is not NULL, returns FALSE when ActualBaudRate is NULL.
+
+ @retval TRUE The UART parameters are valid.
+ @retval FALSE The UART parameters are not valid.
+**/
+BOOLEAN
+VerifyUartParameters (
+ IN UINT32 ClockRate,
+ IN UINT64 BaudRate,
+ IN UINT8 DataBits,
+ IN EFI_PARITY_TYPE Parity,
+ IN EFI_STOP_BITS_TYPE StopBits,
+ OUT UINT64 *Divisor,
+ OUT UINT64 *ActualBaudRate
+ )
+{
+ UINT64 Remainder;
+ UINT32 ComputedBaudRate;
+ UINT64 ComputedDivisor;
+ UINT64 Percent;
+
+ if ((DataBits < 5) || (DataBits > 8) ||
+ (Parity < NoParity) || (Parity > SpaceParity) ||
+ (StopBits < OneStopBit) || (StopBits > TwoStopBits) ||
+ ((DataBits == 5) && (StopBits == TwoStopBits)) ||
+ ((DataBits >= 6) && (DataBits <= 8) && (StopBits == OneFiveStopBits))
+ ) {
+ return FALSE;
+ }
+
+ //
+ // Do not verify the baud rate if clock rate is unknown (0).
+ //
+ if (ClockRate == 0) {
+ return TRUE;
+ }
+
+ //
+ // Compute divisor use to program the baud rate using a round determination
+ // Divisor = ClockRate / 16 / BaudRate = ClockRate / (16 * BaudRate)
+ // = ClockRate / (BaudRate << 4)
+ //
+ ComputedDivisor = DivU64x64Remainder (ClockRate, LShiftU64 (BaudRate, 4), &Remainder);
+ //
+ // Round Divisor up by 1 if the Remainder is more than half (16 * BaudRate)
+ // BaudRate * 16 / 2 = BaudRate * 8 = (BaudRate << 3)
+ //
+ if (Remainder >= LShiftU64 (BaudRate, 3)) {
+ ComputedDivisor++;
+ }
+ //
+ // If the computed divisor is larger than the maximum value that can be programmed
+ // into the UART, then the requested baud rate can not be supported.
+ //
+ if (ComputedDivisor > MAX_UINT16) {
+ return FALSE;
+ }
+
+ //
+ // If the computed divisor is 0, then use a computed divisor of 1, which will select
+ // the maximum supported baud rate.
+ //
+ if (ComputedDivisor == 0) {
+ ComputedDivisor = 1;
+ }
+
+ //
+ // Actual baud rate that the serial port will be programmed for
+ // should be with in 4% of requested one.
+ //
+ ComputedBaudRate = ClockRate / ((UINT16) ComputedDivisor << 4);
+ if (ComputedBaudRate == 0) {
+ return FALSE;
+ }
+
+ Percent = DivU64x32 (MultU64x32 (BaudRate, 100), ComputedBaudRate);
+ DEBUG ((EFI_D_INFO, "ClockRate = %d\n", ClockRate));
+ DEBUG ((EFI_D_INFO, "Divisor = %ld\n", ComputedDivisor));
+ DEBUG ((EFI_D_INFO, "BaudRate/Actual (%ld/%d) = %d%%\n", BaudRate, ComputedBaudRate, Percent));
+
+ //
+ // If the requested BaudRate is not supported:
+ // Returns TRUE and the Actual Baud Rate when ActualBaudRate is not NULL;
+ // Returns FALSE when ActualBaudRate is NULL.
+ //
+ if ((Percent >= 96) && (Percent <= 104)) {
+ if (ActualBaudRate != NULL) {
+ *ActualBaudRate = BaudRate;
+ }
+ if (Divisor != NULL) {
+ *Divisor = ComputedDivisor;
+ }
+ return TRUE;
+ }
+ if (ComputedBaudRate < BaudRate) {
+ if (ActualBaudRate != NULL) {
+ *ActualBaudRate = ComputedBaudRate;
+ }
+ if (Divisor != NULL) {
+ *Divisor = ComputedDivisor;
+ }
+ return TRUE;
+ }
+
+ //
+ // ActualBaudRate is higher than requested baud rate and more than 4%
+ // higher than the requested value. Increment Divisor if it is less
+ // than MAX_UINT16 and computed baud rate with new divisor.
+ //
+ if (ComputedDivisor == MAX_UINT16) {
+ return FALSE;
+ }
+ ComputedDivisor++;
+ ComputedBaudRate = ClockRate / ((UINT16) ComputedDivisor << 4);
+ if (ComputedBaudRate == 0) {
+ return FALSE;
+ }
+
+ DEBUG ((EFI_D_INFO, "ClockRate = %d\n", ClockRate));
+ DEBUG ((EFI_D_INFO, "Divisor = %ld\n", ComputedDivisor));
+ DEBUG ((EFI_D_INFO, "BaudRate/Actual (%ld/%d) = %d%%\n", BaudRate, ComputedBaudRate, Percent));
+
+ if (ActualBaudRate != NULL) {
+ *ActualBaudRate = ComputedBaudRate;
+ }
+ if (Divisor != NULL) {
+ *Divisor = ComputedDivisor;
+ }
+ return TRUE;
+}
+
+/**
+ Detect whether specific FIFO is full or not.
