summaryrefslogtreecommitdiffstats
path: root/ArmPkg/Drivers/CpuDxe/AArch64/Mmu.c
blob: 0859c7418a1f3d4a11557ae193ba2615f4ac2e5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/*++

Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent


--*/

#include <Library/MemoryAllocationLib.h>
#include "CpuDxe.h"

#define INVALID_ENTRY  ((UINT32)~0)

#define MIN_T0SZ        16
#define BITS_PER_LEVEL  9

STATIC
VOID
GetRootTranslationTableInfo (
  IN  UINTN  T0SZ,
  OUT UINTN  *RootTableLevel,
  OUT UINTN  *RootTableEntryCount
  )
{
  *RootTableLevel      = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
  *RootTableEntryCount = TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
}

STATIC
UINT64
PageAttributeToGcdAttribute (
  IN UINT64  PageAttributes
  )
{
  UINT64  GcdAttributes;

  switch (PageAttributes & TT_ATTR_INDX_MASK) {
    case TT_ATTR_INDX_DEVICE_MEMORY:
      GcdAttributes = EFI_MEMORY_UC;
      break;
    case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
      GcdAttributes = EFI_MEMORY_WC;
      break;
    case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
      GcdAttributes = EFI_MEMORY_WT;
      break;
    case TT_ATTR_INDX_MEMORY_WRITE_BACK:
      GcdAttributes = EFI_MEMORY_WB;
      break;
    default:
      DEBUG ((
        DEBUG_ERROR,
        "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n",
        PageAttributes
        ));
      ASSERT (0);
      // The Global Coherency Domain (GCD) value is defined as a bit set.
      // Returning 0 means no attribute has been set.
      GcdAttributes = 0;
  }

  // Determine protection attributes
  if ((PageAttributes & TT_AF) == 0) {
    GcdAttributes |= EFI_MEMORY_RP;
  }

  if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) ||
      ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO))
  {
    // Read only cases map to write-protect
    GcdAttributes |= EFI_MEMORY_RO;
  }

  // Process eXecute Never attribute
  if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0) {
    GcdAttributes |= EFI_MEMORY_XP;
  }

  return GcdAttributes;
}

/**
  Convert an arch specific set of page attributes into a mask
  of EFI_MEMORY_xx constants.

  @param  PageAttributes  The set of page attributes.

  @retval The mask of EFI_MEMORY_xx constants.

**/
UINT64
RegionAttributeToGcdAttribute (
  IN UINTN  PageAttributes
  )
{
  return PageAttributeToGcdAttribute (PageAttributes);
}

STATIC
UINT64
GetFirstPageAttribute (
  IN UINT64  *FirstLevelTableAddress,
  IN UINTN   TableLevel
  )
{
  UINT64  FirstEntry;

  // Get the first entry of the table
  FirstEntry = *FirstLevelTableAddress;

  if ((TableLevel != 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
    // Only valid for Levels 0, 1 and 2

    // Get the attribute of the subsequent table
    return GetFirstPageAttribute ((UINT64 *)(FirstEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE), TableLevel + 1);
  } else if (((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) ||
             ((TableLevel == 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
  {
    return FirstEntry & TT_ATTR_INDX_MASK;
  } else {
    return INVALID_ENTRY;
  }
}

STATIC
UINT64
GetNextEntryAttribute (
  IN     UINT64  *TableAddress,
  IN     UINTN   EntryCount,
  IN     UINTN   TableLevel,
  IN     UINT64  BaseAddress,
  IN OUT UINT32  *PrevEntryAttribute,
  IN OUT UINT64  *StartGcdRegion
  )
{
  UINTN                            Index;
  UINT64                           Entry;
  UINT32                           EntryAttribute;
  UINT32                           EntryType;
  EFI_STATUS                       Status;
  UINTN                            NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap;

  // Get the memory space map from GCD
  MemorySpaceMap = NULL;
  Status         = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
  ASSERT_EFI_ERROR (Status);

  // We cannot get more than 3-level page table
  ASSERT (TableLevel <= 3);

  // While the top level table might not contain TT_ENTRY_COUNT entries;
  // the subsequent ones should be filled up
  for (Index = 0; Index < EntryCount; Index++) {
    Entry          = TableAddress[Index];
    EntryType      = Entry & TT_TYPE_MASK;
    EntryAttribute = Entry  & TT_ATTR_INDX_MASK;

    // If Entry is a Table Descriptor type entry then go through the sub-level table
    if ((EntryType == TT_TYPE_BLOCK_ENTRY) ||
        ((TableLevel == 3) && (EntryType == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
    {
      if ((*PrevEntryAttribute == INVALID_ENTRY) || (EntryAttribute != *PrevEntryAttribute)) {
        if (*PrevEntryAttribute != INVALID_ENTRY) {
          // Update GCD with the last region
          SetGcdMemorySpaceAttributes (
            MemorySpaceMap,
            NumberOfDescriptors,
            *StartGcdRegion,
            (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
            PageAttributeToGcdAttribute (*PrevEntryAttribute)
            );
        }