+
+ @param Fifo A pointer to the Data Structure SERIAL_DEV_FIFO
+
+ @return whether specific FIFO is full or not
+**/
+BOOLEAN
+SerialFifoFull (
+ IN SERIAL_DEV_FIFO *Fifo
+ )
+{
+ return (BOOLEAN) (((Fifo->Tail + 1) % SERIAL_MAX_FIFO_SIZE) == Fifo->Head);
+}
+
+/**
+ Detect whether specific FIFO is empty or not.
+
+ @param Fifo A pointer to the Data Structure SERIAL_DEV_FIFO
+
+ @return whether specific FIFO is empty or not
+**/
+BOOLEAN
+SerialFifoEmpty (
+ IN SERIAL_DEV_FIFO *Fifo
+ )
+
+{
+ return (BOOLEAN) (Fifo->Head == Fifo->Tail);
+}
+
+/**
+ Add data to specific FIFO.
+
+ @param Fifo A pointer to the Data Structure SERIAL_DEV_FIFO
+ @param Data the data added to FIFO
+
+ @retval EFI_SUCCESS Add data to specific FIFO successfully
+ @retval EFI_OUT_OF_RESOURCE Failed to add data because FIFO is already full
+**/
+EFI_STATUS
+SerialFifoAdd (
+ IN OUT SERIAL_DEV_FIFO *Fifo,
+ IN UINT8 Data
+ )
+{
+ //
+ // if FIFO full can not add data
+ //
+ if (SerialFifoFull (Fifo)) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+ //
+ // FIFO is not full can add data
+ //
+ Fifo->Data[Fifo->Tail] = Data;
+ Fifo->Tail = (Fifo->Tail + 1) % SERIAL_MAX_FIFO_SIZE;
+ return EFI_SUCCESS;
+}
+
+/**
+ Remove data from specific FIFO.
+
+ @param Fifo A pointer to the Data Structure SERIAL_DEV_FIFO
+ @param Data the data removed from FIFO
+
+ @retval EFI_SUCCESS Remove data from specific FIFO successfully
+ @retval EFI_OUT_OF_RESOURCE Failed to remove data because FIFO is empty
+
+**/
+EFI_STATUS
+SerialFifoRemove (
+ IN OUT SERIAL_DEV_FIFO *Fifo,
+ OUT UINT8 *Data
+ )
+{
+ //
+ // if FIFO is empty, no data can remove
+ //
+ if (SerialFifoEmpty (Fifo)) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+ //
+ // FIFO is not empty, can remove data
+ //
+ *Data = Fifo->Data[Fifo->Head];
+ Fifo->Head = (Fifo->Head + 1) % SERIAL_MAX_FIFO_SIZE;
+ return EFI_SUCCESS;
+}
+
+/**
+ Reads and writes all avaliable data.
+
+ @param SerialDevice The device to transmit.
+
+ @retval EFI_SUCCESS Data was read/written successfully.
+ @retval EFI_OUT_OF_RESOURCE Failed because software receive FIFO is full. Note, when
+ this happens, pending writes are not done.
+
+**/
+EFI_STATUS
+SerialReceiveTransmit (
+ IN SERIAL_DEV *SerialDevice
+ )
+
+{
+ SERIAL_PORT_LSR Lsr;
+ UINT8 Data;
+ BOOLEAN ReceiveFifoFull;
+ SERIAL_PORT_MSR Msr;
+ SERIAL_PORT_MCR Mcr;
+ UINTN TimeOut;
+
+ Data = 0;
+
+ //
+ // Begin the read or write
+ //
+ if (SerialDevice->SoftwareLoopbackEnable) {
+ do {
+ ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
+ if (!SerialFifoEmpty (&SerialDevice->Transmit)) {
+ SerialFifoRemove (&SerialDevice->Transmit, &Data);
+ if (ReceiveFifoFull) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ SerialFifoAdd (&SerialDevice->Receive, Data);
+ }
+ } while (!SerialFifoEmpty (&SerialDevice->Transmit));
+ } else {
+ ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
+ //
+ // For full handshake flow control, tell the peer to send data
+ // if receive buffer is available.
+ //
+ if (SerialDevice->HardwareFlowControl &&
+ !FeaturePcdGet(PcdSerialUseHalfHandshake)&&
+ !ReceiveFifoFull
+ ) {
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.Rts = 1;
+ WRITE_MCR (SerialDevice, Mcr.Data);
+ }
+ do {
+ Lsr.Data = READ_LSR (SerialDevice);
+
+ //
+ // Flush incomming data to prevent a an overrun during a long write
+ //
+ if ((Lsr.Bits.Dr == 1) && !ReceiveFifoFull) {
+ ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
+ if (!ReceiveFifoFull) {
+ if (Lsr.Bits.FIFOe == 1 || Lsr.Bits.Oe == 1 || Lsr.Bits.Pe == 1 || Lsr.Bits.Fe == 1 || Lsr.Bits.Bi == 1) {
+ REPORT_STATUS_CODE_WITH_DEVICE_PATH (
+ EFI_ERROR_CODE,
+ EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
+ SerialDevice->DevicePath
+ );
+ if (Lsr.Bits.FIFOe == 1 || Lsr.Bits.Pe == 1|| Lsr.Bits.Fe == 1 || Lsr.Bits.Bi == 1) {
+ Data = READ_RBR (SerialDevice);
+ continue;
+ }
+ }
+
+ Data = READ_RBR (SerialDevice);
+
+ SerialFifoAdd (&SerialDevice->Receive, Data);
+
+ //
+ // For full handshake flow control, if receive buffer full
+ // tell the peer to stop sending data.
+ //
+ if (SerialDevice->HardwareFlowControl &&
+ !FeaturePcdGet(PcdSerialUseHalfHandshake) &&
+ SerialFifoFull (&SerialDevice->Receive)
+ ) {
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.Rts = 0;
+ WRITE_MCR (SerialDevice, Mcr.Data);
+ }
+
+
+ continue;
+ } else {
+ REPORT_STATUS_CODE_WITH_DEVICE_PATH (
+ EFI_PROGRESS_CODE,
+ EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER | EFI_PERIPHERAL_SERIAL_PORT,
+ SerialDevice->DevicePath
+ );
+ }
+ }
+ //
+ // Do the write
+ //
+ if (Lsr.Bits.Thre == 1 && !SerialFifoEmpty (&SerialDevice->Transmit)) {
+ //
+ // Make sure the transmit data will not be missed
+ //
+ if (SerialDevice->HardwareFlowControl) {
+ //
+ // For half handshake flow control assert RTS before sending.
+ //
+ if (FeaturePcdGet(PcdSerialUseHalfHandshake)) {
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.Rts= 0;
+ WRITE_MCR (SerialDevice, Mcr.Data);
+ }
+ //
+ // Wait for CTS
+ //
+ TimeOut = 0;
+ Msr.Data = READ_MSR (SerialDevice);
+ while ((Msr.Bits.Dcd == 1) && ((Msr.Bits.Cts == 0) ^ FeaturePcdGet(PcdSerialUseHalfHandshake))) {
+ gBS->Stall (TIMEOUT_STALL_INTERVAL);
+ TimeOut++;
+ if (TimeOut > 5) {
+ break;
+ }
+
+ Msr.Data = READ_MSR (SerialDevice);
+ }
+
+ if ((Msr.Bits.Dcd == 0) || ((Msr.Bits.Cts == 1) ^ FeaturePcdGet(PcdSerialUseHalfHandshake))) {
+ SerialFifoRemove (&SerialDevice->Transmit, &Data);
+ WRITE_THR (SerialDevice, Data);
+ }
+
+ //
+ // For half handshake flow control, tell DCE we are done.
+ //
+ if (FeaturePcdGet(PcdSerialUseHalfHandshake)) {
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.Rts = 1;
+ WRITE_MCR (SerialDevice, Mcr.Data);
+ }
+ } else {
+ SerialFifoRemove (&SerialDevice->Transmit, &Data);
+ WRITE_THR (SerialDevice, Data);
+ }
+ }
+ } while (Lsr.Bits.Thre == 1 && !SerialFifoEmpty (&SerialDevice->Transmit));
+ }
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Flush the serial hardware transmit FIFO and shift register.
+
+ @param SerialDevice The device to flush.
+**/
+VOID
+SerialFlushTransmitFifo (
+ SERIAL_DEV *SerialDevice
+ )
+{
+ SERIAL_PORT_LSR Lsr;
+
+ //
+ // Wait for the serial port to be ready, to make sure both the transmit FIFO
+ // and shift register empty.
+ //
+ do {
+ Lsr.Data = READ_LSR (SerialDevice);
+ } while (Lsr.Bits.Temt == 0);
+}
+
+//
+// Interface Functions
+//
+/**
+ Reset serial device.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+
+ @retval EFI_SUCCESS Reset successfully
+ @retval EFI_DEVICE_ERROR Failed to reset
+
+**/
+EFI_STATUS
+EFIAPI
+SerialReset (
+ IN EFI_SERIAL_IO_PROTOCOL *This
+ )
+{
+ EFI_STATUS Status;
+ SERIAL_DEV *SerialDevice;
+ SERIAL_PORT_LCR Lcr;
+ SERIAL_PORT_IER Ier;
+ SERIAL_PORT_MCR Mcr;
+ SERIAL_PORT_FCR Fcr;
+ EFI_TPL Tpl;
+ UINT32 Control;
+
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+
+ //
+ // Report the status code reset the serial
+ //
+ REPORT_STATUS_CODE_WITH_DEVICE_PATH (
+ EFI_PROGRESS_CODE,
+ EFI_P_PC_RESET | EFI_PERIPHERAL_SERIAL_PORT,
+ SerialDevice->DevicePath
+ );
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ SerialFlushTransmitFifo (SerialDevice);
+
+ //
+ // Make sure DLAB is 0.