        // Start of the new region
        *StartGcdRegion     = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
        *PrevEntryAttribute = EntryAttribute;
      } else {
        continue;
      }
    } else if (EntryType == TT_TYPE_TABLE_ENTRY) {
      // Table Entry type is only valid for Level 0, 1, 2
      ASSERT (TableLevel < 3);

      // Increase the level number and scan the sub-level table
      GetNextEntryAttribute (
        (UINT64 *)(Entry & TT_ADDRESS_MASK_DESCRIPTION_TABLE),
        TT_ENTRY_COUNT,
        TableLevel + 1,
        (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))),
        PrevEntryAttribute,
        StartGcdRegion
        );
    } else {
      if (*PrevEntryAttribute != INVALID_ENTRY) {
        // Update GCD with the last region
        SetGcdMemorySpaceAttributes (
          MemorySpaceMap,
          NumberOfDescriptors,
          *StartGcdRegion,
          (BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
          PageAttributeToGcdAttribute (*PrevEntryAttribute)
          );

        // Start of the new region
        *StartGcdRegion     = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
        *PrevEntryAttribute = INVALID_ENTRY;
      }
    }
  }

  FreePool (MemorySpaceMap);

  return BaseAddress + (EntryCount * TT_ADDRESS_AT_LEVEL (TableLevel));
}

EFI_STATUS
SyncCacheConfig (
  IN  EFI_CPU_ARCH_PROTOCOL  *CpuProtocol
  )
{
  EFI_STATUS                       Status;
  UINT32                           PageAttribute;
  UINT64                           *FirstLevelTableAddress;
  UINTN                            TableLevel;
  UINTN                            TableCount;
  UINTN                            NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap;
  UINTN                            Tcr;
  UINTN                            T0SZ;
  UINT64                           BaseAddressGcdRegion;
  UINT64                           EndAddressGcdRegion;

  // This code assumes MMU is enabled and filed with section translations
  ASSERT (ArmMmuEnabled ());

  //
  // Get the memory space map from GCD
  //
  MemorySpaceMap = NULL;
  Status         = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
  ASSERT_EFI_ERROR (Status);

  // The GCD implementation maintains its own copy of the state of memory space attributes.  GCD needs
  // to know what the initial memory space attributes are.  The CPU Arch. Protocol does not provide a
  // GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
  // a client) to update its copy of the attributes.  This is bad architecture and should be replaced
  // with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.

  // Obtain page table base
  FirstLevelTableAddress = (UINT64 *)(ArmGetTTBR0BaseAddress ());

  // Get Translation Control Register value
  Tcr = ArmGetTCR ();
  // Get Address Region Size
  T0SZ = Tcr & TCR_T0SZ_MASK;

  // Get the level of the first table for the indicated Address Region Size
  GetRootTranslationTableInfo (T0SZ, &TableLevel, &TableCount);

  // First Attribute of the Page Tables
  PageAttribute = GetFirstPageAttribute (FirstLevelTableAddress, TableLevel);

  // We scan from the start of the memory map (ie: at the address 0x0)
  BaseAddressGcdRegion = 0x0;
  EndAddressGcdRegion  = GetNextEntryAttribute (
                           FirstLevelTableAddress,
                           TableCount,
                           TableLevel,
                           BaseAddressGcdRegion,
                           &PageAttribute,
                           &BaseAddressGcdRegion
                           );

  // Update GCD with the last region if valid
  if (PageAttribute != INVALID_ENTRY) {
    SetGcdMemorySpaceAttributes (
      MemorySpaceMap,
      NumberOfDescriptors,
      BaseAddressGcdRegion,
      EndAddressGcdRegion - BaseAddressGcdRegion,
      PageAttributeToGcdAttribute (PageAttribute)
      );
  }

  FreePool (MemorySpaceMap);

  return EFI_SUCCESS;
}

UINT64
EfiAttributeToArmAttribute (
  IN UINT64  EfiAttributes
  )
{
  UINT64  ArmAttributes;

  switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
    case EFI_MEMORY_UC:
      if (ArmReadCurrentEL () == AARCH64_EL2) {
        ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
      } else {
        ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
      }

      break;
    case EFI_MEMORY_WC:
      ArmAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
      break;
    case EFI_MEMORY_WT:
      ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
      break;
    case EFI_MEMORY_WB:
      ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
      break;
    default:
      ArmAttributes = TT_ATTR_INDX_MASK;
  }