+ //
+ Lcr.Data = READ_LCR (SerialDevice);
+ Lcr.Bits.DLab = 0;
+ WRITE_LCR (SerialDevice, Lcr.Data);
+
+ //
+ // Turn off all interrupts
+ //
+ Ier.Data = READ_IER (SerialDevice);
+ Ier.Bits.Ravie = 0;
+ Ier.Bits.Theie = 0;
+ Ier.Bits.Rie = 0;
+ Ier.Bits.Mie = 0;
+ WRITE_IER (SerialDevice, Ier.Data);
+
+ //
+ // Reset the FIFO
+ //
+ Fcr.Data = 0;
+ Fcr.Bits.TrFIFOE = 0;
+ WRITE_FCR (SerialDevice, Fcr.Data);
+
+ //
+ // Turn off loopback and disable device interrupt.
+ //
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.Out1 = 0;
+ Mcr.Bits.Out2 = 0;
+ Mcr.Bits.Lme = 0;
+ WRITE_MCR (SerialDevice, Mcr.Data);
+
+ //
+ // Clear the scratch pad register
+ //
+ WRITE_SCR (SerialDevice, 0);
+
+ //
+ // Enable FIFO
+ //
+ Fcr.Bits.TrFIFOE = 1;
+ if (SerialDevice->ReceiveFifoDepth > 16) {
+ Fcr.Bits.TrFIFO64 = 1;
+ }
+ Fcr.Bits.ResetRF = 1;
+ Fcr.Bits.ResetTF = 1;
+ WRITE_FCR (SerialDevice, Fcr.Data);
+
+ //
+ // Go set the current attributes
+ //
+ Status = This->SetAttributes (
+ This,
+ This->Mode->BaudRate,
+ This->Mode->ReceiveFifoDepth,
+ This->Mode->Timeout,
+ (EFI_PARITY_TYPE) This->Mode->Parity,
+ (UINT8) This->Mode->DataBits,
+ (EFI_STOP_BITS_TYPE) This->Mode->StopBits
+ );
+
+ if (EFI_ERROR (Status)) {
+ gBS->RestoreTPL (Tpl);
+ return EFI_DEVICE_ERROR;
+ }
+ //
+ // Go set the current control bits
+ //
+ Control = EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY;
+ if (SerialDevice->HardwareFlowControl) {
+ Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
+ }
+ if (SerialDevice->SoftwareLoopbackEnable) {
+ Control |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
+ }
+ Status = This->SetControl (
+ This,
+ Control
+ );
+
+ if (EFI_ERROR (Status)) {
+ gBS->RestoreTPL (Tpl);
+ return EFI_DEVICE_ERROR;
+ }
+
+ //
+ // Reset the software FIFO
+ //
+ SerialDevice->Receive.Head = SerialDevice->Receive.Tail = 0;
+ SerialDevice->Transmit.Head = SerialDevice->Transmit.Tail = 0;
+ gBS->RestoreTPL (Tpl);
+
+ //
+ // Device reset is complete
+ //
+ return EFI_SUCCESS;
+}
+
+/**
+ Set new attributes to a serial device.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+ @param BaudRate The baudrate of the serial device
+ @param ReceiveFifoDepth The depth of receive FIFO buffer
+ @param Timeout The request timeout for a single char
+ @param Parity The type of parity used in serial device
+ @param DataBits Number of databits used in serial device
+ @param StopBits Number of stopbits used in serial device
+
+ @retval EFI_SUCCESS The new attributes were set
+ @retval EFI_INVALID_PARAMETERS One or more attributes have an unsupported value
+ @retval EFI_UNSUPPORTED Data Bits can not set to 5 or 6
+ @retval EFI_DEVICE_ERROR The serial device is not functioning correctly (no return)
+
+**/
+EFI_STATUS
+EFIAPI
+SerialSetAttributes (
+ IN EFI_SERIAL_IO_PROTOCOL *This,
+ IN UINT64 BaudRate,
+ IN UINT32 ReceiveFifoDepth,
+ IN UINT32 Timeout,
+ IN EFI_PARITY_TYPE Parity,
+ IN UINT8 DataBits,
+ IN EFI_STOP_BITS_TYPE StopBits
+ )
+{
+ EFI_STATUS Status;
+ SERIAL_DEV *SerialDevice;
+ UINT64 Divisor;
+ SERIAL_PORT_LCR Lcr;
+ UART_DEVICE_PATH *Uart;
+ EFI_TPL Tpl;
+
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+
+ //
+ // Check for default settings and fill in actual values.
+ //
+ if (BaudRate == 0) {
+ BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
+ }
+
+ if (ReceiveFifoDepth == 0) {
+ ReceiveFifoDepth = SerialDevice->ReceiveFifoDepth;
+ }
+
+ if (Timeout == 0) {
+ Timeout = SERIAL_PORT_DEFAULT_TIMEOUT;
+ }
+
+ if (Parity == DefaultParity) {
+ Parity = (EFI_PARITY_TYPE) PcdGet8 (PcdUartDefaultParity);
+ }
+
+ if (DataBits == 0) {
+ DataBits = PcdGet8 (PcdUartDefaultDataBits);
+ }
+
+ if (StopBits == DefaultStopBits) {
+ StopBits = (EFI_STOP_BITS_TYPE) PcdGet8 (PcdUartDefaultStopBits);
+ }
+
+ if (!VerifyUartParameters (SerialDevice->ClockRate, BaudRate, DataBits, Parity, StopBits, &Divisor, &BaudRate)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if ((ReceiveFifoDepth == 0) || (ReceiveFifoDepth > SerialDevice->ReceiveFifoDepth)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if ((Timeout < SERIAL_PORT_MIN_TIMEOUT) || (Timeout > SERIAL_PORT_MAX_TIMEOUT)) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ SerialFlushTransmitFifo (SerialDevice);
+
+ //
+ // Put serial port on Divisor Latch Mode
+ //
+ Lcr.Data = READ_LCR (SerialDevice);
+ Lcr.Bits.DLab = 1;
+ WRITE_LCR (SerialDevice, Lcr.Data);
+
+ //
+ // Write the divisor to the serial port
+ //
+ WRITE_DLL (SerialDevice, (UINT8) Divisor);
+ WRITE_DLM (SerialDevice, (UINT8) ((UINT16) Divisor >> 8));
+
+ //
+ // Put serial port back in normal mode and set remaining attributes.
+ //
+ Lcr.Bits.DLab = 0;
+
+ switch (Parity) {
+ case NoParity:
+ Lcr.Bits.ParEn = 0;
+ Lcr.Bits.EvenPar = 0;
+ Lcr.Bits.SticPar = 0;
+ break;
+
+ case EvenParity:
+ Lcr.Bits.ParEn = 1;
+ Lcr.Bits.EvenPar = 1;
+ Lcr.Bits.SticPar = 0;
+ break;
+
+ case OddParity:
+ Lcr.Bits.ParEn = 1;
+ Lcr.Bits.EvenPar = 0;
+ Lcr.Bits.SticPar = 0;
+ break;
+
+ case SpaceParity:
+ Lcr.Bits.ParEn = 1;
+ Lcr.Bits.EvenPar = 1;
+ Lcr.Bits.SticPar = 1;
+ break;
+
+ case MarkParity:
+ Lcr.Bits.ParEn = 1;
+ Lcr.Bits.EvenPar = 0;
+ Lcr.Bits.SticPar = 1;
+ break;
+
+ default:
+ break;
+ }
+
+ switch (StopBits) {
+ case OneStopBit:
+ Lcr.Bits.StopB = 0;
+ break;
+
+ case OneFiveStopBits:
+ case TwoStopBits:
+ Lcr.Bits.StopB = 1;
+ break;
+
+ default:
+ break;
+ }
+ //
+ // DataBits
+ //
+ Lcr.Bits.SerialDB = (UINT8) ((DataBits - 5) & 0x03);
+ WRITE_LCR (SerialDevice, Lcr.Data);
+
+ //
+ // Set the Serial I/O mode
+ //
+ This->Mode->BaudRate = BaudRate;
+ This->Mode->ReceiveFifoDepth = ReceiveFifoDepth;
+ This->Mode->Timeout = Timeout;
+ This->Mode->Parity = Parity;
+ This->Mode->DataBits = DataBits;
+ This->Mode->StopBits = StopBits;
+
+ //
+ // See if Device Path Node has actually changed
+ //
+ if (SerialDevice->UartDevicePath.BaudRate == BaudRate &&
+ SerialDevice->UartDevicePath.DataBits == DataBits &&
+ SerialDevice->UartDevicePath.Parity == Parity &&
+ SerialDevice->UartDevicePath.StopBits == StopBits
+ ) {
+ gBS->RestoreTPL (Tpl);
+ return EFI_SUCCESS;
+ }
+ //
+ // Update the device path
+ //
+ SerialDevice->UartDevicePath.BaudRate = BaudRate;
+ SerialDevice->UartDevicePath.DataBits = DataBits;
+ SerialDevice->UartDevicePath.Parity = (UINT8) Parity;
+ SerialDevice->UartDevicePath.StopBits = (UINT8) StopBits;
+
+ Status = EFI_SUCCESS;
+ if (SerialDevice->Handle != NULL) {
+
+ //
+ // Skip the optional Controller device path node
+ //
+ Uart = SkipControllerDevicePathNode (
+ (EFI_DEVICE_PATH_PROTOCOL *) (
+ (UINT8 *) SerialDevice->DevicePath + GetDevicePathSize (SerialDevice->ParentDevicePath) - END_DEVICE_PATH_LENGTH
+ ),
+ NULL,
+ NULL
+ );
+ CopyMem (Uart, &SerialDevice->UartDevicePath, sizeof (UART_DEVICE_PATH));
+ Status = gBS->ReinstallProtocolInterface (
+ SerialDevice->Handle,
+ &gEfiDevicePathProtocolGuid,
+ SerialDevice->DevicePath,
+ SerialDevice->DevicePath
+ );
+ }
+
+ gBS->RestoreTPL (Tpl);
+
+ return Status;
+}
+
+/**
+ Set Control Bits.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+ @param Control Control bits that can be settable
+
+ @retval EFI_SUCCESS New Control bits were set successfully
+ @retval EFI_UNSUPPORTED The Control bits wanted to set are not supported
+
+**/
+EFI_STATUS
+EFIAPI
+SerialSetControl (
+ IN EFI_SERIAL_IO_PROTOCOL *This,
+ IN UINT32 Control
+ )
+{
+ SERIAL_DEV *SerialDevice;
+ SERIAL_PORT_MCR Mcr;
+ EFI_TPL Tpl;
+ UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