  // Set the access flag to match the block attributes
  if ((EfiAttributes & EFI_MEMORY_RP) == 0) {
    ArmAttributes |= TT_AF;
  }

  // Determine protection attributes
  if ((EfiAttributes & EFI_MEMORY_RO) != 0) {
    ArmAttributes |= TT_AP_NO_RO;
  }

  // Process eXecute Never attribute
  if ((EfiAttributes & EFI_MEMORY_XP) != 0) {
    ArmAttributes |= TT_PXN_MASK;
  }

  return ArmAttributes;
}

// This function will recursively go down the page table to find the first block address linked to 'BaseAddress'.
// And then the function will identify the size of the region that has the same page table attribute.
EFI_STATUS
GetMemoryRegionRec (
  IN     UINT64  *TranslationTable,
  IN     UINTN   TableLevel,
  IN     UINT64  *LastBlockEntry,
  IN OUT UINTN   *BaseAddress,
  OUT    UINTN   *RegionLength,
  OUT    UINTN   *RegionAttributes
  )
{
  EFI_STATUS  Status;
  UINT64      *NextTranslationTable;
  UINT64      *BlockEntry;
  UINT64      BlockEntryType;
  UINT64      EntryType;

  if (TableLevel != 3) {
    BlockEntryType = TT_TYPE_BLOCK_ENTRY;
  } else {
    BlockEntryType = TT_TYPE_BLOCK_ENTRY_LEVEL3;
  }

  // Find the block entry linked to the Base Address
  BlockEntry = (UINT64 *)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, TableLevel, *BaseAddress);
  EntryType  = *BlockEntry & TT_TYPE_MASK;

  if ((TableLevel < 3) && (EntryType == TT_TYPE_TABLE_ENTRY)) {
    NextTranslationTable = (UINT64 *)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);

    // The entry is a page table, so we go to the next level
    Status = GetMemoryRegionRec (
               NextTranslationTable, // Address of the next level page table
               TableLevel + 1,       // Next Page Table level
               (UINTN *)TT_LAST_BLOCK_ADDRESS (NextTranslationTable, TT_ENTRY_COUNT),
               BaseAddress,
               RegionLength,
               RegionAttributes
               );

    // In case of 'Success', it means the end of the block region has been found into the upper
    // level translation table
    if (!EFI_ERROR (Status)) {
      return EFI_SUCCESS;
    }

    // Now we processed the table move to the next entry
    BlockEntry++;
  } else if (EntryType == BlockEntryType) {
    // We have found the BlockEntry attached to the address. We save its start address (the start
    // address might be before the 'BaseAddress') and attributes
    *BaseAddress      = *BaseAddress & ~(TT_ADDRESS_AT_LEVEL (TableLevel) - 1);
    *RegionLength     = 0;
    *RegionAttributes = *BlockEntry & TT_ATTRIBUTES_MASK;
  } else {
    // We have an 'Invalid' entry
    return EFI_UNSUPPORTED;
  }

  while (BlockEntry <= LastBlockEntry) {
    if ((*BlockEntry & TT_ATTRIBUTES_MASK) == *RegionAttributes) {
      *RegionLength = *RegionLength + TT_BLOCK_ENTRY_SIZE_AT_LEVEL (TableLevel);
    } else {
      // In case we have found the end of the region we return success
      return EFI_SUCCESS;
    }

    BlockEntry++;
  }

  // If we have reached the end of the TranslationTable and we have not found the end of the region then
  // we return EFI_NOT_FOUND.
  // The caller will continue to look for the memory region at its level
  return EFI_NOT_FOUND;
}

EFI_STATUS
GetMemoryRegion (
  IN OUT UINTN  *BaseAddress,
  OUT    UINTN  *RegionLength,
  OUT    UINTN  *RegionAttributes
  )
{
  EFI_STATUS  Status;
  UINT64      *TranslationTable;
  UINTN       TableLevel;
  UINTN       EntryCount;
  UINTN       T0SZ;

  ASSERT ((BaseAddress != NULL) && (RegionLength != NULL) && (RegionAttributes != NULL));

  TranslationTable = ArmGetTTBR0BaseAddress ();

  T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
  // Get the Table info from T0SZ
  GetRootTranslationTableInfo (T0SZ, &TableLevel, &EntryCount);

  Status = GetMemoryRegionRec (
             TranslationTable,
             TableLevel,
             (UINTN *)TT_LAST_BLOCK_ADDRESS (TranslationTable, EntryCount),
             BaseAddress,
             RegionLength,
             RegionAttributes
             );

  // If the region continues up to the end of the root table then GetMemoryRegionRec()
  // will return EFI_NOT_FOUND
  if (Status == EFI_NOT_FOUND) {
    return EFI_SUCCESS;
  } else {
    return Status;
  }
}