+ EFI_STATUS Status;
+
+ //
+ // The control bits that can be set are :
+ // EFI_SERIAL_DATA_TERMINAL_READY: 0x0001 // WO
+ // EFI_SERIAL_REQUEST_TO_SEND: 0x0002 // WO
+ // EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE: 0x1000 // RW
+ // EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE: 0x2000 // RW
+ // EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE: 0x4000 // RW
+ //
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+
+ //
+ // first determine the parameter is invalid
+ //
+ if ((Control & (~(EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
+ EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
+ EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE))) != 0) {
+ return EFI_UNSUPPORTED;
+ }
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ Mcr.Data = READ_MCR (SerialDevice);
+ Mcr.Bits.DtrC = 0;
+ Mcr.Bits.Rts = 0;
+ Mcr.Bits.Lme = 0;
+ SerialDevice->SoftwareLoopbackEnable = FALSE;
+ SerialDevice->HardwareFlowControl = FALSE;
+
+ if ((Control & EFI_SERIAL_DATA_TERMINAL_READY) == EFI_SERIAL_DATA_TERMINAL_READY) {
+ Mcr.Bits.DtrC = 1;
+ }
+
+ if ((Control & EFI_SERIAL_REQUEST_TO_SEND) == EFI_SERIAL_REQUEST_TO_SEND) {
+ Mcr.Bits.Rts = 1;
+ }
+
+ if ((Control & EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) == EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) {
+ Mcr.Bits.Lme = 1;
+ }
+
+ if ((Control & EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) == EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) {
+ SerialDevice->HardwareFlowControl = TRUE;
+ }
+
+ WRITE_MCR (SerialDevice, Mcr.Data);
+
+ if ((Control & EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) == EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) {
+ SerialDevice->SoftwareLoopbackEnable = TRUE;
+ }
+
+ Status = EFI_SUCCESS;
+ if (SerialDevice->Handle != NULL) {
+ FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) (
+ (UINTN) SerialDevice->DevicePath
+ + GetDevicePathSize (SerialDevice->ParentDevicePath)
+ - END_DEVICE_PATH_LENGTH
+ + sizeof (UART_DEVICE_PATH)
+ );
+ if (IsUartFlowControlDevicePathNode (FlowControl) &&
+ ((BOOLEAN) (ReadUnaligned32 (&FlowControl->FlowControlMap) == UART_FLOW_CONTROL_HARDWARE) != SerialDevice->HardwareFlowControl)) {
+ //
+ // Flow Control setting is changed, need to reinstall device path protocol
+ //
+ WriteUnaligned32 (&FlowControl->FlowControlMap, SerialDevice->HardwareFlowControl ? UART_FLOW_CONTROL_HARDWARE : 0);
+ Status = gBS->ReinstallProtocolInterface (
+ SerialDevice->Handle,
+ &gEfiDevicePathProtocolGuid,
+ SerialDevice->DevicePath,
+ SerialDevice->DevicePath
+ );
+ }
+ }
+
+ gBS->RestoreTPL (Tpl);
+
+ return Status;
+}
+
+/**
+ Get ControlBits.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+ @param Control Control signals of the serial device
+
+ @retval EFI_SUCCESS Get Control signals successfully
+
+**/
+EFI_STATUS
+EFIAPI
+SerialGetControl (
+ IN EFI_SERIAL_IO_PROTOCOL *This,
+ OUT UINT32 *Control
+ )
+{
+ SERIAL_DEV *SerialDevice;
+ SERIAL_PORT_MSR Msr;
+ SERIAL_PORT_MCR Mcr;
+ EFI_TPL Tpl;
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+
+ *Control = 0;
+
+ //
+ // Read the Modem Status Register
+ //
+ Msr.Data = READ_MSR (SerialDevice);
+
+ if (Msr.Bits.Cts == 1) {
+ *Control |= EFI_SERIAL_CLEAR_TO_SEND;
+ }
+
+ if (Msr.Bits.Dsr == 1) {
+ *Control |= EFI_SERIAL_DATA_SET_READY;
+ }
+
+ if (Msr.Bits.Ri == 1) {
+ *Control |= EFI_SERIAL_RING_INDICATE;
+ }
+
+ if (Msr.Bits.Dcd == 1) {
+ *Control |= EFI_SERIAL_CARRIER_DETECT;
+ }
+ //
+ // Read the Modem Control Register
+ //
+ Mcr.Data = READ_MCR (SerialDevice);
+
+ if (Mcr.Bits.DtrC == 1) {
+ *Control |= EFI_SERIAL_DATA_TERMINAL_READY;
+ }
+
+ if (Mcr.Bits.Rts == 1) {
+ *Control |= EFI_SERIAL_REQUEST_TO_SEND;
+ }
+
+ if (Mcr.Bits.Lme == 1) {
+ *Control |= EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE;
+ }
+
+ if (SerialDevice->HardwareFlowControl) {
+ *Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
+ }
+ //
+ // Update FIFO status
+ //
+ SerialReceiveTransmit (SerialDevice);
+
+ //
+ // See if the Transmit FIFO is empty
+ //
+ if (SerialFifoEmpty (&SerialDevice->Transmit)) {
+ *Control |= EFI_SERIAL_OUTPUT_BUFFER_EMPTY;
+ }
+
+ //
+ // See if the Receive FIFO is empty.
+ //
+ if (SerialFifoEmpty (&SerialDevice->Receive)) {
+ *Control |= EFI_SERIAL_INPUT_BUFFER_EMPTY;
+ }
+
+ if (SerialDevice->SoftwareLoopbackEnable) {
+ *Control |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
+ }
+
+ gBS->RestoreTPL (Tpl);
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Write the specified number of bytes to serial device.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+ @param BufferSize On input the size of Buffer, on output the amount of
+ data actually written
+ @param Buffer The buffer of data to write
+
+ @retval EFI_SUCCESS The data were written successfully
+ @retval EFI_DEVICE_ERROR The device reported an error
+ @retval EFI_TIMEOUT The write operation was stopped due to timeout
+
+**/
+EFI_STATUS
+EFIAPI
+SerialWrite (
+ IN EFI_SERIAL_IO_PROTOCOL *This,
+ IN OUT UINTN *BufferSize,
+ IN VOID *Buffer
+ )
+{
+ SERIAL_DEV *SerialDevice;
+ UINT8 *CharBuffer;
+ UINT32 Index;
+ UINTN Elapsed;
+ UINTN ActualWrite;
+ EFI_TPL Tpl;
+ UINTN Timeout;
+ UINTN BitsPerCharacter;
+
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+ Elapsed = 0;
+ ActualWrite = 0;
+
+ if (*BufferSize == 0) {
+ return EFI_SUCCESS;
+ }
+
+ if (Buffer == NULL) {
+ REPORT_STATUS_CODE_WITH_DEVICE_PATH (
+ EFI_ERROR_CODE,
+ EFI_P_EC_OUTPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
+ SerialDevice->DevicePath
+ );
+
+ return EFI_DEVICE_ERROR;
+ }
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ CharBuffer = (UINT8 *) Buffer;
+
+ //
+ // Compute the number of bits in a single character. This is a start bit,
+ // followed by the number of data bits, followed by the number of stop bits.
+ // The number of stop bits is specified by an enumeration that includes
+ // support for 1.5 stop bits. Treat 1.5 stop bits as 2 stop bits.
+ //
+ BitsPerCharacter =
+ 1 +
+ This->Mode->DataBits +
+ ((This->Mode->StopBits == TwoStopBits) ? 2 : This->Mode->StopBits);
+
+ //
+ // Compute the timeout in microseconds to wait for a single byte to be
+ // transmitted. The Mode structure contans a Timeout field that is the
+ // maximum time to transmit or receive a character. However, many UARTs
+ // have a FIFO for transmits, so the time required to add one new character
+ // to the transmit FIFO may be the time required to flush a full FIFO. If
+ // the Timeout in the Mode structure is smaller than the time required to
+ // flush a full FIFO at the current baud rate, then use a timeout value that
+ // is required to flush a full transmit FIFO.
+ //
+ Timeout = MAX (
+ This->Mode->Timeout,
+ (UINTN)DivU64x64Remainder (
+ BitsPerCharacter * (SerialDevice->TransmitFifoDepth + 1) * 1000000,
+ This->Mode->BaudRate,
+ NULL
+ )
+ );
+
+ for (Index = 0; Index < *BufferSize; Index++) {
+ SerialFifoAdd (&SerialDevice->Transmit, CharBuffer[Index]);
+
+ while (SerialReceiveTransmit (SerialDevice) != EFI_SUCCESS || !SerialFifoEmpty (&SerialDevice->Transmit)) {
+ //
+ // Unsuccessful write so check if timeout has expired, if not,
+ // stall for a bit, increment time elapsed, and try again
+ //
+ if (Elapsed >= Timeout) {
+ *BufferSize = ActualWrite;
+ gBS->RestoreTPL (Tpl);
+ return EFI_TIMEOUT;
+ }
+
+ gBS->Stall (TIMEOUT_STALL_INTERVAL);
+
+ Elapsed += TIMEOUT_STALL_INTERVAL;
+ }
+
+ ActualWrite++;
+ //
+ // Successful write so reset timeout
+ //
+ Elapsed = 0;
+ }
+
+ gBS->RestoreTPL (Tpl);
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Read the specified number of bytes from serial device.
+
+ @param This Pointer to EFI_SERIAL_IO_PROTOCOL
+ @param BufferSize On input the size of Buffer, on output the amount of
+ data returned in buffer
+ @param Buffer The buffer to return the data into
+
+ @retval EFI_SUCCESS The data were read successfully
+ @retval EFI_DEVICE_ERROR The device reported an error
+ @retval EFI_TIMEOUT The read operation was stopped due to timeout
+
+**/
+EFI_STATUS
+EFIAPI
+SerialRead (
+ IN EFI_SERIAL_IO_PROTOCOL *This,
+ IN OUT UINTN *BufferSize,
+ OUT VOID *Buffer
+ )
+{
+ SERIAL_DEV *SerialDevice;
+ UINT32 Index;
+ UINT8 *CharBuffer;
+ UINTN Elapsed;
+ EFI_STATUS Status;
+ EFI_TPL Tpl;
+
+ SerialDevice = SERIAL_DEV_FROM_THIS (This);
+ Elapsed = 0;
+
+ if (*BufferSize == 0) {
+ return EFI_SUCCESS;
+ }
+
+ if (Buffer == NULL) {
+ return EFI_DEVICE_ERROR;
+ }
+
+ Tpl = gBS->RaiseTPL (TPL_NOTIFY);
+
+ Status = SerialReceiveTransmit (SerialDevice);
+
+ if (EFI_ERROR (Status)) {
+ *BufferSize = 0;
+
+ REPORT_STATUS_CODE_WITH_DEVICE_PATH (
+ EFI_ERROR_CODE,
+ EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
+ SerialDevice->DevicePath
+ );
+
+ gBS->RestoreTPL (Tpl);
+
+ return EFI_DEVICE_ERROR;
+ }
+
+ CharBuffer = (UINT8 *) Buffer;
+ for (Index = 0; Index < *BufferSize; Index++) {
+ while (SerialFifoRemove (&SerialDevice->Receive, &(CharBuffer[Index])) != EFI_SUCCESS) {
+ //
+ // Unsuccessful read so check if timeout has expired, if not,
+ // stall for a bit, increment time elapsed, and try again
+ // Need this time out to get conspliter to work.
+ //
+ if (Elapsed >= This->Mode->Timeout) {
+ *BufferSize = Index;
+ gBS->RestoreTPL (Tpl);
+ return EFI_TIMEOUT;
+ }
+
+ gBS->Stall (TIMEOUT_STALL_INTERVAL);
+ Elapsed += TIMEOUT_STALL_INTERVAL;
+
+ Status = SerialReceiveTransmit (SerialDevice);
+ if (Status == EFI_DEVICE_ERROR) {
+ *BufferSize = Index;
+ gBS->RestoreTPL (Tpl);
+ return EFI_DEVICE_ERROR;
+ }
+ }
+ //
+ // Successful read so reset timeout
+ //
+ Elapsed = 0;
+ }
+
+ SerialReceiveTransmit (SerialDevice);
+
+ gBS->RestoreTPL (Tpl);
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Use scratchpad register to test if this serial port is present.
+
+ @param SerialDevice Pointer to serial device structure
+
+ @return if this serial port is present
+**/
+BOOLEAN
+SerialPresent (
+ IN SERIAL_DEV *SerialDevice
+ )
+
+{
+ UINT8 Temp;
+ BOOLEAN Status;
+
+ Status = TRUE;
+
+ //
+ // Save SCR reg
+ //
+ Temp = READ_SCR (SerialDevice);
+ WRITE_SCR (SerialDevice, 0xAA);
+
+ if (READ_SCR (SerialDevice) != 0xAA) {
+ Status = FALSE;
+ }
+
+ WRITE_SCR (SerialDevice, 0x55);
+
+ if (READ_SCR (SerialDevice) != 0x55) {
+ Status = FALSE;
+ }
+ //
+ // Restore SCR
+ //
+ WRITE_SCR (SerialDevice, Temp);
+ return Status;
+}
+
+/**
+ Read serial port.
+
+ @param SerialDev Pointer to serial device
+ @param Offset Offset in register group
+
+ @return Data read from serial port
+
+**/
+UINT8
+SerialReadRegister (
+ IN SERIAL_DEV *SerialDev,
+ IN UINT32 Offset
+ )
+{
+ UINT8 Data;
+ EFI_STATUS Status;
+
+ if (SerialDev->PciDeviceInfo == NULL) {
+ return IoRead8 ((UINTN) SerialDev->BaseAddress + Offset * SerialDev->RegisterStride);
+ } else {
+ if (SerialDev->MmioAccess) {
+ Status = SerialDev->PciDeviceInfo->PciIo->Mem.Read (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
+ SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
+ } else {
+ Status = SerialDev->PciDeviceInfo->PciIo->Io.Read (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
+ SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
+ }
+ ASSERT_EFI_ERROR (Status);
+ return Data;
+ }
+}
+
+/**
+ Write serial port.
+
+ @param SerialDev Pointer to serial device
+ @param Offset Offset in register group
+ @param Data data which is to be written to some serial port register
+**/
+VOID
+SerialWriteRegister (
+ IN SERIAL_DEV *SerialDev,
+ IN UINT32 Offset,
+ IN UINT8 Data
+ )
+{
+ EFI_STATUS Status;
+
+ if (SerialDev->PciDeviceInfo == NULL) {
+ IoWrite8 ((UINTN) SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, Data);
+ } else {
+ if (SerialDev->MmioAccess) {
+ Status = SerialDev->PciDeviceInfo->PciIo->Mem.Write (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
+ SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
+ } else {
+ Status = SerialDev->PciDeviceInfo->PciIo->Io.Write (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
+ SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
+ }
+ ASSERT_EFI_ERROR (Status);
+ }
+}